A NOTE ON GROUP IDENTITIES IN DIVISION RINGS

M. A. CHEBOTAR ${ }^{1}$ AND P.-H. LEE ${ }^{2}$
${ }^{1}$ Department of Mechanics and Mathematics, Tula State University, Tula, Russia (mchebotar@tula.net)
${ }^{2}$ Department of Mathematics, National Taiwan University, Taipei, Taiwan, Republic of China (phlee@math.ntu.edu.tw)

(Received 22 September 2003)

Abstract

Let D be a division ring whose group of units satisfies a non-trivial group identity w. Let α be the sum of positive degrees of indeterminates occurring in w. If the centre of D contains more than 3α elements, then D is commutative.

Keywords: division ring; group of units; group identity; polynomial identity
2000 Mathematics subject classification: Primary 16R50
Secondary 16K20

Given a unital ring R, the set $U(R)$ of its units (invertible elements) forms a group, called the group of units of R. The group $U(R)$ is said to satisfy a group identity if there exists a non-trivial word $w\left(x_{1}, \ldots, x_{n}\right)$ in the free group generated by $x_{1}, \ldots, x_{n}, \ldots$ such that $w\left(u_{1}, \ldots, u_{n}\right)=1$ for all $u_{1}, \ldots, u_{n} \in U(R)$. The study of certain rings R (especially group algebras) with $U(R)$ satisfying group identities has experienced significant progress in the past decade $[\mathbf{5}, \mathbf{6}, \mathbf{9}-\mathbf{1 2}]$.

The group identities are special cases of rational identities that were thoroughly investigated by Amitsur $[\mathbf{1}]$, Bergman $[\mathbf{3}, \mathbf{4}]$ and Valitskas $[\mathbf{1 4}]$. As an application of his theory of rational identities, Amitsur proved that a division ring D with centre $Z(D)$ infinite and $U(D)$ satisfying a group identity is commutative (see [1] and [13, Theorem 8.4.2]). This extends a classical result due to Hua, who showed that a division ring D with $Z(D)$ infinite and $U(D)$ solvable is commutative (see [7] and [13, Corollary 8.4.3]). In this note we study division rings D with $Z(D)$ not necessarily infinite and $U(D)$ satisfying a group identity. We show that D is commutative so long as $Z(D)$ contains sufficiently many elements.

In what follows, we denote the ring of polynomials by $D[x]$ and the ring of Laurent series by $D((x))$ in a central indeterminate x over a division ring D. It is well known that $D((x))$ is a division ring and that $D[x] \subseteq D((x))$. Hence every non-zero polynomial is invertible in $D((x))$. In particular, for any $a \in D, 1+a x$ is invertible in $D((x))$ and,
more explicitly, its inverse is given by [13, Remark 8.2.10]

$$
1+\sum_{i=1}^{\infty}(-a)^{i} x^{i}
$$

As a matter of fact, $D[x]$ is a principal left ideal domain (PLID) [13, Proposition 8.2.2], so it has a division ring $D(x)$ of fractions. Moreover, we have $D[x] \subseteq D(x) \subseteq D((x))$.

We begin with an elementary fact about $D[x]$ that plays an important role below. Since $D[x]$ is a PLID, for any non-zero $r_{1}, r_{2} \in D[x]$, there exist non-zero $s_{1}, s_{2} \in D[x]$ such that $s_{2} r_{1}=s_{1} r_{2}$ [13, Proposition 8.2.3]. If both r_{1} and r_{2} are linear, we can also choose s_{1} and s_{2} to be linear.

Lemma 1. Let D be a division ring. For any $r_{1}=1+a x, r_{2}=1+b x \in D[x]$, there exist $s_{1}, s_{2} \in D[x]$ of degrees at most 1 such that $r_{1} r_{2}^{-1}=s_{2}^{-1} s_{1}($ in $D(x))$.

Proof. If $a=b$, take $s_{1}=s_{2}$ to be any element in $D[x]$ of degree at most 1 . So we may assume that $a \neq b$. Let $s_{1}=1+(b-a) a(b-a)^{-1} x$ and $s_{2}=1+(b-a) b(b-a)^{-1} x$. We leave the verification that $s_{2} r_{1}=s_{1} r_{2}$ to the reader.

