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Abstract Let A and B be C∗-algebras, let X be an essential Banach A-bimodule and let T : A → B

and S : A → X be continuous linear maps with T surjective. Suppose that T (a)T (b)+T (b)T (a) = 0 and
S(a)b + bS(a) + aS(b) + S(b)a = 0 whenever a, b ∈ A are such that ab = ba = 0. We prove that then
T = wΦ and S = D +Ψ , where w lies in the centre of the multiplier algebra of B, Φ : A → B is a Jordan
epimorphism, D : A → X is a derivation and Ψ : A → X is a bimodule homomorphism.
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1. Introduction

The question of characterizing homomorphisms on Banach algebras through the action
on zero products has attracted the attention of many authors over the last few years. We
refer the reader to [2] for a full account of the topic and a list of references. The pattern
consists in considering the following condition on a linear map T from a Banach algebra
A into a Banach algebra B:

a, b ∈ A, ab = 0 =⇒ T (a)T (b) = 0. (H)

Such maps are treated in various contexts under different names (Lamperti operators,
disjointness-preserving maps, separating maps, zero-product-preserving maps). It is obvi-
ous that every homomorphism from A into B satisfies (H) and the standard problem is to
show that any map satisfying (H) is ‘close’ to a homomorphism. In fact, one usually wants
to describe a map T satisfying (H) as being a weighted homomorphism, which means
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that T = WΦ, where Φ : A → B is a homomorphism and W : B → B is a B-bimodule
homomorphism.

A similar problem, of characterizing Jordan homomorphisms through the action on
zero products, has recently also attracted some interest [9, 10, 14, 15]. Our paper is
primarily devoted to this topic. Our purpose is to investigate whether the condition

a, b ∈ A, ab = ba = 0 =⇒ T (a) ◦ T (b) = 0 (JH)

characterizes Jordan homomorphisms. Here and subsequently, ‘◦’ denotes the Jordan
product

a ◦ b = 1
2 (ab + ba)

on a Banach algebra. In this regard our main result is that, in the case when A and B

are C∗-algebras, every continuous surjective linear map T : A → B satisfying (JH) is of
the form T = wΦ, where Φ : A → B is a Jordan epimorphism and w lies in the centre of
the multiplier algebra of B. Let us recall that the multiplier algebra of B can be thought
of as the idealizer of B in its bidual B∗∗, i.e. {b ∈ B∗∗ : bB +Bb ⊂ B}. For other versions
of linear preservers in the Jordan context we refer the reader to [8].

A similar question is concerned with derivations. In this context one is usually involved
with the following conditions on a linear map T from a Banach algebra A into a Banach
A-bimodule X:

a, b, c ∈ A, ab = bc = 0 =⇒ a · T (b) · c = 0; (D1)

a, b ∈ A, ab = 0 =⇒ T (a) · b + a · T (b) = 0. (D2)

The preceding conditions have been considered in [2, §§ 4.2 and 4.3] and the references
therein. It should be pointed out that condition (D1) has proved to be useful for studying
local derivations [1,12]. When dealing with conditions (D1) and (D2) one is intended to
describe T as D + Ψ , where D : A → X is a derivation and Ψ : A → X is a bimodule
homomorphism. The natural way to translate condition (JH) to the context of derivations
is to consider the following condition on a linear map T : A → X:

a, b ∈ A, ab = ba = 0 =⇒ T (a) • b + a • T (b) = 0. (JD)

Here and subsequently, ‘•’ denotes the Jordan product on X:

a • x = x • a = 1
2 (a · x + x · a), a ∈ A, x ∈ X.

We prove that, in the case when A is a C∗-algebra and X is an essential Banach A-
bimodule, condition (JD) implies that T is of the form T = D + Ψ , where D : A → X is
a derivation and Ψ : A → X is a bimodule homomorphism.

2. Bilinear maps vanishing on zero product

Let A be a Banach algebra and let φ : A × A → X be a continuous bilinear map into a
Banach space X. In [2] we were concerned with the question of whether the condition

a, b ∈ A, ab = 0 =⇒ φ(a, b) = 0
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implies
φ(ab, c) = φ(a, bc), a, b, c ∈ A.

