GENERATION OF LOCAL INTEGRAL ORTHOGONAL
GROUPS IN CHARACTERISTIC 2

BARTH POLLAK

In two previous papers (see 4; 5) O. T. O’Meara and | investigated the
problem of generating the integral orthogonal group of a quadratic form by
symmetries in the case where the underlying ring of integers was the integers
of a dyadic local field of characteristic not 2. In this paper, the investigation is
concerned with a local field of characteristic 2. As in (5), only the unimodular
case is treated. As in (4) and (5), groups S(L), X, (L), and O(L) are introduced
for a unimodular lattice L and the relationship between S(L) and O(L)
studied. As in the previously cited papers, generation by symmetries means
that S(L) = O(L). The following result is obtained.

THEOREM. Let L be a unimodular laitice over a local field of characteristic 2.
Then X3 (L) = O(L). If the residue class field has more than two elements, then
S(L) = OL). If the residue class field has exactly two elements, then
S(L) = O(L) except in 4 and 6 dimensions with L's of the following form:

ifdimL =4.H 1| Hor H | M,

ifdimL =6: H 1 H 1 M,
with H a hyperbolic plane and M a binary unimodular lattice which does not
represent a unit. In these excepiional cases, (O(L):S(L)) = 2.

1. Preliminaries. F will always denote a local field of characteristic 2.
Thus F is complete with respect to a non-archimedean valuation with finite
residue class field # (necessarily of characteristic 2). Let o denote the valua-
tion ring of F, u the units of 0, and p the maximal ideal of 0. We shall let =
denote a fixed prime element of o (thus p = =0). If v € F, |y| = |=|” for
some integer ». Set v = ord v. If @, 8 € 0, then o ~ B8 will mean ord & = ord 8
(mod 2). The mapping ¢: F — Fgiven by @ (a) = «? + aisa homomorphism
of additive groups with kernel {0, 1}. Hence (¥ : ©(¥)) = 2 and we let 0
and p denote representatives of # mod (¥ ) in F.

Let V be a finite-dimensional vector space over F with quadratic map
Q: V— F and associated bilinear form B. We assume familiarity with the
theory of quadratic spaces over fields of characteristic 2 as developed in
(1; 2; 3). In particular, we assume familiarity with the concepts of
isometry, orthogonality, non-degeneracy, defect, isotropy, etc. A vector x is
called singular if Q(x) = 0. Recall that V= is obtained from V by scaling: its
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quadratic map Q% = aQ. Then B* = aB. Let O(V) denote the orthogonal
group of V. Use V = U 1L W for an orthogonal splitting. Use V == 1’ to
denote an isometry of V onto a quadratic space V'. We call vectors x, v a
hyperbolic pair if Q(x) = Q(y) = 0 and B(x, y) = 1.

We shall consider lattices J, K, L, ... with respect to o in V. Here we need
the concepts developed in (6) and (7). In particular, we assume familiarity
with the concepts of isometry, orthogonality, defect, non-degeneracy,
modularity, etc., for lattices. The subspace of V that is spanned by L will be
written FL and we say that L is on V if V = FL. A vector x in L is called
maximal if x ¢ wL. Since o is a principal ideal domain, L must be free. Recall
that L= is obtained from L by scaling B. Let O(L) denote the group of units
of L, 8L the scale, nL the norm and gL the norm group of L. As in (6), we
have gL = an? + bo, where a is a norm generator of L and b is a base generator
of L. Use L = J 1 K for an orthogonal splitting; call J a component of L
and say that it splits L. Write L = L’ to denote an isometry of L onto a
lattice L’. If L is non-defective, define the Arf invariant of L as in (6) and
use the notation A(L).

1.1 If A(L) # 0, then ord A(L) s zero or a negative odd integer.
Proof. See (7, Lemma 1.1).

2. Unimodular lattices. A unimodular lattice is an o-modular lattice.
Necessarily, it is non-defective and, consequently, L unimodular implies
dim L is even.

We let A («, 8) denote the binary lattice ox + o0y, where Q(x) = «, Q(v) = 8,
and B(x,vy) = 1. Write L =< A (e, B8) in x, y to describe this situation. More
generally, we write L =~ 4 (ay, B1) L ... L A(ay, By) in

{xl, yl} U...U {xn, yn}

We let H denote the generic lattice 4 (0, 0) and we call any such H a hyperbolic
plane.
The following result is due to Sah (7).

2.1. THEOREM. The following assertions are valid.

(1) L unimodular and dim L = 6 tmplies L is split by a hyperbolic plane.

(2) H a hyperbolic plane and H | J = H 1 K implies J = K (this will be
referred to as the cancellation of hyperbolic planes).

