Proceedings of the Edinburgh Mathematical Society (2004) **47**, 557–560 © DOI:10.1017/S0013091503000804 Printed in the United Kingdom

A NOTE ON GROUP IDENTITIES IN DIVISION RINGS

M. A. CHEBOTAR¹ AND P.-H. LEE²

 ¹Department of Mechanics and Mathematics, Tula State University, Tula, Russia (mchebotar@tula.net)
²Department of Mathematics, National Taiwan University, Taipei, Taiwan, Republic of China (phlee@math.ntu.edu.tw)

(Received 22 September 2003)

Abstract Let D be a division ring whose group of units satisfies a non-trivial group identity w. Let α be the sum of positive degrees of indeterminates occurring in w. If the centre of D contains more than 3α elements, then D is commutative.

Keywords: division ring; group of units; group identity; polynomial identity

2000 Mathematics subject classification: Primary 16R50 Secondary 16K20

Given a unital ring R, the set U(R) of its units (invertible elements) forms a group, called the group of units of R. The group U(R) is said to satisfy a group identity if there exists a non-trivial word $w(x_1, \ldots, x_n)$ in the free group generated by x_1, \ldots, x_n, \ldots such that $w(u_1, \ldots, u_n) = 1$ for all $u_1, \ldots, u_n \in U(R)$. The study of certain rings R (especially group algebras) with U(R) satisfying group identities has experienced significant progress in the past decade [5, 6, 9-12].

The group identities are special cases of rational identities that were thoroughly investigated by Amitsur [1], Bergman [3,4] and Valitskas [14]. As an application of his theory of rational identities, Amitsur proved that a division ring D with centre Z(D) infinite and U(D) satisfying a group identity is commutative (see [1] and [13, Theorem 8.4.2]). This extends a classical result due to Hua, who showed that a division ring D with Z(D)infinite and U(D) solvable is commutative (see [7] and [13, Corollary 8.4.3]). In this note we study division rings D with Z(D) not necessarily infinite and U(D) satisfying a group identity. We show that D is commutative so long as Z(D) contains sufficiently many elements.

In what follows, we denote the ring of polynomials by D[x] and the ring of Laurent series by D((x)) in a central indeterminate x over a division ring D. It is well known that D((x)) is a division ring and that $D[x] \subseteq D((x))$. Hence every non-zero polynomial is invertible in D((x)). In particular, for any $a \in D$, 1 + ax is invertible in D((x)) and, M. A. Chebotar and P.-H. Lee

more explicitly, its inverse is given by [13, Remark 8.2.10]

$$1 + \sum_{i=1}^{\infty} (-a)^i x^i$$

As a matter of fact, D[x] is a principal left ideal domain (PLID) [13, Proposition 8.2.2], so it has a division ring D(x) of fractions. Moreover, we have $D[x] \subseteq D(x) \subseteq D((x))$.

We begin with an elementary fact about D[x] that plays an important role below. Since D[x] is a PLID, for any non-zero $r_1, r_2 \in D[x]$, there exist non-zero $s_1, s_2 \in D[x]$ such that $s_2r_1 = s_1r_2$ [13, Proposition 8.2.3]. If both r_1 and r_2 are linear, we can also choose s_1 and s_2 to be linear.

Lemma 1. Let *D* be a division ring. For any $r_1 = 1 + ax$, $r_2 = 1 + bx \in D[x]$, there exist $s_1, s_2 \in D[x]$ of degrees at most 1 such that $r_1r_2^{-1} = s_2^{-1}s_1$ (in D(x)).

Proof. If a = b, take $s_1 = s_2$ to be any element in D[x] of degree at most 1. So we may assume that $a \neq b$. Let $s_1 = 1 + (b-a)a(b-a)^{-1}x$ and $s_2 = 1 + (b-a)b(b-a)^{-1}x$. We leave the verification that $s_2r_1 = s_1r_2$ to the reader.