It turned out in [2] that this is indeed the case for a large class of Banach algebras which
includes both C∗-algebras and group algebras, and this provided a powerful tool for
characterizing homomorphisms and derivations on that class of algebras. Nevertheless,
in order to avoid technicalities, in this paper we will restrict our attention to C∗-algebras.

Theorem 2.1 (Alaminos et al . [2]). Let A be a C∗-algebra, let X be a Banach
space and let φ : A × A → X be a continuous bilinear map with the property that

a, b ∈ A, ab = 0 =⇒ φ(a, b) = 0. (B)

Then
φ(ab, c) = φ(a, bc), a, b, c ∈ A,

and there exists a continuous linear map Φ : A → X such that

φ(a, b) = Φ(ab), a, b ∈ A.

Throughout this paper we will be involved with a condition closely related to (B). Now
our method consists in considering continuous bilinear maps φ : A × A → X satisfying

a, b ∈ A, ab = ba = 0 =⇒ φ(a, b) = 0. (JB)

Theorem 2.2. Let A be a C∗-algebra, let X be a Banach space and let φ : A×A → X

be a continuous bilinear map satisfying (JB). Then

φ(ab, cd) − φ(a, bcd) + φ(da, bc) − φ(dab, c) = 0, a, b, c, d ∈ A,

and there exist continuous linear maps Φ, Ψ : A → X such that

φ(ab, c) − φ(b, ca) + φ(bc, a) = Φ(abc), a, b, c ∈ A,

and

φ(a, b) + φ(b, a) = Ψ(a ◦ b), a, b ∈ A.

Proof. Pick a1, b1 ∈ A with a1b1 = 0 and define a continuous bilinear map φ1 : A ×
A → X by

φ1(a, b) = φ(b1a, ba1), a, b ∈ A.

It is straightforward to check that φ1 satisfies (B). From Theorem 2.1 it follows that
φ1(ab, c) = φ1(a, bc) and so

φ(b1ab, ca1) − φ(b1a, bca1) = 0 (2.1)

for all a, b, c ∈ A. We now fix a2, b2, c2 ∈ A and consider the continuous bilinear map
φ2 : A × A → X defined by

φ2(a1, b1) = φ(b1a2b2, c2a1) − φ(b1a2, b2c2a1), a1, b1 ∈ A.
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According to (2.1), φ2 satisfies (B), and so Theorem 2.1 now yields φ2(a1b1, c1) −
φ2(a1, b1c1) = 0: that is,

φ(c1a2b2, c2a1b1) − φ(c1a2, b2c2a1b1) + φ(b1c1a2, b2c2a1) − φ(b1c1a2b2, c2a1) = 0 (2.2)

for all a1, b1, c1, a2, b2, c2 ∈ A.
By taking into account that all the terms in (2.2) involve c1a2 and c2a1 and that

A2 = A it may be concluded that

φ(ab, cd) − φ(a, bcd) + φ(da, bc) − φ(dab, c) = 0 (2.3)

for all a, b, c, d ∈ A, as claimed in the theorem.
We now take a bounded approximate identity (ρi)i∈I for A. By applying (2.3) with

the element c replaced by ρi, i ∈ I, we see that the net (φ(dab, ρi))i∈I is convergent; by
taking limits we arrive at

φ(ab, d) − φ(a, bd) + φ(da, b) − lim
i∈I

φ(dab, ρi)

= lim
i∈I

(φ(ab, ρid) − φ(a, bρid) + φ(da, bρi) − φ(dab, ρi))

= 0

for all a, b, d ∈ A. We can thus define a linear operator Φ : A3 → X by Φ(a) =
limi∈I φ(a, ρi) for each a ∈ A3. Since A3 = A, the operator Φ is defined on A and it
satisfies

φ(ab, c) − φ(b, ca) + φ(bc, a) = Φ(abc), a, b, c ∈ A. (2.4)

On the other hand, for each a ∈ A the net (φ(a, ρi))i∈I is bounded and therefore the
operator Φ is continuous.