(3) If J is binary unimodular, A(J) = 0, and nJ C o, then J is ¢ hyperbolic
plane.

(4) Let J be a unimodular sublattice of a non-degenerate lattice L. Then J
splits L, 1.e., L = J 1 K, if and only if B(J, L) C o.

3. Various subgroups of the orthogonal group. Let L be a lattice on
a non-defective quadratic space V. We define several groups.
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O(L) = {¢ € O(FL)| oL C L}.
If J is a sublattice of L, then
O(L,J) = {o € OL)| ox = x for x € J}.

If J splits L, L =J 1 K, we identify O(L,J) and O(KX). Note that
O(L) = O(L*) and O(L, J) = O(L?, J*) for all non-zero « in F.
A symmetry r,; V — V, v not singular, is defined by the equation

- B(x,y)
X =X + 00

Thus 7, € O(V). And O(V) is generated by these isometries. (See (2 or 3),
noting that our field is not the finite field of two elements.) We let S(L)
denote the subgroup of O(L) that is generated by all symmetries 7, in O(L).
S(L) = S(L#) for any non-zero « in F.

Suppose that ¢ is a non-zero singular vector of V. Let w € V satisfy
B(i, w) = 0. Define a map E,* V — V as follows: for x € V,

E,x = x + B(x,7)w + B(x, w)t + Q(w)B(x, 7)7;

then E,' € O(V). Also, Eliw, = Eu'Ew,’ and, if Q) # 0, then
E,' = Twiquwime- Let X (L) denote the subgroup of O(L) that is generated by
S(L) and those E,? if any, in O(L).

If L has scale o we define another group X, (L), as in (4). Thus, ifdim L < 2,
then X, (L) = S(L). If dim L > 2, we define X, (L) as the subgroup of X (L)
generated by S(L) and those E,* € X (L) for which there exists a splitting
L = H | M with H a hyperbolic plane, ¢ ¢ H, and w € M. If L is a lattice
of scale o that is not split by a hyperbolic plane, then X, (L) = S(L), trivially.

Asin (4), if 4 and B are subsets of a group G, then by 4 B we mean the set
of all elements of G of the form ab, where ¢ € 4 and b € B.

As an initial step we have the following.

3.1. Let L be a mnon-defective lattice and suppose that dim L < 2. Then
O(L) =S(L).

Proof. The hypothesis immediately implies that dim L = 2. Write
L = ox 4 oy. Then B(x, y) # 0. By scaling we may assume that B(x, y) =
Then L is binary unimodular. By (6, Lemma 1.20) we may suppose that

= A(a,c¢) in x, y, where a € Q(L) is a norm generator of gL and
lac| |A(L)]. Since 0 = 8L € nL = ao we have that |a| = 1.

Now let e € O(L) and set cx = ax + By, wherea, 8 € 0. Then 7,4, € O(L)

if and only if

B(ox + x, L)

L 0(ox + =)

(ox + x) C L.
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Now Q(ox +x) =8, Blex + x,x) =8, and B(ox + x,y) = a — 1. It
immediately follows that (1) holds if and only if (e + 1)2 € Bo. But

a = Q(ox) = o’a + af + B%,

whence (a + 1)%2¢ = B(a + Bc) and therefore (@ + 1)2 = B(aa—! 4+ Bca™?).
Since @ is a norm generator and ¢ € Q(L), ca™! € 0. Thus (a 4+ 1)2 € Bo,
whence 7,74, € O(L). Set A\ = 74,4,0. Then \x = x. Let \y = yx + 8y, where
v, 8 € 0. Then 1 = B(A\x, \y) = B(x, \y) =68. Thus Ay = yx + y. Hence
c=QAy) =+ 4+ v+ ¢, whencey(ya + 1) = 0. If y = 0, then Ay = y and
\ is the identity map. Thus ¢ = 74—, € S(L). Thus we may assume that
vya+1=0. Then ¢ € u and v = a~'. Thus Q(\y + v) = B(\y, y) = a™!
and 74, € OL). Now 7Ny =3y and 7y, A = x. Thus 7y, \ is the
identity map. Thus X = 74y, and o = 7op4p Ty € S(L).

4. Generalities. In this section we assume that L is a non-defective lattice
of scale o and dimension greater than 2.

4.1. Suppose that 1, j, and k are maximal singular vectors of L with B(1, k) =
B(j, k) = 1. Write L = (0i + ok) L M. Then there exists w € M such that
EF € X,(L) and E,* = j.

Proof. See (4, §6.1).

4.2, Let 1, k and j, I be two hyperbolic pairs in L. Then there is a o in X, (L)
such that ot = €j for some unit e.