Corollary 2. Let *D* be a division ring, $r_i = 1 + a_i x \in D[x]$ and $r = r_1^{\gamma_1} r_2^{\gamma_2} \cdots r_m^{\gamma_m}$, where γ_i are non-zero integers. Let $I = \{i \mid i = 1, \ldots, m, \gamma_i > 0\}$, $J = \{i \mid i = 1, \ldots, m, \gamma_i < 0\}$, $\alpha = \sum_{i \in I} \gamma_i$ and $\beta = -\sum_{i \in J} \gamma_i$. Then $r = s_2^{-1} s_1$ (in D(x)), where s_1 is a polynomial of degree at most α and s_2 is a polynomial of degree at most β .

We will also need another auxiliary result which follows from a Vandermonde argument [13, Propositions 2.3.26 and 2.3.27].

Lemma 3. Let D be a division ring with centre F and let f(x) be a polynomial in D[x] of degree n. Suppose that f(c) = 0 for all $c \in F$. Then F contains at most n elements.

With all these on hand and using some ideas of [13, Theorem 8.2.11], we are now ready to prove our main result of this note.

Theorem 4. Let *D* be a division ring with centre *F*. Suppose that the group U(D) of units satisfies a non-trivial group identity $w(z_1, \ldots, z_m) = z_1^{\gamma_1} \cdots z_m^{\gamma_m}$, where the γ_i are non-zero integers and the z_i are not necessarily distinct. Let $I = \{i \mid i = 1, \ldots, m, \gamma_i > 0\}$, $J = \{i \mid i = 1, \ldots, m, \gamma_i < 0\}$, $\alpha = \sum_{i \in I} \gamma_i$ and $\beta = -\sum_{i \in J} \gamma_i$. If *F* contains more than $3 \min\{\alpha, \beta\}$ elements, then *D* is commutative.

Proof. If $\alpha - \beta = \gamma \neq 0$, we get $y^{\gamma} = 1$ for all $y \in U(D)$ by setting $z_1 = \cdots = z_m = y \in U(D)$ in $w(z_1, \ldots, z_m) = 1$. Then it follows from Jacobson's Theorem [8, Theorem 12.10] that D is commutative. Hence we may assume that $\alpha = \beta$.

By Amitsur's Theorem cited earlier [13, Theorem 8.4.2], we are done if F is infinite. So it suffices to consider the case where F is finite. If F is finite and D satisfies a non-trivial polynomial identity (PI), then by a theorem due to Kaplansky [2, Theorem 6.1.10], Dis finite dimensional over F and so D is finite. Thus D is commutative by Wedderburn's Theorem [8, Theorem 13.1].

Therefore, we shall assume in what follows that $\alpha = \beta$, that F is finite and that D does not satisfy any non-trivial PI.

558

Let $S = F\{y_1, \ldots, y_m\}$ be the free algebra in indeterminates y_1, \ldots, y_m over F, where $y_i = y_j$ if $z_i = z_j$ in $w(z_1, \ldots, z_m)$ and y_i does not commute with y_j if $z_i \neq z_j$; and let T = S((x)) be the ring of Laurent series in a central indeterminate x over S. Note that we are assuming that x commutes with each y_i for all $i = 1, \ldots, m$.

Let H be any non-commutative division ring with centre F(x), the rational function field over F. Since $w(z_1, \ldots, z_m)$ is a non-trivial word, there exist non-zero $u_1, \ldots, u_m \in$ H such that $w(u_1, \ldots, u_m) \neq 1$ in view of Amitsur's Theorem. Or, equivalently, $w(1 + v_1, \ldots, 1 + v_m) \neq 1$ for some $v_1, \ldots, v_m \in H$ with $v_i \neq -1$ for all $i = 1, \ldots, m$. Hence, $w(1+y_1, \ldots, 1+y_m)$ does not coincide with 1 identically. As a consequence, we see that the rational expression $w(1 + y_1x, \ldots, 1 + y_mx)$ does not coincide with 1 identically.

Note that each $1 + y_k x$ is invertible in S((x)) and its inverse is given by

$$1 + \sum_{i=1}^{\infty} (-y_k)^i x^i.$$

Replacing each $(1+y_kx)^{-1}$ in $w(1+y_1x,\ldots,1+y_mx)$ by the above expression, we obtain

$$w(1+y_1x,\ldots,1+y_mx) = 1 + \sum_{i=1}^{\infty} f_i(y_1,\ldots,y_m)x^i,$$

where each $f_i(y_1, \ldots, y_m)$ is a polynomial in the non-commuting indeterminates y_1, \ldots, y_m over F. Since $w(1+y_1x, \ldots, 1+y_mx)$ does not coincide with 1 identically, we conclude that some of the polynomials $f_i(y_1, \ldots, y_m)$ must be non-zero.