We now apply (2.4) with b replaced by ρi to see that the net (φ(ρi, ca))i∈I is convergent
and that

φ(a, c) − lim
i∈I

φ(ρi, ca) + φ(c, a) = lim
i∈I

(φ(aρi, c) − φ(ρi, ca) + φ(ρic, a))

= lim
i∈I

Φ(aρic)

= Φ(ac) (2.5)

for all a, c ∈ A. Since A2 = A, it follows that the net (φ(ρi, a))i∈I is convergent for each
a ∈ A and so we can define a continuous linear operator Φ′ : A → X by

Φ′(a) = lim
i∈I

φ(ρi, a), a ∈ A.

Consequently, the identity (2.5) now becomes

φ(a, c) + φ(c, a) = Φ(ac) + Φ′(ca) (2.6)

for all a, c ∈ A. By swapping a and c in (2.6) we arrive at

φ(c, a) + φ(a, c) = Φ(ca) + Φ′(ac) (2.7)
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for all a, c ∈ A. By adding (2.6) and (2.7) we get

2(φ(a, c) + φ(c, a)) = Φ(ac + ca) + Φ′(ac + ca)

and so

φ(a, c) + φ(c, a) = Ψ(ac + ca)

for all a, c ∈ A, where Ψ : A → X is defined by Ψ = 1
2 (Φ + Φ′). �

If φ is symmetric, i.e. if φ(a, b) = φ(b, a) holds for all a, b ∈ A, then the last statement
of the theorem shows that φ is of the form φ(a, b) = 1

2Ψ(a ◦ b). This can be considered
as a definitive result on the structure of φ. In the general case, when φ is not necessarily
symmetric, the analogous definitive conclusion would be that φ(a, b) = Φ1(ab) + Φ2(ba)
for some linear operators Φ1 and Φ2. Unfortunately, this does not seem to follow from
Theorem 2.2.

Note that every bilinear map φ : A × A → X can be written as φ = φ1 + φ2, where φ1

is symmetric and φ2 is skew-symmetric (i.e. φ2(a, b) = −φ2(b, a) for all a, b ∈ A); indeed,
just define φ1 and φ2 by

φ1(a, b) = 1
2 (φ(a, b) + φ(b, a)) and φ2(a, b) = 1

2 (φ(a, b) − φ(b, a)), a, b ∈ A.

It is clear that φ satisfies (JB) if and only if both φ1 and φ2 satisfy (JB). Since the
structure of φ1 is known by Theorem 2.2, one should only treat φ2. That is to say, in
order to describe bilinear maps φ satisfying (JB) it suffices to consider the case when φ is
skew-symmetric. The ultimate goal in this case is to show that there is a linear operator
Ψ : [A, A] → X such that φ(a, b) = Ψ([a, b]) for all a, b ∈ A. By [A, A] we have of course
denoted the linear span of all [a, b] with a, b ∈ A.

Remark 2.3. Let A and φ be as in Theorem 2.2 and additionally assume that φ is
skew-symmetric. We claim that

φ(ab, c) + φ(ca, b) + φ(bc, a) = 0 (2.8)

holds for all a, b, c ∈ A, i.e. the map Φ from the theorem is 0. Pick a self-adjoint element
a ∈ A, let B be the C∗-subalgebra of A generated by a and let b ∈ B with b3 = a. Since
B is commutative, the restriction of φ to B × B satisfies the condition (B). Theorem 2.1
then shows that φ(a1a2, a3) = φ(a1, a2a3) for all a1, a2, a3 ∈ B. In particular, we have
φ(b2, b) = φ(b, b2). However, since φ is skew-symmetric, it follows that φ(b2, b) = −φ(b, b2)
and so φ(b, b2) = 0. On the other hand, according to (2.4) we have Φ(a) = Φ(b3) =
3φ(b2, b) = 0.