Proof. Write L = (0s 4 ok) L M. If B(z,j) € u, then 7,4; € X,(L) and
71474 = j. Thus suppose that B(7,j) € p and write j = at + Bk + w with
a,B € oand w € M. Then B(i,j) = B implies 8 € p. If @ € 1u, then

Ef1yi = o and  Eg, € X,(L).

Thus suppose that « € p. Now [ = vy¢ + 6k + £, where v,6 € o and ¢ € M.
And B(j4, l) = 1 implies B(w, t) € u. Also, Q(w) = aB € p2and Q(t) = vd € o.
Thus J = ow + ofis binary unimodular with nJ C 0. And A(J) € p?, whence
A(J) = 0 by §1.1. By (3) of §2.1, J is a hyperbolic plane. Hence, there is a
singular z in M with B(j, 2) = 1. Then

B, k+32) =B(la+1)Y,k+3z) =1
and (¢ + 1) € u. Invoke §4.1.

4.3. Supposethat L = H, | M, with H, a hyperbolic plane spanned by the
hyperbolic pair 1,, k, for v = 1, 2. Then there exists N € X, (L) such that \i; = 1,
and )\k] = kz.

Proof. See (4, §6.3).
4.4.If L = H1 M, where His a hyperbolic plane, then O (L) = X,(L)O(L, H).
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Proof. See (4, §6.4).
4.4a. COROLLARY. If, in the notation of §4.4, dim M = 2, then O(L) = X, (L).
Proof. Immediate by §§3.1 and 4.4.

5. The 4-dimensional case, part 1. In this section we assume that L is
a 4-dimensional unimodular lattice which is split by a hyperbolic plane.
By §4.4a, O(L) = X,(L). We wish to see when O(L) = S(L). Hence we need
only consider a splitting L = H 1 M with H a hyperbolic plane and prove
that any E,* € O(L), with ¢ a singular vector in H and with w € M, is also in
S(L). Now E,* € O(L) immediately implies that Q(w) € o. If Q(w) € u,
then the equation E,’ = 7440w immediately shows that E,! ¢ S(L)
hence, for the remainder of the paper, we may assume that Q(w) € p. By
(6, Lemma 1.20), we may write

M= A(a,c) in x, v,

where @ € Q(M) is a norm generator of gM and ac = A(M). Note that
0o =8M C nM = ao implies that |a| = 1.

5.1. Suppose that Q(M) M u = @. Then ord a is odd and |c| < 1.
Proof. That ord « is odd is trivial since |a| = 1. If |¢|] = 1, then
[A(M)| = |ac| > 1.

But then ord A(M) is odd by §1.1. Hence ord ¢ is even. But then Q(\y) € u
for some \ € o.

5.2. Suppose that Q(M) M u #= @ and that M is not a hyperbolic plane. Then
O(L) =S(L).

Proof. By §5.1, either ord @ is even or |¢| = 1.

(1) ord a even and |a| > 1. Then there exists X € p such that Q(\x) € u.
Also, Q(w + \x) € u. Thus Ey' and Eg, € S(L). Hence E,* = EyEbi,
is in S(L).

(2) @ € wororda odd and |c| = 1. Write w = ax + By for some «, 8 € 0.
By (6, Lemma 1.5) it is easy to see that Q(w) € pimplies Q(ax) and Q(8y) € o.
Thus both E,, " and Eg,* € O(L). But Ess’ = Tart @ter) iTar = Tazt @az) T2 Since
7. € S(L), we have that 7erygan: € S(L). Thus E,*! € S(L). Similarly,
Eg,t € S(L). Hence E,* = E,,'Eg,* € S(L).

5.3. Suppose that either Q(M) M u = @ or M is a hyperbolic plane. Assume
that F 5 W, the field of two elements. Then O(L) = S(L).

Proof. If M is not a hyperbolic plane, §5.1 implies that ord ¢ is odd and
le] < 1. If M is a hyperbolic plane we may take ¢ = 1 and ¢ = 0. Write
w = ax + By for some «, B € 0. Then Q(w) € o implies Q(ax) € p. Hence
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E..' and Eg' € O(L) and E," = E,,'Eg,". As in the proof of the previous
proposition, we show that E,,* € S(L). Thus we must show that Eg,* ¢ S(L).

(1) B € u. Now Eg,' = Epf. Clearly, there exists A € O(H) such that
M = Bi. Hence Ef' = E\> = \E,'\"! whence Es' = [\E,\"1(E,")]|E,"
Now A € O(H) = S(H) by §3.1. Thus A € S(L), whence

NE,NUE, D € S(L).
Thus we have shown that

(2) B € u implies that Eg,* = ¢E,* for some ¢ € S(L).

