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In this contribution, a review of the calculation of the lunar orbit 
in the relativistic framework is drawn up. Then, the particular 
dependence of the lunar orbit motion upon the relativistic perturbations 
of the motions of the planets themselves is put forth. 

INTRODUCTION 

Relativistic effects in lunar laser ranging arise when chrono-spatial 
events occuring in the solar system are considered in a curved space-
time. The metric element ds of the four-dimensional manifold describing 
this space-time depends upon the gravitational potentials of all the 
bodies of the solar system. 
One can distinguish two classes of relativistic effects : 

1) the measurement process operated with a laser beam between an 
Earth-station and a Moon retro-reflector which depends upon the relati­
vistic laws governing the path of photons and the behavior of terrestrial 
clocks ; 

2) the dynamics of the Earth-Moon system derived from the relativis­
tic laws, governing the separation between the centers of mass of the 
Earth and Moon, and the rotations of these two bodies. 

""] The modelling of the measurement process can be found in Mulholland 
(1977) and the relativistic effects in the rotations in Brumberg (1972). 
We will deal, in this paper, only with a particular aspect of the 
relativistic dynamical effects in the Earth-Moon separation, or more 

' generally in the lunar orbit motion, that are due to the relativistic 
perturbations in the motions of the planets themselves. 
In section 1, a review of the calculation of the lunar orbit motion in 
the relativistic framework is drawn up. In section 2, the particular 
dependence of the lunar orbit motion upon the relativistic perturbations 
in the motions of the planets themselves is put forth. Then, in section 
3, we describe an analytic construction of these planetary perturbations 
in order to evaluate quantitatively, in section 4, how greatly the 
lunar orbit motion is affected. 
We have adopted for the following calculations the theory of general 
relativity. 
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1. CALCULATION OF THE LUNAR ORBIT MOTION IN THE RELATIVISTIC FRAMEWORK 

In the relativistic framework, using the post-Newtonian approximation, 
the differential equation for the radius-vector r between the Earth 
and Moon can be written symbolically : 

r = grad U + —2 V(r,r,r) (1) 

1 ->- -* -\ 
V being the Newtonian potential and —27(r,r,r) a function denoting the 
relativistic acceleration proportional to 1/c2 and derived from the 
metric element ds of the curved space-time (c is the speed of light). 

In an analytic theory, one can distinguish two types of perturbations 
in the lunar orbit motion. The first type is obtained after integration 
of the newtonian acceleration grad U in (1). The second type is obtained 
after integration of the relativistic acceleration proportional to 1/c2. 
Generally speaking, the geodesic of a test particle, in the weak 
gravitational field of the solar system, can be expanded in series 
form with the perturbations theory. It is a rough but helpful estimation 
to consider the main relativistic perturbations of this expansion as 
proportional to the gravitational radii Gm/c of the masses m present 
in the physical model {G constant of gravitation) and inversely propor­
tional to the distances J between these masses and the test particle. 
Table I gives the maximum values for the drmensionless quantity Gm/c21 
originating in each planet. We give a unique value when the test particle 
is either the massless Earth or the massless Moon since, in these two 
cases, the difference is unsignificant. Of course, this does not mean 
that the differential relativistic effect between the Earth and Moon 
is null — involving no relativistic perturbations in the lunar orbit 
motion. 

Table I : maximum values for the dimensionless quantity Gm / czJ 
originating in each planet (Me : Mercury ; V : Venus ; 
M : Mars ; J : Jupiter ; S : Saturn ; U : Uranus ; 
N : Neptun). The "unit" is 10~12. 

