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Abstract Let D be a division ring whose group of units satisfies a non-trivial group identity w. Let α

be the sum of positive degrees of indeterminates occurring in w. If the centre of D contains more than
3α elements, then D is commutative.
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Given a unital ring R, the set U(R) of its units (invertible elements) forms a group,
called the group of units of R. The group U(R) is said to satisfy a group identity if there
exists a non-trivial word w(x1, . . . , xn) in the free group generated by x1, . . . , xn, . . . such
that w(u1, . . . , un) = 1 for all u1, . . . , un ∈ U(R). The study of certain rings R (especially
group algebras) with U(R) satisfying group identities has experienced significant progress
in the past decade [5,6,9–12].

The group identities are special cases of rational identities that were thoroughly inves-
tigated by Amitsur [1], Bergman [3,4] and Valitskas [14]. As an application of his theory
of rational identities, Amitsur proved that a division ring D with centre Z(D) infinite
and U(D) satisfying a group identity is commutative (see [1] and [13, Theorem 8.4.2]).
This extends a classical result due to Hua, who showed that a division ring D with Z(D)
infinite and U(D) solvable is commutative (see [7] and [13, Corollary 8.4.3]). In this
note we study division rings D with Z(D) not necessarily infinite and U(D) satisfying
a group identity. We show that D is commutative so long as Z(D) contains sufficiently
many elements.

In what follows, we denote the ring of polynomials by D[x] and the ring of Laurent
series by D((x)) in a central indeterminate x over a division ring D. It is well known
that D((x)) is a division ring and that D[x] ⊆ D((x)). Hence every non-zero polynomial
is invertible in D((x)). In particular, for any a ∈ D, 1 + ax is invertible in D((x)) and,
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more explicitly, its inverse is given by [13, Remark 8.2.10]

1 +
∞∑

i=1

(−a)ixi.

As a matter of fact, D[x] is a principal left ideal domain (PLID) [13, Proposition 8.2.2],
so it has a division ring D(x) of fractions. Moreover, we have D[x] ⊆ D(x) ⊆ D((x)).

We begin with an elementary fact about D[x] that plays an important role below.
Since D[x] is a PLID, for any non-zero r1, r2 ∈ D[x], there exist non-zero s1, s2 ∈ D[x]
such that s2r1 = s1r2 [13, Proposition 8.2.3]. If both r1 and r2 are linear, we can also
choose s1 and s2 to be linear.

Lemma 1. Let D be a division ring. For any r1 = 1 + ax, r2 = 1 + bx ∈ D[x], there
exist s1, s2 ∈ D[x] of degrees at most 1 such that r1r

−1
2 = s−1

2 s1 (in D(x)).

Proof. If a = b, take s1 = s2 to be any element in D[x] of degree at most 1. So we
may assume that a �= b. Let s1 = 1 + (b − a)a(b − a)−1x and s2 = 1 + (b − a)b(b − a)−1x.
We leave the verification that s2r1 = s1r2 to the reader. �

Corollary 2. Let D be a division ring, ri = 1 + aix ∈ D[x] and r = rγ1
1 rγ2

2 · · · rγm
m ,

where γi are non-zero integers. Let I = {i | i = 1, . . . , m, γi > 0}, J = {i | i =
1, . . . , m, γi < 0}, α =

∑
i∈I γi and β = −

∑
i∈J γi. Then r = s−1

2 s1 (in D(x)), where s1

is a polynomial of degree at most α and s2 is a polynomial of degree at most β.

We will also need another auxiliary result which follows from a Vandermonde argument
[13, Propositions 2.3.26 and 2.3.27].

Lemma 3. Let D be a division ring with centre F and let f(x) be a polynomial in D[x]
of degree n. Suppose that f(c) = 0 for all c ∈ F . Then F contains at most n elements.

With all these on hand and using some ideas of [13, Theorem 8.2.11], we are now ready
to prove our main result of this note.

Theorem 4. Let D be a division ring with centre F . Suppose that the group U(D)
of units satisfies a non-trivial group identity w(z1, . . . , zm) = zγ1

1 · · · zγm
m , where the γi

are non-zero integers and the zi are not necessarily distinct. Let I = {i | i = 1, . . . , m,

γi > 0}, J = {i | i = 1, . . . , m, γi < 0}, α =
∑

i∈I γi and β = −
∑

i∈J γi. If F contains
more than 3 min{α, β} elements, then D is commutative.