Now the hypothesis implies that there exists a unit e such that e + 1 is
also a unit. Then E,* = E{1,E" and by repeated application of (2) we
obtain E,* = pE,,* for some p € S(L). But E,,* = E," is the identity map.
Thus E,* = p € S(L).

(2) 8 € p. Then Eg,* = E{ss1,E, and B + 1 € u. By case (1), Eg,* € S(L).

5.4. Let L be a 4-dimensional unimodular lattice which is split by a hyperbolic
plane H. Then O(L) = X,(L). If F = Fs, then O(L) = S(L). Finally,
suppose that F = Fy. Write L = H 1 M. Then O(L) = S(L) if M is not a
hyperbolic plane and Q(M) M u #= @.

Proof. Immediate by §§5.2 and 5.3.

6. The 4-dimensional case, part 2. In this section we assume that L is
a 4-dimensional unimodular lattice that is not split by a hyperbolic plane.
We shall ultimately prove that O(L) = S(L).

6.1. Write gL = ao®> + bo. Then b ¢ p and L= A(a,c) L A, wb™) in
x, v, 3, w say, where w = 0 or p, AA (¢, ¢) = ac and |c| < [b].

Proof. All that has to be shown is that |¢| < |b], as the other assertions follow
immediately from (6, Lemma 1.26). Assume that |¢| = [b]. Then |¢| = 1 and
lac| = |a| > [b] 2 1. As AA(a, ¢) = ac, ord ac is negative and odd. Thus
ord ¢ = ord b (mod 2). It follows from the perfectness of the residue class
field that there exists A € o such that A26 = ¢ (mod p). Now

= o(z + \y) + ow

splits L by (4) of §2.1 and since nJ C o. Since Q(z + \y) € p, we have that
A(J) = 0 by §1.1. By §2.1 (3), J is a hyperbolic plane. This contradiction
shows that |¢| < |b].

As a consequence of §6.1 we shall assume for the remainder of this section
that our lattice L has the shape

L=~A4(a,c) L A(b, wb™?)
in x, v, 2, w with gL = ao® + bo, b € p, and |¢| < |b].
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6.2. O(L) = S(L)O(L, 02).
Proof. Let ¢ € O(L). Write
02 = ax + By + vz + dw

with «, B, v, 6 € 0. Then Q(sz + 2) = B(oz, 2) = 6.
(1) 8 € u. Then 75,4, € O(L) and 7,.4.0 € O(L, 02), whence

o € S(L)O(L, 02),

as desired.
(2) 6 € p. b = Q(o2) implies that
(3) Qax + By) = (v + 1)% + vé + 8% w.

We assert that y = 1 (mod p). Suppose the contrary. Then v + 1 € u, whence
[(y + 1)2| = |b] > |v8| and [620~'w|. Hence the absolute value of the right-
hand side of (3) is [b|. If ¢ =0, then Qax + By) = a’¢ + aB, whence
o*a + aB| = |b|. If |a%a| £ |aB|, then [b] £ |@B] = 1, whence

] = la| = [6] = 1.

But then |a2a| = |a| > |b] = |aB|, a contradiction. Hence |a%a| > |afB|. But
then |a%a| = |b|, a contradiction of the definition of b. Thus the assertion is
proved if ¢ = 0. If ¢ # 0 then, by (6, Lemma 1.5),

[Q(ax + By)| = max{|eal, |B%|}.

Hence, by (3), max{|a%a|, |8%|} = |b|. But, as before, |a%a| = [b] is impossible.
Thus |B%| = |b|. But then |¢| = |b] which is also impossible. Thus we must
have v = 1 (mod p).

(i) Suppose that ord b is even. If b € 1u, then w # 0 since w = 0 would
imply that A4 (b, 0) is a hyperbolic plane. Thus 7, € O(L). The coefficient of
w in 7,02 is v + 6 € u. We may proceed as in case (1). Therefore we may
assume that [b] > 1. Then there exists N € p such that [\20] = 1. Then
Oz 4+ w) € u. Thus m.40 € S(L). And the coefficient of w in m,4,0% is a
unit. We may proceed as in case (1).

(i1) Suppose ord b is odd. Then there exists A € p such that [\%¢| = 1 since
ord @ + ord b is odd. Then Q(\x + w) € u, whence x4, € S(L). The coeffi-
cient of w in 7,402 is a unit. Again we proceed as in case (1).

