1. Introduction

A graph G is said to possess a perfect matching if there is a subgraph of G consisting of disjoint edges which together cover all the vertices of G. Clearly G must then have an even number of vertices. A necessary and sufficient condition for G to possess a perfect matching was obtained by Tutte (3). If S is any set of vertices of G, let $p(S)$ denote the number of components of the graph $G - S$ with an odd number of vertices. Then the condition

$$\text{for all } S, p(S) \leq |S|$$

is both necessary and sufficient for the existence of a perfect matching. A simple proof of this result is given in (1).

We consider certain conditions which are sufficient although not necessary. Roughly speaking, G will have a perfect matching if there are enough edges. For example, if $|V(G)| = n$, n even, where $V(G)$ denotes the set of vertices of G, and if each vertex is of degree $\geq \frac{n}{2}$, i.e. if each vertex has at least $\frac{n}{2}$ edges incident with it, then it is almost trivial (see § 3) to show that G has a perfect matching. Instead of looking at each vertex separately, we can put a condition on the vertices collectively. If X denotes any subset of $V(G)$, let

$$\Gamma(X) = \{y \in V(G): \ y \text{ is joined by an edge to at least one vertex in } X\}.$$

Following Woodall (4), we define

$$\text{melt } (G) = \max \{c: \forall X \subset V(G), |\Gamma(X)| \geq \min (c | X |, |V(G)|)\}.$$

Thus melt (G) is the largest number c such that any k vertices of G are collectively adjacent to at least $\min (ck, n)$ vertices. We have already (1) shown that, if n is even,

$$\text{melt } (G) \geq \frac{n}{2} \Rightarrow G \text{ has a perfect matching.} \quad (1)$$

We note that this condition implies that each vertex is of degree $\geq \frac{1}{4}n$. Indeed, we have in general

Lemma. If melt $(G) \geq c > 1$, then each vertex of G has degree $\geq \frac{c-1}{c} n$ where $n = |V(G)|$.

Proof. Suppose there is a vertex v of degree $\leq \frac{c-1}{c} n$. Then there are...
\[\geq \frac{n}{c} \] vertices none of which is joined by an edge to \(v \). But these vertices must be joined to at least \(c \cdot \frac{n}{c} = n \) vertices, a contradiction.

In the next section, we combine the two types of condition above to prove

Theorem 1. Let \(G \) have \(n \) vertices, \(n \) even. Let \(c \) be any fixed number, \(\frac{1}{4} \leq c \leq \frac{1}{2}, \) and suppose that

(i) each vertex is of degree \(\geq cn \),

(ii) \(\text{melt}(G) \geq \frac{3-4c}{2-2c} \).

Then \(G \) possesses a perfect matching.

Note 1. \(c = \frac{1}{2} \) gives the trivial result mentioned above, and \(c = \frac{1}{4} \) gives the result (I).

Note 2. The theorem is also true for other values of \(c \), but if \(c > \frac{1}{2} \) condition (i) by itself is sufficient, whereas if \(c < \frac{1}{4} \) then condition (ii) by itself suffices.

Note 3. Condition (ii) implies, by the lemma, that each vertex has degree \(\geq 1-2c \geq n \), but this is less than \(cn \) if \(c > \frac{1}{4} \).

Note 4. The result is best possible. If \(A, B \) are graphs let \(A + B \) denote the graph obtained by joining every vertex of \(A \) to every vertex of \(B \). Take \(A = aK_3 \cup bK_1 \) and \(B = (a+b-2)K_1 \) where \(K_n \) denotes the complete graph on \(n \) vertices.

Following the suggestion of the referee, who is to be thanked for his careful consideration of the original version of this paper, we shall deduce Theorem 1 from the following stronger theorem which is proved along the same lines but more simply.