Proof. If α−β = γ �= 0, we get yγ = 1 for all y ∈ U(D) by setting z1 = · · · = zm = y ∈
U(D) in w(z1, . . . , zm) = 1. Then it follows from Jacobson’s Theorem [8, Theorem 12.10]
that D is commutative. Hence we may assume that α = β.

By Amitsur’s Theorem cited earlier [13, Theorem 8.4.2], we are done if F is infinite. So
it suffices to consider the case where F is finite. If F is finite and D satisfies a non-trivial
polynomial identity (PI), then by a theorem due to Kaplansky [2, Theorem 6.1.10], D

is finite dimensional over F and so D is finite. Thus D is commutative by Wedderburn’s
Theorem [8, Theorem 13.1].

Therefore, we shall assume in what follows that α = β, that F is finite and that D

does not satisfy any non-trivial PI.
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Let S = F{y1, . . . , ym} be the free algebra in indeterminates y1, . . . , ym over F , where
yi = yj if zi = zj in w(z1, . . . , zm) and yi does not commute with yj if zi �= zj ; and let
T = S((x)) be the ring of Laurent series in a central indeterminate x over S. Note that
we are assuming that x commutes with each yi for all i = 1, . . . , m.

Let H be any non-commutative division ring with centre F (x), the rational function
field over F . Since w(z1, . . . , zm) is a non-trivial word, there exist non-zero u1, . . . , um ∈
H such that w(u1, . . . , um) �= 1 in view of Amitsur’s Theorem. Or, equivalently,
w(1 + v1, . . . , 1 + vm) �= 1 for some v1, . . . , vm ∈ H with vi �= −1 for all i = 1, . . . , m.
Hence, w(1+y1, . . . , 1+ym) does not coincide with 1 identically. As a consequence, we see
that the rational expression w(1+ y1x, . . . , 1+ ymx) does not coincide with 1 identically.

Note that each 1 + ykx is invertible in S((x)) and its inverse is given by

1 +
∞∑

i=1

(−yk)ixi.

Replacing each (1+ykx)−1 in w(1+y1x, . . . , 1+ymx) by the above expression, we obtain

w(1 + y1x, . . . , 1 + ymx) = 1 +
∞∑

i=1

fi(y1, . . . , ym)xi,

where each fi(y1, . . . , ym) is a polynomial in the non-commuting indeterminates y1, . . . ,

ym over F . Since w(1+y1x, . . . , 1+ymx) does not coincide with 1 identically, we conclude
that some of the polynomials fi(y1, . . . , ym) must be non-zero.

For u1, . . . , um ∈ D we have w(1 + u1x, . . . , 1 + umx) ∈ D(x) ⊆ D((x)) and

w(1 + u1x, . . . , 1 + umx) = 1 +
∞∑

i=1

fi(u1, . . . , um)xi.

If w(1 + u1x, . . . , 1 + umx) = 1 for all u1, . . . , um ∈ D, then fi(u1, . . . , um) = 0 for
all i = 1, 2, . . . . Thus D satisfies some non-trivial PI fi(y1, . . . , ym), contradicting our
assumption. Hence, w(1+u1x, . . . , 1+umx) �= 1 for some u1, . . . , um ∈ D. By Corollary 2,
w(1 + u1x, . . . , 1 + umx) can be written as g2(x)−1g1(x), where g1(x) and g2(x) are
polynomials in D[x] of degrees at most α.

For any c ∈ F with 1 + uic �= 0 for all i = 1, . . . , m, we have g2(c)−1g1(c) = w(1 +
u1c, . . . , 1+umc) = 1 since w(z1, . . . , zm) is a group identity for U(D). Note that m � 2α

and, since F has more than 3α elements, by Lemma 3 there exists c ∈ F such that
1 + uic �= 0 for all i = 1, . . . , m and g1(c) − g2(c) �= 0, contrary to g2(c)−1g1(c) = 1. Thus
the theorem is now proved. �
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