6.3. O(L, 02) € S(L)O(L, ox + ow).

Proof. Let N € O(L, 0z). If we can show that 7\, € O(L), our proof
would be complete since then, m,i.A € O(L, 0x + 02). Write

A = ax + By + vz + ow

with o, 8, v, 8 € 0. Now B(\x, 2) = B(\x, \z) = 0, whence § = 0. Also,
QO + x) = B(\x, x) = 8. Thus 7y, € O(L) if and only if

B(\x + x, L)(\x + x) C BL.
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By wvarious obvious computations one easily finds that it is sufficient to
establish that

4) [l@+1)2) = |8 and |v*| < [8].
Now 8 = Q(\x + x) implies that
(5) Q((e + )x + By) = B + 7.

(i) Suppose that |8] = |v2b|. Then |B8] = |y? and we have (4),. If ¢ # 0,
using (6, Lemma 1.5), we have that

max{|(a + 1)%l, 8%} < |8

by (5). Thus [(@ 4+ 1)2a| £ |B]. But |a| > || = 1. Hence we have (4),. If
c=0, then (@4 1%+ (@+ 1)8 =8+ v%. If |[(a+ 1)%| > |(«+ 1)8],
then |(a@ + 1)2| = |8 + v?| = [8] and we obtain (4),. If

[(e + 1)%| < [(a+ 1)8],

then | (@ + 1)%| < |8 + v%| = |B| and again we obtain (4),. We are left with
[(@ 4+ 1)2a| = |[(@ + 1)B8|. But then |a + 1| = |Ba~1|, whence

[(a 4 1)%| = [Ba™?] [B]

and, since |8a¢~2| < 1, we again obtain (4);. This settles case (i).
(ii) Suppose that |8] < |v2]. If ¢ # 0, then (5) implies

max{|(a + 1)%a|, |B%|} = |v?b].

Thus |(a« + 1)2a| = |y?]|, whence |(@ 4+ 1)2| = |ba~!||y?| = |v?|. Hence it will
be enough to prove (4),. By definition of b, |(« + 1)%a| = |y?b| is impossible.
Thus we must have that |8%| = |y?b|. Thus |8?| |¢b~!| = |v?|. Hence |82 > [v?|
But |8| £ 1, whence |[8%| < |8]. Thus |y?| < |8| and we have (4),. Thus we
may suppose that ¢ = 0. Then (5) vyields

@+ 1)+ (@4 1) = 6+ 7.

If |(e 4+ 1)2a| > |(e + 1)8| we would obtain |(a + 1)%a| = |y?b|, an impos-
sibility. Thus [(@ + 1)%a| = |(e 4 1)B|. Hence

(o + 1)7] < [(@+ %] £ | (@ + 18] < 8]
and we have (4),. Also we have that [y%| = |(@ + 1)B| by (5). Hence
vl =l + 1] [o7"] |8] = 8]
and we obtain (4),. This exhausts all cases and our proof is complete.
6.4. O(L, ox + 0z) S S(L)O(L, 0z + ow).

Proof. Let ¢ € O(L, ox 4+ 02). If we can establish that 7,p1» € O(L)
our proof would be complete since 744440 is easily seen to be in O (L, 0z 4+ ow).
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Let
ow = ax + By + vz + ow

with @, 8, v, 6 € 0. Now ox = x and o2 = 2z immediately imply that 8 = 0
and 6 = 1. And Q(ow + w) = «v. Hence 75410 € O(L) if and only if

B(ow + w, L) (ow + w) C yL.

By several obvious computations we see that it suffices to prove that a® € yo.
Now, wb™! = Q(ow) implies that a®a = 2 + v whence a? = y(yba=! + a~1).
But clearly, vba=! + a=! € o and our proof is complete.

We can now prove the following.
6.5. O(L) = S(L).
Proof. Immediate by §§6.2, 6.3, and 6.4.

7. The group X,(L). In this section we assume that L is an arbitrary
unimodular lattice. The case dim L = 2 was discussed in §3.1, thus we may
assume that dim L = 4.

7.1. Suppose that L = J 1 M and consider an E,* € O(L) with1 € J and
w € M. Suppose that either (1) Q(w) € uor (2) w € wM and Q(M) M u = @.
Then E,* € S(L).

Proof. (1) Q(w) € u.Thenr, € O(L).AsE,* € O(L) and E,' = 71t 0() iTwr
Twrow i € O(L). Thus E,* € S(L).

(2) Fix w, € M with Q(w:) € u. Clearly, Q(w + w;) € u. Thus E,,* and
El.y, are in S(L). Thus E,’ = E,, ‘Ep.w, € S(L).