Theorem 2. Let \(G \) have \(n \) vertices, \(n \) even, and suppose that

\[|\Gamma(X)| \geq \min \left(2 \left| X \right| - \frac{n}{2}, n \right) \]

for all sets \(X \) of vertices of \(G \). Then either \(G \) has a perfect matching or there exist subsets \(X, Y \) of \(V(G) \), \(X \not\subseteq Y \), such that

\[|X| = \frac{1}{2}(3n-6), \quad |Y| = \frac{1}{2}(3n-2), \quad |\Gamma(X)| = 2 \left| X \right| - \frac{n}{2}, \quad |\Gamma(Y)| = 2 \left| Y \right| - \frac{n}{2}. \]

An example of a graph in which the second possibility occurs is \(G = 3K_3 + K_1 \). Theorem 2 is proved in the next section, but we now show that
Theorem 2 implies Theorem 1. We assume Theorem 2 and the hypotheses of Theorem 1. Let W be any set of vertices of G. If $|W| > (1-c)n$, then, since the degree of each vertex of G is $\geq cn$, we cannot have a vertex of G joined to no vertex of W. Thus $|\Gamma(W)| = V(G)$. So suppose $|W| \leq (1-c)n$. Then

$$|\Gamma(W)| \geq \frac{3-4c}{2-2c} |W| - \frac{n}{2} \tag{2}$$

It follows from Theorem 2 that G possesses a perfect matching unless there exist two sets X, Y as in Theorem 2. Then, by (2),

$$\frac{3-4c}{2-2c} |W| = 2 |W| - \frac{n}{2}$$

for $W = X$ and for $W = Y$, giving $|X| = |Y|$, a contradiction.

Theorem 2 is proved in the next section. In the remainder of this paper we shall generalize in one theorem both Theorem 1 and a result of Woodall (4) concerned with the maximum number of disjoint edges in a graph with no perfect matching. Woodall's argument was based on that of (1), and now we in turn extend his result.

2. Proof of Theorem 2

We suppose there is no perfect matching of G. Then by Tutte's theorem there is a set S of vertices of G for which $p(S) > |S|$. Using the fact that $p(S) \equiv |S|$ (mod 2), we must then have

$$p(S) \geq |S| + 2.$$

Case 1. Suppose that $|S| \leq \frac{1}{4}(n-6)$. Let m denote the number of 1-components of $G-S$ (i.e. the number of components with just one vertex). Then

$$n \geq |S| + m + 3(p(S)-m) \tag{3}$$

whence

$$n-m \leq \frac{3}{2}n-2|S|-3. \tag{4}$$

But, if $m>0$,

$$n-m \geq |\Gamma(G-S)| \geq 2 |G-S| - \frac{n}{2} \tag{5}$$

whence

$$n-m \geq \frac{3}{2}n-2|S|.$$
Since (4) and (5) contradict one another, we must have $m = 0$. Thus, from (3),
\[n \geq 4 \mid S \mid + 6 \]
i.e.
\[\mid S \mid \leq \frac{1}{4}(n-6), \]
whence
\[\mid S \mid = \frac{1}{4}(n-6). \]
Equality here implies that each component of $G - S$ must have exactly 3 vertices. If we let X denote the set of vertices in all but one of these components we then have $\mid X \mid = \frac{1}{2}(3n-6)$ and $\mid \Gamma (X) \mid \leq \mid X \mid + \mid S \mid = n-3 = 2 \mid X \mid - \frac{n}{2}$. Similarly, if Y denotes the same set with one more vertex of $G - S$ added, then we also have $\mid Y \mid = \frac{1}{4}(3n-2)$ and $\mid \Gamma (Y) \mid \leq \mid Y \mid + \mid S \mid = n-1 = 2 \mid Y \mid - \frac{n}{2}$.

Case 2. Suppose now that $\mid S \mid < \frac{1}{4}(n-6)$. Let h denote the number of vertices in all but the smallest component of $G - S$. Since there are $\geq \mid S \mid + 2$ components of $G - S$, containing between them $n-\mid S \mid$ vertices, we must have
\[h \geq \frac{\mid S \mid + 1}{\mid S \mid + 2} (n-\mid S \mid). \quad (6) \]
These h vertices can be adjacent to at most $h + \mid S \mid < n$ vertices; on the other hand, they are by hypothesis joined to at least $2h - \frac{n}{2}$ vertices. Thus
\[h \leq \frac{\mid S \mid + n}{2}. \quad (7) \]
From (6) and (7), eliminating h, we obtain
\[\mid S \mid \geq \frac{1}{4}(n-6), \]
a contradiction.

3. Extension to imperfect matchings

A related question is the following. Given a condition on a graph G which does not imply that G possesses a perfect matching, can we estimate how many disjoint edges can be found in G? Corresponding to the two types of condition already studied, we have the following results for a graph with n vertices.