At least for the matrix algebra A = Mn(C) we know that skew-symmetric bilinear
maps satisfying (2.8) are indeed of the form φ(a, b) = Ψ([a, b]) [6, Theorem 2.1].
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3. Characterizing Jordan homomorphisms through zero products

Let A and B be Banach algebras. A Jordan homomorphism from A into B is a linear
map Φ : A → B such that

Φ(a ◦ b) = Φ(a) ◦ Φ(b), a, b ∈ A.

It is obvious that each Jordan homomorphism Φ : A → B satisfies (JH) and we now
address the question of whether the converse holds.

Lemma 3.1. Let A be a C∗-algebra and let T : A → B be a continuous linear map
into a Banach algebra B satisfying (JH). Then

T (ab) ◦ T (cd) − T (a) ◦ T (bcd) + T (da) ◦ T (bc) − T (dab) ◦ T (c) = 0 (3.1)

for all a, b, c, d ∈ A. Accordingly, if A and B are unital and T (1) = 1, then T is a Jordan
homomorphism.

Proof. It suffices to apply Theorem 2.2 to the continuous bilinear map φ : A×A → B

given by φ(a, b) = T (a) ◦ T (b) for all a, b ∈ A. If A and B are unital and T (1) = 1, then
by setting a = c = 1 in (3.1) we get that T is a Jordan homomorphism. �

Lemma 3.2. Let A be a C∗-algebra and let T : A → B be a continuous linear map
into a Banach algebra B satisfying (JH). Then there exists a continuous linear operator
W : T (A) → B such that ‖W‖ � ‖T‖ and

W (T (a ◦ b)) = T (a) ◦ T (b), a, b ∈ A. (3.2)

Proof. Let (ρi)i∈I be an approximate identity for A of bound 1.
From (3.1) we deduce that

T (ρi) ◦ T (abc) = T (ρia) ◦ T (bc) + T (cρi) ◦ T (ab) − T (cρia) ◦ T (b)

→ T (a) ◦ T (bc) + T (c) ◦ T (ab) − T (ca) ◦ T (b) (3.3)

for all a, b, c ∈ A. Since A3 = A, it follows that the net (T (ρi) ◦ u)i∈I converges for each
u ∈ T (A). On the other hand, from the boundedness of (T (ρi))i∈I we deduce that, in
fact, the net (T (ρi) ◦ u)i∈I converges for each u ∈ T (A) so that we can define a linear
operator W : T (A) → B by

W (u) = lim
i∈I

T (ρi) ◦ u, u ∈ T (A).

Of course, the operator W is continuous with ‖W‖ � ‖T‖, and (3.3) now becomes

W (T (abc)) = T (a) ◦ T (bc) + T (c) ◦ T (ab) − T (b) ◦ T (ca), a, b, c ∈ A.

Hence it follows that

W (T (ab)) = lim
i∈I

W (T (aρib))

= lim
i∈I

(T (a) ◦ T (ρib) + T (b) ◦ T (aρi) − T (ρi) ◦ T (ba))

= T (a) ◦ T (b) + T (b) ◦ T (a) − W (T (ba))
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for all a, b ∈ A. Therefore, W (T (a ◦ b)) = T (a) ◦ T (b), a, b ∈ A, as claimed in the
lemma. �

Theorem 3.3. Let A and B be C∗-algebras and let T : A → B be a continuous
surjective linear map satisfying the condition

a, b ∈ A, ab = ba = 0 =⇒ T (a) ◦ T (b) = 0.

Then there exist an invertible element w in the centre of the multiplier algebra of B and
a Jordan epimorphism Φ : A → B such that T = wΦ.

Proof. Let W be the map given in Lemma 3.2.
We now claim that W is surjective. Let b ∈ B positive and let a ∈ A such that

T (a) = b1/2. Then (3.2) shows that W (T (a2)) = b. This clearly implies that W is
surjective.