Corollary 2. Let D be a division ring, $r_{i}=1+a_{i} x \in D[x]$ and $r=r_{1}^{\gamma_{1}} r_{2}^{\gamma_{2}} \cdots r_{m}^{\gamma_{m}}$, where γ_{i} are non-zero integers. Let $I=\left\{i \mid i=1, \ldots, m, \gamma_{i}>0\right\}, J=\{i \mid i=$ $\left.1, \ldots, m, \gamma_{i}<0\right\}, \alpha=\sum_{i \in I} \gamma_{i}$ and $\beta=-\sum_{i \in J} \gamma_{i}$. Then $r=s_{2}^{-1} s_{1}($ in $D(x))$, where s_{1} is a polynomial of degree at most α and s_{2} is a polynomial of degree at most β.

We will also need another auxiliary result which follows from a Vandermonde argument [13, Propositions 2.3.26 and 2.3.27].

Lemma 3. Let D be a division ring with centre F and let $f(x)$ be a polynomial in $D[x]$ of degree n. Suppose that $f(c)=0$ for all $c \in F$. Then F contains at most n elements.

With all these on hand and using some ideas of [13, Theorem 8.2.11], we are now ready to prove our main result of this note.

Theorem 4. Let D be a division ring with centre F. Suppose that the group $U(D)$ of units satisfies a non-trivial group identity $w\left(z_{1}, \ldots, z_{m}\right)=z_{1}^{\gamma_{1}} \cdots z_{m}^{\gamma_{m}}$, where the γ_{i} are non-zero integers and the z_{i} are not necessarily distinct. Let $I=\{i \mid i=1, \ldots, m$, $\left.\gamma_{i}>0\right\}, J=\left\{i \mid i=1, \ldots, m, \gamma_{i}<0\right\}, \alpha=\sum_{i \in I} \gamma_{i}$ and $\beta=-\sum_{i \in J} \gamma_{i}$. If F contains more than $3 \min \{\alpha, \beta\}$ elements, then D is commutative.

Proof. If $\alpha-\beta=\gamma \neq 0$, we get $y^{\gamma}=1$ for all $y \in U(D)$ by setting $z_{1}=\cdots=z_{m}=y \in$ $U(D)$ in $w\left(z_{1}, \ldots, z_{m}\right)=1$. Then it follows from Jacobson's Theorem [8, Theorem 12.10] that D is commutative. Hence we may assume that $\alpha=\beta$.

By Amitsur's Theorem cited earlier [13, Theorem 8.4.2], we are done if F is infinite. So it suffices to consider the case where F is finite. If F is finite and D satisfies a non-trivial polynomial identity (PI), then by a theorem due to Kaplansky [2, Theorem 6.1.10], D is finite dimensional over F and so D is finite. Thus D is commutative by Wedderburn's Theorem [8, Theorem 13.1].

Therefore, we shall assume in what follows that $\alpha=\beta$, that F is finite and that D does not satisfy any non-trivial PI.

Let $S=F\left\{y_{1}, \ldots, y_{m}\right\}$ be the free algebra in indeterminates y_{1}, \ldots, y_{m} over F, where $y_{i}=y_{j}$ if $z_{i}=z_{j}$ in $w\left(z_{1}, \ldots, z_{m}\right)$ and y_{i} does not commute with y_{j} if $z_{i} \neq z_{j}$; and let $T=S((x))$ be the ring of Laurent series in a central indeterminate x over S. Note that we are assuming that x commutes with each y_{i} for all $i=1, \ldots, m$.

Let H be any non-commutative division ring with centre $F(x)$, the rational function field over F. Since $w\left(z_{1}, \ldots, z_{m}\right)$ is a non-trivial word, there exist non-zero $u_{1}, \ldots, u_{m} \in$ H such that $w\left(u_{1}, \ldots, u_{m}\right) \neq 1$ in view of Amitsur's Theorem. Or, equivalently, $w\left(1+v_{1}, \ldots, 1+v_{m}\right) \neq 1$ for some $v_{1}, \ldots, v_{m} \in H$ with $v_{i} \neq-1$ for all $i=1, \ldots, m$. Hence, $w\left(1+y_{1}, \ldots, 1+y_{m}\right)$ does not coincide with 1 identically. As a consequence, we see that the rational expression $w\left(1+y_{1} x, \ldots, 1+y_{m} x\right)$ does not coincide with 1 identically.