Bodies 

Gm / c2l 

Sun 

10 000 

Me 

0.00 

V 

0.08 

M 

0.00 

J 

2.50 

S 

0.35 

U 

0.02 

N 

0.02 

Earth 
upon 
Moon 

11.50 

Moon 
upon 
Earth 

0.10 

In order to make this table capable of justifying possible approximations 
in the formulation of the relativistic acceleration proportional to 1/c2, 
we must point out the order of magnitude of the main relativistic 
perturbations in the lunar orbit motion. They are periodic perturbations 
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due to the differential relativistic effect between the Earth and Moon 
originating in the gravitational radius of the Sun. Their highest 
amplitude reaches, in General Relativity, a little more than one meter 
with a half month period (Brumberg, 1972). 
From table I and this highest amplitude, we conclude that the planets 
have, very likely, negligible differential effects in the lunar orbit 
motion. 
Let us note that this table contains, too, the value of Gm/c2l for the 
Earth reconsidered with a non-null mass m curving the space-time. But 
this dimensionless quantity being, in "unit" of 10- 1 2

s n in comparison 
with 10 00Q for the Sun, the geodesic of the massless Moon will be only 
slightly changed by this small superimposed curvature. Although, in this 
case, the relativistic effect is not differential as previously, the 
periodic perturbations are likely to be very small with respect to the 
accuracy of the lunar laser ranging data. Schwarzschild1s secular 
advance in the perigee of the Moon (O'.'06/cy) is the only effect to be 
retained. 

The table contains also the value for the reciprocal problem, i.e. the 
Moon with non-null mass curving the space-time in which a massless 
Earth follows a geodesic. Its effect will be even smaller and thus 
negligible. 

In conclusion, the Moon, as a test particle, follows a geodesic which 
can be calculated with sufficient approximation in a metric whose 
metric element ds, as this analysis shows, depends only upon the gravi­
tational potentials of the Sun and Earth. Moreover, the metric is fully 
defined only under the assumption of a relative motion for the Earth 
and Sun. 

If these conditions are fulfilled, the derivation of equation (1) can 
be made from the principle of geodesic providing the formulation for 
the relativistic acceleration proportional to 1/c2. With such definitions 
we can say by analogy with the terminology in the Newtonian framework 
that the main relativistic perturbations come from a 3-body problem 
qualified as the relativistic main problem. 
In analytical form, this relativistic main problem is treated by 
Brumberg (1958, 1972) in General Relativity with harmonic coordinates 
and with circular motions for the point-masses Earth and Sun. Baierlein 
(1967) deals with the same problem but the motion of the Earth around 
the Sun is elliptical. Krogh and Baierlein (1968) treat this problem 
but in a one-parametric formalism including General Relativity and 
Brans-Dicke theory. Nordtvedt (1973) deals with it also but in the more 
general PPN (Parametrized Post-Newtonian) formalism. This author 
considers the Earth and Moon as bodies instead of point-masses, he 
discovers Nordtvedt's effect which has, however, not been corroborated 
by lunar laser ranging data (Williams et al, 1975; Shapiro et al, 1975). 
Brumberg (1981) treats his original problem again but in a four-parame­
tric formalism including two physical parameters (Y,B) and two coordi­
nates parameters (a,\>). 
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2. DIRECT AND INDIRECT RELATIVISTIC PERTURBATIONS IN THE LUNAR ORBIT 
MOTION 

Although, we have assumed the relativistic acceleration originating from 

1 -*• -> "-> . . 

the planets in —^ V(r,r,r) to be negligible, this does not mean that we 

have dismissed entirely their relativistic influence in the lunar orbit 
motion. The potential U in (1) depends upon their positions and, there­
fore, upon the relativistic perturbations of their own motions. 
The explicit formulation for the potential U which originates from the 
masses of all the planets, the Sun, the Earth and the Moon is in 
Chapront-Touze et ChaprontC 1980) . It can be written as a function depen­
ding upon the osculating elements a of the orbital motions of the planets 
and upon the Earth-Moon vector r. A planetary theory provides the 
osculating elements a in series form for each planet, the terms of these 
series being the perturbations 6a around keplerian ellipses OQ : 

a = OQ + &a 

One part of <5a accounts for the relativistic perturbations So . Since 
they are very small, the potential U can be linearized : 

