A NOTE ON ASYMPTOTIC INFERENCE FOR AN ASYMMETRIC ISING MODEL AROUND A TORUS

WEI QIAN,* University of Glasgow

Abstract

Limiting distribution results are obtained for the sufficient statistics of an asymmetric Ising model on a torus. Applications are discussed.

1. Introduction

Consider a rectangular lattice with $M \times N$ pixels. Let $X = (x_{ij})$ denote the vector variable with each $x_{ij} \in \{-1, +1\}$. We assume a periodic boundary condition which is equivalent to wrapping the lattice around a torus. The distribution function for the periodic boundary asymmetric Ising model, which involves two parameters, is

(1.1)
$$P(X \mid \alpha, \beta) = \frac{1}{C(\alpha, \beta)} \exp \left\{ \alpha \sum_{i=1}^{M} \sum_{j=1}^{N} x_{ij} x_{i,j+1} + \beta \sum_{i=1}^{M} \sum_{j=1}^{N} x_{ij} x_{i+1,j} \right\}$$

where $x_{i,N+1} = x_{i1}$ and $x_{M+1,j} = x_{1j}$, and $C(\alpha, \beta)$ is the normalizing factor known as the partition function. Define $Q = (Q_1, Q_2)' = (\sum \sum x_{ij}x_{i,j+1}, \sum \sum x_{ij}x_{i+1,j})'$. For convenience, we only consider the region $R_+^2 = \{0 \le \alpha, \beta < \infty\}$. The results can also be extended to other areas by symmetric extension.

2. The limiting results of Q

The moment generating function of Q is $C(\alpha + t_1, \beta + t_2)/C(\alpha, \beta)$. The asymptotic properties of Q depend upon those of $C(\alpha, \beta)$. There is a function, $B(\alpha, \beta)$, which is an approximation to $(MN)^{-1} \log C(\alpha, \beta)$ and defined by the following Riemann integral. Detailed proof of the validity of the approximation is not given here, but the approach is similar to that of Pickard (1976):

$$B(\alpha, \beta) = (4\pi)^{-1} \int_0^{2\pi} \psi(\alpha, \beta, \omega) \, d\omega,$$

where

$$\psi(\alpha, \beta \omega) = \log \{\cosh 2\alpha \cosh 2\beta - \sinh 2\alpha \cos \omega + [(\cosh 2\alpha \cosh 2\beta - \sinh 2\alpha \cos \omega)^2 - (\sinh 2\beta)^2]^{\frac{1}{2}} \}.$$

It is not difficult to show that there is a line, called the critical line, and defined by

$$L = \{(\alpha, \beta)' : \sinh 2\alpha \sinh 2\beta = 1\}$$

such that, although the first-order partial derivatives of *B* are continuous on R_{+}^2 , the high-order partial derivatives are not defined on *L*. By using Kaufmann's (1949) exact representation for $C(\alpha, \beta)$, Pickard (1976) obtained the limiting distribution properties of $Q_1 + Q_2$, but only for the symmetric case $\alpha = \beta$. Following almost the same method and notations as those of Pickard (1976) to analyse $C(\alpha, \beta)$, and then using the moment generating functions of $(MN)^{-1}Q$ and $(MN)^{\frac{1}{2}}[(MN)^{-1}Q - \nabla B(\alpha, \beta)]$, we can prove the following theorem.

Received 31 August 1989; revision received 15 May 1990.

^{*} Postal address: Department of Statistics, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.

Theorem. Suppose $(\alpha, \beta)' \notin L$. Then as $M, N \to \infty$, and provided $N^{\theta_1} \leq M \leq N^{\theta}$ for any fixed θ_1 and θ with $0 < \theta_1 < \theta < \infty$,

1.
$$(MN)^{-1}Q \xrightarrow{\operatorname{Pr}} \nabla B(\alpha, \beta)$$

2.
$$(MN)^{\frac{1}{2}}[(MN)^{-1}Q - \nabla B(\alpha, \beta)] \xrightarrow{D} N(0, \nabla^{2}B(\alpha, \beta))$$

where ∇ denotes the first-order derivative vector, and ∇^2 the second-order derivative matrix.