1. If each vertex is of degree $\geq cn$, $0 \leq c \leq \frac{1}{4}$, then we can find at least $[cn]$ disjoint edges.

2. If melt $(G) \geq c$, then there are at least
\[\frac{c}{c+1} \frac{n}{3c-2} \text{ disjoint edges if } 0 < c \leq \frac{1}{4} \]
\[\left[\frac{3c-2}{3c} \frac{n}{3c-2} \right] \text{ disjoint edges if } 1 < c \leq \frac{3}{4}. \]
Result 2 is due to Woodall (4), with (1) as the special case \(c = \frac{3}{2} \). Result 1 is almost trivial (although best possible—consider a bipartite graph). For suppose that each vertex is of degree \(\geq k \), and that \(h < k \) disjoint edges have so far been found. If no two remaining vertices are joined by an edge, select any two of them, say \(v_1 \) and \(v_2 \). Then it is easy to see that there must be a pair \(v_3, v_4 \) of vertices, joined by one of the edges already chosen, such that \(v_1 \) is joined to \(v_3 \) and \(v_2 \) to \(v_4 \). With this new pairing we now have \(h+1 \) disjoint edges, and the process can be repeated if \(h+1 < k \). We now state

Theorem 3. Let \(G \) be a graph with \(n \) vertices. Suppose that

(i) each vertex is of degree \(\geq dn \),

(ii) \(\text{melt}(G) \geq \frac{3-4d-3f}{2-2d} \),

where \(4d+3f \geq 1, 2d+3f \leq 1, d \geq 0, f \geq 0 \). Then \(G \) possesses at least \(\left\lfloor \frac{n}{2} (1-f) \right\rfloor \) disjoint edges.

The special case \(f = 0 \) is Theorem 1, and the case \(f = \frac{1}{4}(1-4d) \) is Woodall’s result (9). The referee has suggested that it may be possible to deduce this result from an analogue to Theorem 2 in the same way as Theorem 1 was deduced from Theorem 2. However, we preserve here our original proof. Instead of Tutte’s condition we use Berge’s extension ((2); see also (4) for a simpler proof): for \(G \) to possess at least \(t \) disjoint edges, it is necessary and sufficient that \(p(S) - |S| \leq n - 2t \) for all sets \(S \) of vertices of \(G \). We shall in fact prove that, for all \(S \),

\[
p(S) \leq |S| + nf + \frac{3}{2}
\]

since this will imply that there are at least \(\frac{n}{2} (1-f) - \frac{3}{4} \) and hence at least \(\left\lfloor \frac{n}{2} (1-f) \right\rfloor \) disjoint edges.

4. Proof of Theorem 3

In view of the above remarks, we may suppose that there exists a set \(S \) of vertices of \(G \) such that

\[
p(S) > |S| + nf + \frac{3}{2}
\]

and show that this leads to a contradiction.

Case 1. \(|S| \geq dn \). Let \(m \) denote the number of 1-components in \(G - S \). If \(m = 0 \),

\[
n \geq |S| + 3p(S) > 4 |S| + 3fn \geq (4d+3f)n \geq n,
\]

so we must have \(m > 0 \). Thus

\[
n - m \geq |\Gamma(G - S)| \geq \frac{3-4d-3f}{2-2d} (n - |S|),
\]
whence

\[m \leq \frac{3 - 4d - 3f}{2 - 2d} |S| - \frac{1 - 2d - 3f}{2 - 2d} n. \quad (11) \]

But we also have, from (3), ignoring the term \(\frac{f}{2} \) in (10),

\[n > 4 |S| - 2m + 3nf, \]
\[m > 2 |S| - \frac{1}{2}(1 - 3f)n. \]

Eliminating \(m \) from (11) and (12), we obtain \(|S| < dn \), a contradiction.

Case 2. \(|S| < dn \). Here there can be no 1-components, so that each odd component contains at least

\[\max (3, \frac{dn - |S|}{n} + 1) \quad (13) \]

vertices. From now on we can assume that \(4d + 3f > 1 \).