U(a,r) =U(a0,r) +1 (|̂  ) x <5a R (2) 
a ^ 

The summation is extended to the six osculating elements of all the 
planets. 
In order to calculate the relativistic perturbations in the lunar orbit 
motion due to the perturbations 6a^ , we have formally treated the latter 
in the same way as the Newtonian perturbations of the motions of planets 
which produce the so-called planetary perturbations in the orbit of the 
Moon. We have employed Brown's method to find these complementary pertur­
bations to the solution of the Newtonian main problem calculated by 
Chapront-Touze (1980). The details of the method can be found in 
Chapront-Touze et; Cbapront( 1 980) . We will recall only that it leads to 
the following differential system : 

d z i = (M 
dt U 3 w . J 

l 

i ,3n 
(3) 

zr-8<fir.> i= ]- 2» 3 

i 

Q. is the disturbing function completing the force function of the 
Newtonian main problem. The differential system (3) is equivalent to 
the vectorial equation (1) limited to the Newtonian approximation, 
i.e. neglecting the relativistic acceleration proportional to 1/c2. 
Therefore, the influence of the relativistic motions of the planets 

expressed by : I(y~J * 6° enters into the disturbing function Q in 

a ° 
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the same way, formally, as the Newtonian planetary perturbations into 
the lunar orbit motion. 
The variables z. and w. are respectively constants and linear functions 

1 1 
of time in the solution of the Newtonian main problem. They are defined 
in the following way : 

z = v; sidereal mean motion of the Moon 

z =T; semi-coefficient in sinF in latitude which is related to 
inclination 

z =£; semi-coefficient in sin 1 in longitude which is related to 

eccentricity 

w = 2 + to 

w = OJ 

'Vi 
w = Q; 1, co, 0, being respectively mean mean anomaly, mean longitude 

of perigee and mean longitude of node of the Moon. 
In order to express the right-hand member of (3), one must compute the 
relativistic perturbations 6cr̂  in the osculating elements of the planets. 
We give the main features of this computation in the next section. 
After solving (3) and following the terminology used in the Newtonian 
framework, we can distinguish two types of relativistic perturbations 
in the lunar orbit motion due to the planets : the indirect perturbations 
caused by the relativistic perturbations Sa^ in the Earth motion, and 
the direct ones caused by the relativistic perturbations 6a^ in the 
motions of all the other planets. 

3. RELATIVISTIC PERTURBATIONS IN THE MOTIONS OF THE PLANETS THEMSELVES 

As mentioned above, General Relativity is the theory of gravitation 
adopted here. We assume that only Schwarzschild's acceleration due to 
the Sun is of practical importance for the motions of planets. This 
means that the metric depends only upon the gravitational potential 
of the Sun and that the massless planets follow geodesies. The equation 
of the heliocentric motion for the i1-" planet is : 

P - * • - > • - > • 

G(S+m.) p . - p. p . 
p. = p. + } GIB. ' — =L 1 J-

pr î i J Ar. pr 

(4) 

+ 

• 2 "*" ->• 

GS r , CS -> Pi + , . pi,pi 
— I 4 p . p . + 4 — — -

2 4 1 ^ i 1 o K i 
c Pi pi P? 

P4 

with j = 1,, 
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where : p. is the heliocentric radius-vector of the j planet 

A., is the mutual distance between the i and i planets 

S is the mass of the Sun 

m. is the mass of the j planet. 

We have written this equation in isotropic coordinates from Brumberg 
(1972) chosing a = 0 for the coordinates parameter in order to be 
consistent with the harmonic coordinates generally employed for the 
main relativistic perturbations in the lunar orbit motion. 
The first part of the right-hand member of this equation can be identi- , 
fied formally with Newtonian acceleration. The second part, proportional! 
to the gravitational radius of the Sun GS /c2, is the relativistic 
acceleration that we introduced in Gauss's equations. Thus, we have 
been able to expand the osculating elements in semi-analytical series 
form with respect to the small parameters GS /c and m. up to the 
second order for all the planets^ For this purpose, we have used the 
partial derivatives computed by Bretagnon in his Newtonian theory of 
planetary motions (Bretagnon, 1980). 
We have employed the following planetary osculating elements a : a, X, 
h = e sin a), k = e cos ui, p = sin i/2 sin A , q = sin i/2 cos Q ; a, X, e, i, w, 
Q being respectively : semi-major axis, mean longitude, eccentricity, 
inclination, longitude of the perihelion, longitude of the ascending 
node of the planet. 
The results of this computation is given in Lestrade and Bretagnon (1981), 
The most remarkable non-periodic perturbations are the well-known 
advances of the perihelia, of course, but also include permanent 
contractions of the semi-major axes , which are approximately 6 km 
in isotropic coordinates, depending only slightly upon the eccentricity 
of the planet. It is worth noting that these contractions are 
coordinates-dependent and almost disappear in standard coordinates. 