7.2. Suppose that dim L £ 4 or 6 if the residue class field F = F.. Then
X, (L) = S(L).

Proof. By §3.1 we may assume thatdim L = 4. If dim L = 4, the hypothesis
implies that.%# 5 F,. By §§5.4 and 6.5, O(L) = S(L), whence X,,(L) = S(L).
Thus, we may assume that dim L = 6. We have to consider a splitting
L = H 1 M with H a hyperbolic plane and prove that any E,* € O(L), with
1 a singular vectorin Hand w € M, isalsoin S(L). Note thatdim M = 4. Thus,
Q(M) N u# @. (See, e.g., 6, Lemma 1.26.) We may therefore assume, by
§7.1, that w is maximal in M and Q(w) € p. Now pick ¢ € M with B(w,t) = 1
and obtain a splitting M = (ow + of) L N. Suppose that # = F,. Set
K =H 1 (ow+ ot). Then L = K 1. N and O(K) = S(K) by §5.4. Hence
E,' € O(L, N) € S(L). Therefore we may suppose that.# = F,. Here we
have dim N = 4 and, again by (6, Lemma 1.26), there exists w; € N with
Q(w1) € u. Then Q(w + w;) € u. Thus E,,* and Egpyy, are in S(L) by §7.1.
Thus E,* € S(L).

7.3. THEOREM. If L is unimodular, then O(L) = X,(L). If # # F,, then
O(L) =S(L). If # = F; and dim L = 4 or 6, then O(L) = S(L).
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Proof. The proof is by induction on dim L. If dim L = 2, the result follows
from §3.1. If dim L = 4, then invoke §§5.4 and 6.5. Thus we may assume
that dim L = 6. But then, by (1) of §2.1, L is split by a hyperbolic plane H.
By §4.4, O(L) = X,(L)O(L, H). By the induction hypothesis,

O(L, H) € X,(L).
Thus O(L) = X, (L). The result now follows from §7.2.

8. The exceptional dimensions, part 1. The only cases where the
validity of the equation O(L) = S(L), L unimodular, is still in doubt occur
in dimensions 4 and 6 when % = F,. We have already studied the case
dim L = 4 and found that O(L) = S(L) with the possible exception of the
following cases:

JH 1 H,
= \H L M, where Q(M) N\ u = @.

We shall prove in the next section that (O(L) : S(L)) = 2 in these cases.
We now wish to investigate the 6-dimensional cases for which O(L) = S(L)

holds.
TABLE 1
I A(0,0) L A(0,0) L J
11 A(0,0) 1 A(0,0) L K
111 A(0,0) L N

8.1. Let L be 6-dimensional unimodular. Then there is a base for L such that
L has exactly one of the forms 1, 11, or 111 of Table 1. In case 1, J is binary
unimodular such that Q(J) M u = @. In case 11, K is binary unimodular such
that Q(K) N u £ @. In case 111, N is 4-dimensional unimodular and is not
split by a hyperbolic plane.

Proof. Immediate by (1) of §2.1.
8.2. Let L be 6-dimensional unimodular of type 11 or 111. Then O(L) = S(L).

Proof. As O(L) = X,(L) we need only prove that an E,* € O(L) which is
determined by a splitting L = H | M, H a hyperbolic plane, 7 € H, w € M,
is in S(L). By cancelling hyperbolic planes we may suppose that

- )A4(0,0) L K, or
T
If Q(w) € u, then E,* € S(L) trivially, therefore we may assume that

Qw) € .

Case 1. M = A4(0,0) L K. Write w = w; + w,, where w; € 4(0,0) and
wy € K. Now Q(w) = Q(w1) + Q(w;). There are two possibilities:

(i) both Q(w;) and Q(w.) € p,
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(ii) both Q(w;) and Q(ws) € u.
Now E,! = Ey,'E,,* . In Case 1 (i), choose x; € K such thap Q(x;) € u.
Then Q(w; + x1) = Q(wi1) + Q(x1) € u whence E,, ' = E, 'Eyp 40y € S(L).
There exists x5 € 4(0,0) such that Q(x) € u. Then Q(w. 4+ x,) € u and
Eu,' = E.iEpyyzy € S(L). Thus E,* € S(L).

In Case 1 (ii), E,,? and E,,* are trivially in S(L). Thus E,* € S(L).

Case 2. M = N.

(i) Suppose that b € u. Then

N==A4(a,c) L A, pb~1)

in k, I, m, n, say, and we must have that ¢ € p by §6.1. Write w = w; 4+ w,
with w; € 4(a, c), w, € A(b, pb~1'). Now E,* = E,,'E,,* and by an analysis
similar to the preceding case, we may suppose both Q(w;) and Q(w,) € p. We
note that this implies that w, is not maximal; cf. (6, Lemma 1.5). Hence
|Q(m)| = |Q(w1 + m)| = |Q(ws + m)| = 1. Thus E,' = E,Ep,4n € S(L)
and E.,¢ = Ep'Epyem € S(L). Thus E,* € S(L).