Note that each $1+y_{k} x$ is invertible in $S((x))$ and its inverse is given by

$$
1+\sum_{i=1}^{\infty}\left(-y_{k}\right)^{i} x^{i}
$$

Replacing each $\left(1+y_{k} x\right)^{-1}$ in $w\left(1+y_{1} x, \ldots, 1+y_{m} x\right)$ by the above expression, we obtain

$$
w\left(1+y_{1} x, \ldots, 1+y_{m} x\right)=1+\sum_{i=1}^{\infty} f_{i}\left(y_{1}, \ldots, y_{m}\right) x^{i}
$$

where each $f_{i}\left(y_{1}, \ldots, y_{m}\right)$ is a polynomial in the non-commuting indeterminates y_{1}, \ldots, y_{m} over F. Since $w\left(1+y_{1} x, \ldots, 1+y_{m} x\right)$ does not coincide with 1 identically, we conclude that some of the polynomials $f_{i}\left(y_{1}, \ldots, y_{m}\right)$ must be non-zero.

For $u_{1}, \ldots, u_{m} \in D$ we have $w\left(1+u_{1} x, \ldots, 1+u_{m} x\right) \in D(x) \subseteq D((x))$ and

$$
w\left(1+u_{1} x, \ldots, 1+u_{m} x\right)=1+\sum_{i=1}^{\infty} f_{i}\left(u_{1}, \ldots, u_{m}\right) x^{i}
$$

If $w\left(1+u_{1} x, \ldots, 1+u_{m} x\right)=1$ for all $u_{1}, \ldots, u_{m} \in D$, then $f_{i}\left(u_{1}, \ldots, u_{m}\right)=0$ for all $i=1,2, \ldots$ Thus D satisfies some non-trivial PI $f_{i}\left(y_{1}, \ldots, y_{m}\right)$, contradicting our assumption. Hence, $w\left(1+u_{1} x, \ldots, 1+u_{m} x\right) \neq 1$ for some $u_{1}, \ldots, u_{m} \in D$. By Corollary 2 , $w\left(1+u_{1} x, \ldots, 1+u_{m} x\right)$ can be written as $g_{2}(x)^{-1} g_{1}(x)$, where $g_{1}(x)$ and $g_{2}(x)$ are polynomials in $D[x]$ of degrees at most α.
For any $c \in F$ with $1+u_{i} c \neq 0$ for all $i=1, \ldots, m$, we have $g_{2}(c)^{-1} g_{1}(c)=w(1+$ $\left.u_{1} c, \ldots, 1+u_{m} c\right)=1$ since $w\left(z_{1}, \ldots, z_{m}\right)$ is a group identity for $U(D)$. Note that $m \leqslant 2 \alpha$ and, since F has more than 3α elements, by Lemma 3 there exists $c \in F$ such that $1+u_{i} c \neq 0$ for all $i=1, \ldots, m$ and $g_{1}(c)-g_{2}(c) \neq 0$, contrary to $g_{2}(c)^{-1} g_{1}(c)=1$. Thus the theorem is now proved.

References

1. S. A. Amitsur, Rational identities and applications to algebra and geometry, J. Alg. 3 (1966), 304-359.
2. K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with generalized identities (Marcel Dekker, New York, 1996).
3. G. M. Bergman, Rational relations and rational identities in division rings, I, J. Alg. 43 (1976), 252-266.
4. G. M. Bergman, Rational relations and rational identities in division rings, II, J. Alg. 43 (1976), 267-297.
5. A. Giambruno, E. Jespers and A. Valenti, Group identities on units of rings, Arch. Math. 63 (1994), 291-296.
6. A. Giambruno, S. K. Sehgal and A. Valenti, Group algebras whose units satisfy a group identity, Proc. Am. Math. Soc. 125 (1997), 629-634.
7. L. K. Hua, On the multiplicative groups of a field, Acad. Sinica Sci. Record 3 (1950), 1-6.
8. T. Y. Lam, A first course in noncommutative rings (Springer, 1991).
9. C.-H. Liu, Group algebras with units satisfying a group identity, Proc. Am. Math. Soc. 127 (1999), 327-336.
10. C.-H. LiU, Some properties on rings with units satisfying a group identity, J. Alg. 232 (2000), 226-235.
11. C.-H. Liu and D. S. Passman, Group algebras with units satisfying a group identity, II, Proc. Am. Math. Soc. 127 (1999), 337-341.
12. D. S. PASSMAN, Group algebras whose units satisfy a group identity, II, Proc. Am. Math. Soc. 125 (1997), 657-662.
13. L. H. Rowen, Polynomial identities in ring theory (Academic, 1980).
14. A. I. VAlitskas, Rational identities of radical algebras, Izv. VUZ Mat. 11 (1985), 63-72 (in Russian; English translation in Soviet Math. (Iz. VUZ) 29 (1985), 88-99).