By bidualizing (3.2) we obtain

W ∗∗(T ∗∗(x ◦ y)) = T ∗∗(x) ◦ T ∗∗(y), x, y ∈ A∗∗. (3.4)

Indeed, to prove the above identity one just observes how the algebraic identity (3.2)
carries over by the σ(A∗∗, A∗)–σ(B∗∗, B∗)-continuity of T ∗∗, the σ(B∗∗, B∗)–σ(B∗∗, B∗)-
continuity of W ∗∗ and the separate weak continuity of the products of both A∗∗ and B∗∗,
one variable at a time.

Let us recall that A∗∗ is unital. Write w = T ∗∗(1). From (3.4) we deduce that

W ∗∗(T ∗∗(x)) = W ∗∗(T ∗∗(1 ◦ x)) = w ◦ T ∗∗(x), x ∈ A∗∗. (3.5)

Since T ∗∗(A∗∗) = B∗∗, the identity (3.5) implies that

W (u) = w ◦ u, u ∈ B. (3.6)

Let e ∈ A∗∗ be a projection. According to (3.4) and (3.5), we have

w ◦ T ∗∗(e) = W ∗∗(T ∗∗(e)) = W ∗∗(T ∗∗(e2)) = T ∗∗(e)2. (3.7)

By multiplying (3.7) by T ∗∗(e) on the left we obtain

T ∗∗(e)wT ∗∗(e) + T ∗∗(e)2w = 2T ∗∗(e)3 (3.8)

and multiplying by T ∗∗(e) on the right we get

wT ∗∗(e)2 + T ∗∗(e)wT ∗∗(e) = 2T ∗∗(e)3. (3.9)

From (3.8) and (3.9) we arrive at wT ∗∗(e)2 = T ∗∗(e)2w, which, on account of (3.7), yields
wW ∗∗(T ∗∗(e)) = W ∗∗(T ∗∗(e))w.

Therefore, wW ∗∗(T ∗∗(x)) = W ∗∗(T ∗∗(x))w for each x ∈ A∗∗. Since T ∗∗(A∗∗) = B∗∗,
it follows that wW ∗∗(y) = W ∗∗(y)w for each y ∈ B∗∗. Since W is surjective, it may be
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concluded that W ∗∗ is also surjective (hence, w lies in the centre of B∗∗) and, finally,
that w is invertible. According to (3.6), we have

W (u) = w ◦ u = wu = uw, u ∈ B.

The preceding identity clearly implies that wB, Bw ⊂ B and hence w lies in the multiplier
algebra of B.

We now define Φ = W−1T = w−1T . Of course, Φ is surjective. We proceed to show
that Φ is a Jordan homomorphism. Let a, b ∈ A. On account of (3.2), we have

Φ(a ◦ b) = W−1(T (a ◦ b))

= W−1(W−1(T (a) ◦ T (b)))

= w−2(T (a) ◦ T (b))

= (w−1T (a)) ◦ (w−1T (b))

= Φ(a) ◦ Φ(b).

�

Corollary 3.4. Let A and B be C∗-algebras with B prime, and let T : A → B be a
continuous surjective linear map satisfying the condition

a, b ∈ A, ab = ba = 0 =⇒ T (a) ◦ T (b) = 0.

Then there exist a non-zero complex number λ and either an epimorphism or an anti-
epimorphism Φ : A → B such that T = λΦ.

Proof. Since B is a prime C∗-algebra, it follows that the centre of the multiplier
algebra of B is a commutative prime C∗-algebra and so it is isomorphic to C. On account
of Theorem 3.3, there exist a non-zero complex number λ and a Jordan epimorphism
Φ : A → B such that T = λΦ. On the other hand, a well-known result by Herstein [13]
states that every Jordan homomorphism onto a (2-torsion free) prime ring is either a
homomorphism or an anti-homomorphism. �

Remark 3.5. A rather natural weakening of condition (H) is the following:

a, b ∈ A, ab = ba = 0 =⇒ T (a)T (b) = 0. (JH1)

On the other hand, a natural translation of (H) to Jordan context, which has been
considered by a number of authors, is the following:

a, b ∈ A, a ◦ b = 0 =⇒ T (a) ◦ T (b) = 0. (JH2)