(ii) Suppose that [b| > 1. By §6.1, we may write

N=A(a,c) L A, wb™),

w = w; + wy, with w; € A(a,c), ws € A(b, wb~'). We may suppose both
Q(w;) and Q(w.) € p. If ord b is even, there exists a non-maximal vector
x € A (b, wb™1) such that Q(x) € u. Then both Q(w: + x) and Q(w. + x) are
in uand hence both E,,¢ = E,’E} ., and E,,* = E,'E.,,, are in S(L). Then
E,' = E,,*E,,* € S(L). Finally, if ord b is odd, then ord ¢ is even and there
exists a non-maximal vector x € A (a, ¢) such that Q(x) € u. By a similar
argument we see that E,* € S(L).

9. The exceptional dimensions, part 2. We continue in this section
with our assumptions that L is unimodular of dimension 4 or 6 and # = F..
The only cases which remain to be discussed are listed below:

1 4(0,0) L A4(0,0)

dim L = 4 1 4(0,0) L A(a, c) int,j k1

dimL =6 11 A(0,0) L A(0,0) 1 A(a, c) inid, j, k1 ommn

Furthermore, for the binary lattice 4 (q, ¢), we have Q(4(e,¢)) N u = @.
By §5.1, we must have ord ¢ odd and ¢ € p.
Lattices of types I, II, and 111 will be referred to as exceptional lattices.

9.1. Let L be an exceptional lattice. Suppose that © and r are maximal singular
vectors both of which lie in hyperbolic planes. Then there exists ¢ € S(L) such
that ¢1 = r.
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Proof. Let 1, j be a hyperbolic pair and write L = (07 + 0j) L K. Then
we haver = at 4+ 87 + zforsomea, 8 € vandz € K. If 8 € u,then B(7,r) € u
whence 7,4; € S(L) and 7 = 7,44. If « € u, then B(j,7) € wandr,, € S(L).
Then ¢ = 7,174, € S(L) and ¢7 = 7. Thus we may assume that both «
and B lie in p. Hence 2 is maximal in K. Therefore there exists ¢ ¢ K such that

B(z,t) = 1;and Q(r) = 0 implies Q(z) € p. We may write
L = (0¢ + 0j) L (0z + ot)

if dimL =4 or (0i 4+ 0j) L (0z+ 0t) L Rif dimL = 6.

Case 1. Suppose that L = 4(0,0) 1 A(e, ¢). By cancellation of hyperbolic
planes, we may suppose that oz + ot = A (e, ¢) in k, . Write z = vk + 68l
for some v, 6 € 0. Thus r = oz + B85 + vk + 8/ and Q(r) = 0 implies v € p.
Letr, s be a hyperbolic pair. Write s = a1z + B1j + vik + 6:.. Then B(r,s) = 1
implies v; € u. But then |Q(s)| = |a|, contradicting Q(s) = 0. Thus, not both
of @ and B can lie in p and this case is settled.

Case 2. Suppose that L =2 4(0,0) L A(0, 0). By cancellation of hyperbolic
planes, we may suppose that 0z 4 ot =2 4 (0, 0) in k, I. Write z = vk + 6! for
some v, & € 0. Thus » = at + B + vk + 6/ and » maximal implies at least
one of v and & is a unit. Suppose, temporarily, that v € u. Then Q(r) = 0
implies 6 € p. Then B(r,¢ 4+ j 4+ k + 1) € u whence 7,444 502+ € S(L). Also,
T jtk+1 € S(L). Set ¢ = T r4 it j+k+ 1T j+k+ 1 Then [} € S(L) and d)l =r. Ifs cu
we proceed in an analogous fashion.

Case 3. dim L = 6. If Q(¢) is a norm generator of L, then

L, = (0z 4+ 0j) L (oz + ot)

is a lattice of the type considered in Case 1 and both ¢, » € L;. We may invoke
Case 1 to complete the proof. If Q() is not a norm generator, then R must
contain a norm generator. Noting that 1 is a base generator for L, we conclude
that ord Q(¢) + ord @ is even if |Q(¢)] > 1. By amalgamating a suitable
vector of R with ¢ if necessary, we may assume that Q(¢) € o. But then 0z + ot
is a hyperbolic plane, both 2, » € L;, and we may invoke Case 2.

9.2. Let L be an exceptional lattice. Suppose that o € O(L). Then either
o € S(L) or o is of the form NE,* for some N € S(L). Hence (O(L) : S(L)) = 2.