For the case of free boundary condition (no interaction between x_{i1} and x_{iN} , and between x_{1j} and x_{Mj}), it is almost impossible to analyse the partition function exactly in order to obtain rate of convergence of $(MN)^{-1}EQ$ to $\nabla B(\alpha, \beta)$. Pickard (1977) showed only that

$$(MN)^{-\frac{1}{2}}[Q-EQ] \xrightarrow{\mathrm{D}} \mathrm{N}(0, \nabla^2 B(\alpha, \beta)).$$

3. Applications

Since the number of possible terms of X is 2^{MN} , it is not feasible to carry out an exact calculation for $C(\alpha, \beta)$ and $\nabla C(\alpha, \beta)$, except when M and N are small. The maximization of the log-likelihood is therefore infeasible. Monte Carlo methods are not a completely satisfactory approach, since the author believes the computational burden of simulating the field to be very heavy. Note that $MNB(\alpha, \beta)$ is an approximation to $\log C(\alpha, \beta)$, an obvious alternative way of estimating parameters is to maximize an asymptotic likelihood, namely, $AL(Q \mid \alpha, \beta) = \alpha Q_1 + \beta Q_2 - MNB(\alpha, \beta)$, or to solve the following corresponding asymptotic normal equation:

$$(MN)^{-1}Q = \nabla B(\alpha, \beta).$$

Suppose $(\alpha_0, \beta_0)' \notin L$ are the true values of the parameters and denote by $(\hat{\alpha}, \hat{\beta})'$ the solution of the above equation. Standard methods therefore show that as $M, N \to \infty$, and provided $N^{\theta_1} \leq M \leq N^{\theta}$ with $0 < \theta_1 < \theta < \infty$,

$$(MN)^{-1} \begin{pmatrix} \hat{\alpha} - \alpha_0 \\ \hat{\beta} - \beta_0 \end{pmatrix} \xrightarrow{\mathrm{D}} \mathrm{N}(0, (\nabla^2 B(\alpha, \beta))^{-1}).$$

This demonstrates consistency of $(\hat{\alpha}, \hat{\beta})'$. Another application of the results is in testing the null hypothesis:

 $H_0: \alpha = \beta$

against the general alternative hypothesis of 'not H_0 '. We can naturally attack this test problem by an asymptotic likelihood-ratio approach. Define the test statistic

$$\Lambda(Q) = \sup_{\alpha,\beta} AL(Q \mid \alpha, \beta) - \sup_{\alpha} AL(Q \mid \alpha, \alpha).$$

The upper δ -point q_{δ} of the distribution can then be defined by

$$\max_{(\alpha,\alpha)\notin L} \lim_{M,N\to\infty} \Pr\left[\Lambda(Q) \ge q_{\delta} \mid \alpha, \alpha\right] = \delta.$$

It can be shown that, when the null hypothesis holds, $\Lambda(Q)$ follows, asymptotically, a $\chi^2(1)$ distribution, while, when the alternative hypothesis holds, $\Lambda(Q)$ has. in probability, the same order as *MN*. For the free boundary condition case, the asymptotic normality of maximum asymptotic likelihood estimators and the properties of above test statistic have not been established.

Acknowledgement

The author is grateful to Professor D. M. Titterington for his advice and support. He also thanks the University of Glasgow and the ORS Committee for financial support.

References

KAUFMANN, B. (1949) Crystal statistics II, partition function evaluated by spinar analysis. *Phys. Rev.* **76**, 1232–1243.

PICKARD, D. K. (1976) Asymptotic inference for an Ising lattice. J. Appl. Prob. 13, 486-497.

PICKARD, D. K. (1977) Asymptotic inference for an Ising lattice II. Adv. Appl. Prob. 9, 476-501.