For $u_1, \ldots, u_m \in D$ we have $w(1 + u_1 x, \ldots, 1 + u_m x) \in D(x) \subseteq D((x))$ and

$$w(1+u_1x,\ldots,1+u_mx) = 1 + \sum_{i=1}^{\infty} f_i(u_1,\ldots,u_m)x^i.$$

If $w(1 + u_1x, \ldots, 1 + u_mx) = 1$ for all $u_1, \ldots, u_m \in D$, then $f_i(u_1, \ldots, u_m) = 0$ for all $i = 1, 2, \ldots$. Thus D satisfies some non-trivial PI $f_i(y_1, \ldots, y_m)$, contradicting our assumption. Hence, $w(1+u_1x, \ldots, 1+u_mx) \neq 1$ for some $u_1, \ldots, u_m \in D$. By Corollary 2, $w(1 + u_1x, \ldots, 1 + u_mx)$ can be written as $g_2(x)^{-1}g_1(x)$, where $g_1(x)$ and $g_2(x)$ are polynomials in D[x] of degrees at most α .

For any $c \in F$ with $1 + u_i c \neq 0$ for all i = 1, ..., m, we have $g_2(c)^{-1}g_1(c) = w(1 + u_1c, ..., 1 + u_mc) = 1$ since $w(z_1, ..., z_m)$ is a group identity for U(D). Note that $m \leq 2\alpha$ and, since F has more than 3α elements, by Lemma 3 there exists $c \in F$ such that $1 + u_i c \neq 0$ for all i = 1, ..., m and $g_1(c) - g_2(c) \neq 0$, contrary to $g_2(c)^{-1}g_1(c) = 1$. Thus the theorem is now proved.

References

- 1. S. A. AMITSUR, Rational identities and applications to algebra and geometry, J. Alg. 3 (1966), 304–359.
- 2. K. I. BEIDAR, W. S. MARTINDALE III AND A. V. MIKHALEV, *Rings with generalized identities* (Marcel Dekker, New York, 1996).

M. A. Chebotar and P.-H. Lee

- 3. G. M. BERGMAN, Rational relations and rational identities in division rings, I, J. Alg. 43 (1976), 252–266.
- G. M. BERGMAN, Rational relations and rational identities in division rings, II, J. Alg. 43 (1976), 267–297.
- A. GIAMBRUNO, E. JESPERS AND A. VALENTI, Group identities on units of rings, Arch. Math. 63 (1994), 291–296.
- A. GIAMBRUNO, S. K. SEHGAL AND A. VALENTI, Group algebras whose units satisfy a group identity, Proc. Am. Math. Soc. 125 (1997), 629–634.
- 7. L. K. HUA, On the multiplicative groups of a field, Acad. Sinica Sci. Record 3 (1950), 1–6.
- 8. T. Y. LAM, A first course in noncommutative rings (Springer, 1991).
- 9. C.-H. LIU, Group algebras with units satisfying a group identity, *Proc. Am. Math. Soc.* **127** (1999), 327–336.
- 10. C.-H. LIU, Some properties on rings with units satisfying a group identity, J. Alg. 232 (2000), 226–235.
- C.-H. LIU AND D. S. PASSMAN, Group algebras with units satisfying a group identity, II, Proc. Am. Math. Soc. 127 (1999), 337–341.
- D. S. PASSMAN, Group algebras whose units satisfy a group identity, II, Proc. Am. Math. Soc. 125 (1997), 657–662.
- 13. L. H. ROWEN, Polynomial identities in ring theory (Academic, 1980).
- A. I. VALITSKAS, Rational identities of radical algebras, *Izv. VUZ Mat.* 11 (1985), 63–72 (in Russian; English translation in *Soviet Math. (Iz. VUZ)* 29 (1985), 88–99).