Proof. By §7.3, O(L) = X,(L). Suppose that E,” occurs in the expression
for ¢ as an element of X,(L). The equation E,* = E,," allows us to assume
that r is maximal. Invoking §9.1, we may write E,” = E4,*, ¢ € S(L).
Thus E,/ = ¢E,‘¢~! and, ultimately, we may express ¢ in the form y¢E,?
where ¢ € S(L) and w, of course, lies in (07 + 0j) ¥, the orthogonal complement
of o¢ + oj in L. Now E,* € O(L) implies that Q(w) € o. If Q(w) € u, then,
trivially, ¢ € S(L), thus we may assume that Q(w) € p.

Case 1. dim L = 4. We may write w = ak + B/ for some «a, 8 € 0. As
Q(w) € p we have both Q(ak) and Q(Bk) in p. Then both E,;* and Es,* are in
O(L) and, of course, E,* = E,;'Eg,
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(i) Suppose that (0¢ + 07)* = A(0,0) in &, L. If & € u, then
Eu'=Ex = E,./ /' = 1E,'r7,

where 7 € S(L) sends ¢ — a1, j = a7%j, k— 1, and / — k. As in the proof of
§5.3 we obtain Eu* = ¢E,' forsome ¢ € S(L). [fa € pwrite Ey' = EapniEy’
and, by the preceding observation, we have

Eut = ¢YEy' = ¢yE,* = ¢ torsome y € S(L).

(ii) Suppose that (07 + 0j)* = A(a, ¢) in k, I. Then Eu' = Tort otar) iTak- AS
T = 11 € O(L), it follows that 7ay g@n: € O(L), whence Eqn' € S(L).

(iii) Eg,* has either the form ¢ or ¢E," for some ¢ € S(L). This follows
exactly as in the proof of §5.3.

(iv) By (i), (ii), and (iii) we see that ¢ has one of the forms X\ or \E,;* for
some A € S(L) and Case 1 is complete.

Case 2. dim L = 6. Write w = x + v, where x € 4(0,0) and y € A (¢, ¢).
Now Q(w) = Q(x) + Q(y) € p implies either both Q(x), Q(y) € u or both
Q(x), Q(y) € p. As Q(4(a,¢)) N u = @, only the latter case can occur. Now
Q4+ 1) = |Qly + k& + 1) = 1. Thus E,’ = E;1Eyyir € S(L). Since
E,' = E,/'E,"and x € 4(0, 0) we may invoke Case 1.

10. The exceptional behaviour, part 3. In this section, L will denote
an exceptional lattice. Thus# = F,and L has one of the shapes I, II, or III
given at the beginning of the preceding section and we shall continue to use
the notation introduced at that time. We will ultimately prove that E,* ¢ S(L)
whence, by §9.2, (O(L) : S(L)) = 2.

Now =L is an additive subgroup of L. As in (4, §10) we can endow V = L/xL
with the structure of a vector space over the finite field of two elements. And
we can put a symmetric bilinear form B on V and construct a homomorphism

f: O(L) — GL(V).
10.1. Let L be an exceptional lattice. Then E,* ¢ S(L) and hence
OWw):SW)) = 2.
Proof. Using the bar notation of (4, §10) we shall prove that
FEY) ¢ fFS(L)).

By considerations analogous to those of (4, §10), we can list a set of
generators 7, for f(S(L)).

Type of L Generators for f(S(L))
I Titis Tiithy Tititl
Thtly Titk+ly Titk+l
I Tigiy Tigitl
III T2 OF Tz4n, where T, is one of

the generators for type I.
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Case 1. Suppose that L is of type I or II. Note that the set of generators in
type 11 is contained in the set of generators in type I. Note also that f(E,?) is
the same element of GL(V) in both types I and II. Hence it will suffice to
prove that f(E;") ¢ f(S(L)) for L of type I.

Now in the case of type I we can give V the structure of a non-defective
quadratic space over F; by defining a quadratic map Q on V by

Q) = 6(;5 for x € L.

Then  is well-defined, B becomes the associated bilinear form and f clearly
becomes a homomorphism

f: O(L) — O(V).

Since F contains a copy of Fs, f is surjective. Hence, if E;* € S(L), then, by
§9.2, O(L) = S(L) and it would follow that O(V) is generated by sym-
metries. But the Witt index of the space V is clearly 2. This gives a contra-
diction to (2, 1.5.1). (Alternatively, see 3, Proposition 14.)

Case 2. Suppose that L is of type III. The argument in this situation is
completely analogous to the argument of Case 4 of §8.3 given in (5).
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