Case 2(a). Suppose there is at least one 3-component. Then (13) yields

\[dn - |S| = \beta, \quad 0 < \beta \leq 2. \quad (14) \]

Then (3) and (10) give

\[n > 4 |S| + 3nf + 5 = (4d + 3f)n - 4\beta + 5 \]

so that

\[n(4d + 3f - 1) < 4\beta - 5. \quad (15) \]

Considering on the other hand all but one of the odd components we have, from the definition of melt \((G) \),

\[n - 3 \geq \frac{3 - 4d - 3f}{2 - 2d} (n - |S| - 3). \]

Substituting for \(|S| \) from (14), this gives

\[n(1 - d)(4d + 3f - 1) \geq (3 - \beta)(4d + 3f - 1) - 6d + 2\beta > 2\beta - 6d. \]

Thus, by (15), we must have

\[2\beta - 6d < (1 - d)(4\beta - 5) \]

whence

\[d > \frac{1}{2}. \]

It follows that

\[4d + 3f - 1 > \frac{1}{2}. \quad (16) \]

(15) and (16), with \(\beta \leq 2 \), now yield \(n < 9 \), and a contradiction easily follows.

Case 2 (b). Suppose now there is no 3-component. Here we shall show that \(|S| \) is bounded. First of all, if \(|S| < \frac{1}{4}dn \), then

\[n > |S| + (|S| + nf + \frac{f}{2})(\frac{1}{4}dn + 1) \]

so that

\[\frac{1}{4}dn |S| < |S|(2 + \frac{1}{4}dn) < n(1 - f - \frac{3}{8}d - \frac{1}{4}fdn). \quad (17) \]
SUFFICIENT CONDITIONS FOR MATCHINGS

If \(dn<4 \) then \(|S|<1 \) whereas, if \(dn \geq 4 \), then \(\frac{1}{2}fdn \geq 2f \) and (17) yields \(|S|<6 \). Secondly, if \(\frac{1}{2}dn \leq |S|<dn \), then

\[
n > |S| + (|S| + nf)(dn - |S| + 1)\]

whence

\[
dn - |S| < \frac{n + nf}{|S| + nf} - 2 < \frac{1 + f}{\frac{1}{2}d + f} - 2 < 8.
\]

Thus

\[
8 + \frac{1}{2}n(1 - 5f) > 8 + |S| > dn,
\]

\[
40 > (6d + 5f - 1)n > \frac{1}{2}n,
\]

so that \(n < 80 \). But

\[
n \geq |S| + 5(|S| + 2)
\]

so we must have \(|S| \leq 11\).

Thus in any case, \(|S| \leq 11\). It remains finally to consider each possible value of \(|S|\) in turn. In each case we argue as follows.

Let \(h \) denote the number of vertices in all but one of the odd components of \(G - S \). Then

\[
|S| + h \geq \frac{3 - 4d - 3f}{2 - 2d} h
\]

whence

\[
|S| \geq \frac{1 - 2d - 3f}{2 - 2d} h.
\]

Thus

\[
|S| \geq \frac{1 - 2d - 3f}{2 - 2d} \cdot 5 \cdot (|S| + 1). \tag{18}
\]

For any specific value of \(|S|\), (18) gives a lower bound for \(d \), and so for \(dn \). For example, if \(|S| = 5\), (18) yields

\[
d \geq \frac{3}{2} - \frac{3}{2}f
\]

and

\[
dn \geq \frac{3}{2}n - \frac{3}{2} \theta
\]

where \(\theta = fn \). Having obtained this bound for \(dn \), we obtain a contradiction by estimating \(n \) in two different ways. For we have

\[
n > |S| + 5(|S| + \theta + 1)
\]

and also

\[
n > (|S| + \theta + 1)(dn - |S| + 1).
\]

With \(|S| = 5\), these give

\[
n > 35 + 5 \theta \tag{19}
\]

and

\[
n > (6 + \theta)(\frac{3}{2}n - \frac{3}{2} \theta - 4)
\]

i.e.

\[
n < \frac{9 \theta^2 + 74 \theta + 120}{2 \theta + 7}. \tag{20}
\]

(19) and (20) contradict one another. The theorem is now proved.
REFERENCES

(4) D. R. Woodall, The melting point of a graph, and its Anderson number (to appear).

THE DEPARTMENT OF MATHEMATICS
UNIVERSITY GARDENS
GLASGOW G12 8QW