4. RESULTS : INDIRECT RELATIVISTIC PERTURBATIONS IN LUNAR ORBIT MOTION 

Up to now, the analysis has shown sensitive terms for the indirect 
relativistic perturbations in the lunar orbit motion. They are due 
mainly to the following relativistic perturbations in the osculating 
elements of the Earth (actually, in our computation, of the Earth-Moon 
barycenter) : 

1Q10 A a (UA) =-394.91 -22.51 sinT * 5. 17 cos T + 
+ 0.23 sin2T + 0.47 cos 2T + 

1 0 1 0 A A ( r d ) = - 3 . 5 1 s i n T - 15.27 cos T + 
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1010AJc = -3030.66 t + 0.08 sin T - 295.82cosT + 
- 8.84 sin 2T + 2.03 cos 2T + 

10 Ah = -696. 17 t - 296. 14 sin T + 0.08 cos T + 
+ 2.03 sin 2T + 8.84 cos 2T + 

t is the time expressed in centuries and T is the mean mean heliocentric 
longitude of the Earth (actually, of the Earth-Moon barycenter). These 
results can be found in Lestrade and Bretagnon (1981). 
Table II gives the numbers of periodic terms of the indirect relativistic 
perturbations in the metrical and angular elementsz. and w. defined above. 

Table II : numbers of periodic terms in the metrical and 
angular orbital elements z. and w. of the Moon 
due to the relativistic perturbations in the 
motion of the Earth. 

elements:-*-

a c c u r a c y : 
+ 

2 " i o " 6 + i o ~ 4 " 

10~4"-> 2"10~3 

V 

2 

0 

E 

5 

0 

r 

l 

0 

2+0) 

10 

0 

11 

4 

Q 

1 

0 

The four largest periodic terms and the two secular terms in u and Q are 
given below : 

<5u= +0.6860 t - 0". 00169 sin (2D-2) 
- 0".00101 sin (2D-21) 
- 0".00061 sin 2 

, + 0".00033 sin (T - 2 D + 2 + 257°) 
I 

1 6 fi = -0.1979 t 

( t is the time in centuries ; D and 2 are Delaunay's arguments. 
These two secular terms can be compared to Schwarzschild's advance of the 
perigee of the Moon due to the gravitational radius of the Earth which 
is 0'.'06 per century and to the geodesic precession due to the solar 
gravitational radius which amounts to 1791 per century both in u and Q. 
Another presentation for the results is to compute the perturbations in 
the true longitude V and in the module r of the radius-vector of the 
Moon. We find : 
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6 v(10 ") = 14sin (2D-I) ( T'lO"5) 
+ 6 sin 2D (-55" 10~5) 
+ 5 sin (T+ 77°) 
+ 2 sin (T- 1D+ 77°) + 

fir (cm) = -13 cos 2D (106 cm) 
- 9 cos (2D-J) ( -2 cm) 

+ 4 cos (4T+ 2D+ 128°) 
+ 4cos (T- 2D+ 77°) + 

In parentheses we give the values calculated by Brumberg (1972) for the 
main relativistic perturbations with the same arguments in order to 
allow comparisons between orders of magnitudes of the two types of 
perturbations. 

CONCLUSION 

Complementary terms Sr that we have calculated for the module of the 
radius-vector r between the Earth and the Moon are sensitive at the 
level of accuracy of lunar laser measurement. Moreover, the terms found 
for the true longitude V of the Moon could be sensitive to VLBI angular 
measurement. 
In fact, in analytical form, both the main relativistic perturbations 
as given by Brumberg and the indirect relativistic perturbations compu­
ted in this paper are to be taken into account to represent accurately 
the relativistic effects in the lunar orbit motion. 
The direct relativistic perturbations have not been considered here, 
as well as mixed terms (Poisson's terms) in the relativistic perturba­
tions of the motion of the Earth. They are under study. 
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