A way to unify and generalize both of the preceding conditions consists in considering
our condition (JH). Of course, both Theorem 3.3 and Corollary 3.4 remain valid with
condition (JH) replaced by any of the above conditions. It is clear that every Jordan
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homomorphism Φ : A → B satisfies (JH2). However, it is not clear at all that Φ satis-
fies (JH1), although it does under rather mild assumptions. Indeed, assume that B is
semi-prime and Φ(A) = B. From [4, Corollary 2.2] we have

(Φ(ab) − Φ(a)Φ(b))B(Φ(cd) − Φ(d)Φ(c)) = {0}, a, b, c, d ∈ A. (3.10)

If a, b ∈ A are such that ab = ba = 0, then (3.10) with c = b and d = a yields
Φ(a)Φ(b)BΦ(a)Φ(b) = 0 and therefore Φ(a)Φ(b) = 0.

Let us mention the following interesting consequence of identity (2.8) in Remark 2.3
for analysing the Lie-type version of condition (JH). As usual, we write [· , ·] for the Lie
product

[a, b] = ab − ba

on a Banach algebra.

Corollary 3.6. Let A and B be unital prime C∗-algebras such that neither A nor B

is isomorphic to M2(C). Let T : A → B be a continuous bijective linear map such that

a, b ∈ A, ab = ba = 0 =⇒ [T (a), T (b)] = 0. (LH)

Then there exist a non-zero complex number λ, either an isomorphism or an anti-
isomorphism Φ : A → B and a linear functional f on A such that T (a) = λΦ(a) + f(a)1
for all a ∈ A.

Proof. Obviously, the result is true in the case when both A and B are isomorphic
to C. Accordingly, from now on we assume that neither A nor B is isomorphic to either
C or M2(C).

Define φ : A×A → B by φ(a, b) = [T (a), T (b)] for all a, b ∈ A. According to Remark 2.3
we have φ(ab, c) + φ(ca, b) + φ(bc, a) = 0 for all a, b, c ∈ A. Setting a = b = c, it
follows that φ(a2, a) = 0. That is, [T (a2), T (a)] = 0 for each a ∈ A. Our objective is to
apply [5, Theorem 2] and then the desired conclusion follows. Nevertheless, to this end
we are required to check that neither A nor B satisfies the standard polynomial identity
S4 and that both A and B are centrally closed.

We first claim that neither A nor B satisfies S4. Indeed, if a C∗-algebra A satisfies S4,
then it can be embedded into M2(C) for a commutative C∗-algebra C [3, Theorem 6.1.7].
If A is in addition prime, then C is easily seen to be prime, which implies that C ∼= C and
therefore that A embeds into M2(C). According to the Wedderburn Structure Theorem
[11, Theorem 1.5.9], A is isomorphic to a full matrix algebra, so that either A ∼= C or
A ∼= M2(C).

Our final observation is that all prime C∗-algebras are centrally closed [3, Proposi-
tion 2.2.10]. �

It should be mentioned that the assumption that both A and B are different from
M2(C) is certainly necessary in Corollary 3.6. By [17, Theorem 1.1], every linear map
T : M2(C) → M2(C) that sends the identity matrix 1 into a scalar multiple of 1 automat-
ically preserves commutativity, and hence also satisfies (LH). However, not every such
map has the form described in the corollary.
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Remark 3.7. It should be pointed out that the Lie-type version of the associative con-
dition (H) and the Jordan condition (JH2) is merely the classical condition of preserving
commutativity:

a, b ∈ A, [a, b] = 0 =⇒ [T (a), T (b)] = 0. (C)

The standard goal is to express such maps through (anti)homomorphisms and maps
having their range in the centre. The literature on this subject is really vast. Let us
just refer to [7, Chapter 7] for references and history. The condition (LH) simultane-
ously generalizes two seemingly unrelated conditions: the condition (C) that T preserves
commutativity and the condition that T preserves zero products (more precisely, the
condition (JH1), which of course is more general than (H)).

