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REPRESENTING A DISTRIBUTION BY STOPPING A
BROWNIAN MOTION: ROOT'S CONSTRUCTION

SHEY SHIUNG SHEU

A c lo sed s u b s e t C of [O,°°] x [-">,«>] i s c a l l e d a barrier i f

( i ) («°,x) e C ,vx ,

( i i ) ( t ,±») 6 C , V t ,

(iii) (t,x) e C implies (s,x) e C , ¥ S > t .

Given a Brownian motion (B(t)) starting at the origin and a

barrier C , let x (C) be inf{i : (t,B(t)) S C} . A random

variable X (or a distribution F ) is called achievable if there

exists a barrier C so that B(T(C)) is distributed as X(F) .

In this paper we shall show that if X is bounded above or below

with finite mean or if X has zero mean and £"( |X| log \x\) < °>

then X is achievable. This result gives a partial answer to a

problem raised by Loynes [7].

1. Introduction

In dealing with various limit theorems for sums of independent

random variables, Skorohod (see [9], page 163) introduced a method to

imbed a mean-zero random variable X into a Brownian motion B(t) , t > 0,

starting at the origin; that is, he found a stopping time x (relative

to a filtration generally larger than the Brownian filtration) so that

B has the same distribution as X (denoted by B ~ X ) and, furthermore,

E(X ) = E{T) . If one requires x to be a stopping time relative to the

Brownian filtration ( x depends only on Brownian paths), whether such x

can be still constructed has been a research problem for many authors
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(see Root [8], Dubins [6], Chacon and Walsh [4], Azema and Yor [I], Bass

[2], Vallois [10], etc.). Among these constructions, Root's seems

most intuitive. His stopping time is the hitting time of a certain set

in the compactified time-state space H = [0,°°] x [-«>,<»] . A closed set

C in H will be called a barrier if

(i) (»,a;) G C for all a; G C ,

(ii) (t,+«) G C for all £ ,

(iii) (t,x) G C implies (s,x) G C for all s > £ .

The space of barriers will be compact under the Hausdorff metric. For

a barrier C , let T (C) = inf{£ , B(T)) G C] . Root proved that if X

has zero mean and finite variance, then there exists a barrier C so

that S(T(C)) ~ X , and E{i{C)) = E(X2) . Loynes [7] defines a random

variable X to be achievable if there exists a barrier C so that

B( T ( C ) ) ~ X . He posed the problem of finding conditions for X to be

achievable. In this respect, any X with zero mean and finite variance

is achievable; any degenerate random variable is achievable and,

therefore, being zero-mean is not a necessary condition. In fact,

Loynes [7] showed that if X is concentrated on a half line (-°°,b] and

E{X) > 0 , or on [a,°°) and E(X) < 0 , then X is achievable. He

also pointed out that if X is achievable, then E( |X|") < °° for all

p , 0 < p < 1 . Unfortunately, Loynes1 results do not cover important

cases such as Poisson distributions ( X concentrated on the positive

half line but E(X) > 0 ) . In this paper, we shall improve his results.

2. Main results

Call a sequence of random variables {X } stochastically bounded

if vc > 0, 3A > 0 such that P{\X \ >A) < e for all n .

00

LEMMA 2.1. Let {C } _ be a sequence of barriers such that

C -*• Cm . Then the corresponding hitting times x (C ) •*• T (CJ in

probability. In particular, if Ca consists of points at « only 3

then i{C ) is not stochastically bounded.

Proof. This is just a rephrase of Lemma 1 in Loynes [7]. D
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LEMMA 2.2. Let {X} be a sequence of random variables such
CO

that X converges to X^ in distribution. Let {C } be a

sequence of barriers such that C •* C^ and C^ consists of at least

one finite point. If B.n~X,\<.n<<»3 then B „ ~ X .

Proof. By Lemma 2.1, t (C ) ->• i{C ) in probability. By assumption,

PiTiC^) < =>) = 1 . Therefore, there exists a subsequence x (C ,) -»• T (CJ)

almost surely. By the continuity of Brownian paths, we conclude

THEOREM 2.3. Any random variable X bounded below or above with

finite mean is achievable. In particular, the Poisson random variable

is achievable.

Proof. Without loss of generality, we may assume that X > b > -» .

By Loynes1 results, we may also assume M = E(X)> 0 . Let

f kM with probability y d )

b with probability —(1 )

-y(n-l) (kM+b) with probability - ,

where k is chosen so that k > 0 , (k - 2)M +b > 0 . Since Y has_

mean zero and finite variance, it is achievable and the barrier can be

expressed as {(t,x) : t > 0 , x = kM or - j(n - 1){kM +b)} U

{(t,X) : t > t , X = b] for some t > 0 . Let x
n =

 x if ^ < « ;

J? = n if X > n , and let M = £(X ) . Let
n n n

I X with probability 1 - —

n n
!

-{n-l)M with probability —

Z has mean zero and finite variance and hence, is achievable. The

corresponding barrier can be expressed as C - {(t,x) : b < x < n ,

t > tn(x)} u {(t,x) -. t > 0 , x - -(n-l)Mn) . For n > kM , let
t'-= inf{t (x) : fc < x < kM} . since n > kM , -(rc-l)M > —(n-1
K n n 2
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we have t' < t . But Y converges in distribution to Y , where

P(Y = kM) = P(Y = b) = — . Therefore, t will converge to a finite

number and consequently, C will not diverge to infinity. Since Z

converges to X in distribution, X is achievable by Lemma 2.1 and

Lemma 2.2. °

THEOREM 2.4. If X is a random variable satisfying E(X) = 0 ,

£"(|^| log \X\) < °° , then X is aeh.ieva.ble.

Proof. We may assume that X is neither bounded above nor bounded

below. Then there exist sequences a -*• -°° , b -> °° such that if X = X,

when a < X < b ; X = 0 , when X < a or X > bn , and E(.X ) = 0 .

Of course, X is achievable. Let T = T (C' ) be the stopping time

2
such that B ~ X and £(T ) = E[X ) . By the famous Burkholder-Gundy' s

xn n n

inequality (see Theorem 6.1 in Burkholder [3]), we have

E[/r~) < a E ( sup \B(t) |) .

By Doob's inequality (see Doob [5], page 317) and the fact that

sup \B(t)| is bounded, we have

n

Hence, {E(/x~) } is bounded, which implies {T } is stochastically

bounded. Since X converges to X in distribution, X is achievable

by Lemma 2.1 and Lemma 2.2. D
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