4. Characterizing derivations through zero products

Let A be a Banach algebra, let X be a Banach A-bimodule and let D : A → X be a
linear map. Then D is a Jordan derivation if

D(a ◦ b) = D(a) • b + a • D(b), a, b ∈ A.

Since we shall be concerned with Jordan derivations on a C∗-algebra A, it should be
pointed out that Johnson showed in [16] that every continuous Jordan derivation D : A →
X into any Banach A-bimodule is a derivation.

Theorem 4.1. Let A be a C∗-algebra, let X be an essential Banach A-bimodule and
let T : A → X be a continuous linear map satisfying

a, b ∈ A, ab = ba = 0 =⇒ T (a) • b + a • T (b) = 0.

Then there exist a derivation D : A → X and a bimodule homomorphism Φ : A → X

such that T = D + Φ.

Proof. Throughout this proof we will use the fact that, for every Banach algebra A

and every Banach A-bimodule X, X∗∗ turns into a Banach A∗∗-bimodule with respect
to the operations defined by

u · ξ = lim
i∈I

lim
j∈J

ai · xj , ξ · u = lim
j∈J

lim
i∈I

xj · ai, u ∈ A∗∗, ξ ∈ X∗∗,

where (ai)i∈I is any net in A with σ(A∗∗, A∗) − lim ai = u and (xj)j∈J is any net in
X with σ(X∗∗, X∗) − lim xj = ξ, and A∗∗ is endowed with the first Arens product [11,
Theorem 2.6.15]. We shall use the following basic facts about the weak continuity of the
above-defined products which the reader can find in [11, Proposition A.3.52].

(i) For all u ∈ A∗∗ and a ∈ A, the maps ξ �→ ξ · u and ξ �→ a · ξ from X∗∗ into itself
are σ(X∗∗, X∗)-continuous.

(ii) For all ξ ∈ X∗∗ and x ∈ X, the maps u �→ u · ξ and u �→ x · u from A∗∗ into X∗∗

are σ(A∗∗, A∗)–σ(X∗∗, X∗)-continuous.
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It is well known that every C∗-algebra A has the property that every continuous linear
map from A into its dual A∗ is weakly compact [11, Corollary 3.2.43]. This property
implies that every continuous bilinear map φ : A × A → X into some Banach space X

is Arens regular, which means that the two ways of extending to the second dual [11,
Identities (A.3.8) and (A.3.9), p. 824] give the same result: that is,

lim
i∈I

lim
j∈J

φ(ai, bj) = lim
j∈I

lim
i∈I

φ(ai, bj) (4.1)

for all σ(A∗∗, A∗)-convergent nets (ai)i∈I and (bj)j∈J in A; the limits in (4.1) are taken
with respect to the topology σ(X∗∗, X∗). Of course, this property implies that A is Arens
regular.

By applying Theorem 2.2 to the bilinear map

(a, b) → T (a) • b + a • T (b)

we obtain

T (ab) • cd + ab • T (cd) − T (a) • bcd − a • T (bcd) + T (da) • bc

+ da • T (bc) − T (dab) • c − dab • T (c) = 0 (4.2)

for all a, b, c, d ∈ A. We bidualize (4.2), taking into account the regularity of A, the
σ(A∗∗, A∗)–σ(X∗∗, X∗)-continuity of T ∗∗, the separate weak continuity properties of the
module operations on X∗∗, and the identity (4.1). We thus get

T ∗∗(ab) • cd + ab • T ∗∗(cd) − T ∗∗(a) • bcd − a • T ∗∗(bcd)

+ T ∗∗(da) • bc + da • T ∗∗(bc) − T ∗∗(dab) • c − dab • T ∗∗(c) = 0 (4.3)

for all a, b, c, d ∈ A∗∗.
Let 1 be the identity of A∗∗ and write ξ = T ∗∗(1) ∈ X∗∗. By applying (4.3) with

a = c = 1 and arbitrary b, d ∈ A∗∗ we get

T ∗∗(b) • d + b • T ∗∗(d) − ξ • bd − 1 • T ∗∗(bd)

+ T ∗∗(d) • b + d • T ∗∗(b) − T ∗∗(db) • 1 − db • ξ = 0. (4.4)

On the other hand, since X is essential it follows that 1 · x = x · 1 = x for each x ∈ X.
On account of the σ(X∗∗, X∗)-denseness of X in X∗∗ and the σ(X∗∗, X∗)-continuity of
the map x �→ x · 1, we have

ζ · 1 = ζ, ζ ∈ X∗∗. (4.5)

Unfortunately, we cannot be sure about the identity 1 · ζ = ζ for an arbitrary ζ ∈ X∗∗.
Nevertheless, we claim that

1 · T ∗∗(a) = T ∗∗(a), a ∈ A∗∗. (4.6)

Indeed, let a ∈ A∗∗ and let (ρi)i∈I and (aj)j∈J be nets in A converging to 1 and a,
respectively, with respect to the topology σ(A∗∗, A∗). Then

1 · T ∗∗(a) = lim
i∈I

lim
j∈J

ρi · T (aj) = lim
j∈J

lim
i∈I

ρi · T (aj) = lim
j∈J

T (aj) = T ∗∗(a),

where the limits above are taken with respect to the topology σ(X∗∗, X∗).
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According to (4.5) and (4.6), (4.4) reads as follows:

T ∗∗(b ◦ d) = T ∗∗(b) • d + b • T ∗∗(d) − ξ • (b ◦ d), b, d ∈ A∗∗. (4.7)

In particular, we have

T (a ◦ b) = T (a) • b + a • T (b) − ξ • (a ◦ b), a, b ∈ A. (4.8)

Our next objective is to show that ξ · a = a · ξ for each a ∈ A∗∗. Of course, it suffices
to prove the identity for each projection in A∗∗. Let e ∈ A∗∗ be a projection. Then we
take b = d = e in (4.7) and we thus get

T (e) = T (e) · e + e · T (e) − 1
2ξ · e − 1

2e · ξ. (4.9)

We multiply (4.9) on the right by e to obtain

T (e) · e = T (e) · e + e · T (e) · e − 1
2ξ · e − 1

2e · ξ · e

and so
0 = e · T (e) · e − 1

2ξ · e − 1
2e · ξ · e. (4.10)

Similarly, by multiplying (4.9) on the left by e, we arrive at

0 = e · T (e) · e − 1
2e · ξ · e − 1

2e · ξ. (4.11)

From (4.10) and (4.11) we deduce that ξ · e = e · ξ, as required.
We now claim that ξ · A ⊂ X. It suffices to prove that ξ · a ∈ X for each positive

element a ∈ A. Let a be a positive element in A and let b ∈ A with b2 = a. According
to (4.8) and the commutativity property of ξ, we have

ξ · a = ξ • b2 = 2T (b) • b − T (a) ∈ X.

Observe that the map Φ : A → X defined by Φ(a) = ξ · a, a ∈ A, is a continuous
A-bimodule homomorphism. We then define D : A → X by D = T − Φ. From (4.8) it is
easily checked that D is a Jordan derivation. On account of [16], D is a derivation. �

Remark 4.2. The natural way to translate conditions (JH1) and (JH2) to the context
of derivations consists in considering the following conditions on a linear map T : A → X:

a, b ∈ A, ab = ba = 0 =⇒ T (a) · b + a · T (b) = 0; (JD1)

a, b ∈ A, a ◦ b = 0 =⇒ T (a) • b + a • T (b) = 0. (JD2)

It should be pointed out that each of the conditions (JD1) and (JD2) implies (JD) and
therefore that Theorem 4.1 still works with condition (JD2) replaced by any of the above
conditions.
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2. J. Alaminos, M. Brešar, J. Extremera and A. R. Villena, Maps preserving zero
products, Studia Math. 193 (2009), 131–159.

3. P. Ara and M. Mathieu, Local multipliers of C∗-algebras, Springer Monographs in
Mathematics (Springer, 2003).
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