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ABSTRACT

There is a duality between the surplus process of classical risk theory and the
single-server queue. It follows that the probability of ruin can be retrieved from a
single sample path of the waiting time process of the single-server queue. In this
paper, premiums are allowed to vary. It has been shown that the stationary
distribution of a corresponding storage process is equal to the survival probability
(with variable premiums). Thus by simulation of the corresponding storage process,
the probability of ruin can be obtained. The special cases where the surplus earns
interest and the premiums are charged by layers are considered and illustrated
numerically.
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1. INTRODUCTION

The study of the probability of ruin has been the centre of interest of many papers
treating actuarial risk theory. Most of these articles deal with the problem of
determining this probability in the case of constant premiums. The mathematics are
simpler and explicit results have been obtained for certain claim amount distribu-
tions. Fewer papers consider the case of premiums whose value depend on the
current surplus. Some of them are GERBER (1975), TAYLOR (1980) and SCHMIDLI

(1994). As one would expect, fewer explicit results have been obtained. For
exponential jumps, GERBER (1975) obtains an exact expression for the ruin
probability.

When no explicit solution is available, the actuary must rely on alternative tools
to obtain an answer. DUFRESNE and GERBER (1989) make use of the duality
between the virtual waiting time of the single-server queue (M/G/l) of queuing
theory and the risk process of risk theory in the case of constant premium rates to
obtain the probability of ruin by simulation. See FELLER (1971, p. 198) and SEAL

(1972) for proofs of this duality.

ASTIN BULLETIN, Vol. 26. No. 1. 1996, pp. 93-105

https://doi.org/10.2143/AST.26.1.563235 Published online by Cambridge University Press

https://doi.org/10.2143/AST.26.1.563235


94 FREDERIC MICHAUD

If the premiums are no longer assumed constant, a duality still exists between the
two processes. SIEGMUND (1976) first established the conditions on the probability
measure of the storage process under which a dual risk process exists. HARRISON

and RESNICK (1978), and ASMUSSEN and PETERSEN (1989) have also shown the
duality. The goal of this paper is to illustrate that the method of DUFRESNE and
GERBER (1989) can be adapted to the case of variable premiums. Thus a single
sample path of the corresponding storage process is sufficient to provide an estimate
of the probability of ruin.

Two special cases will be studied. The first one considers the situation where
interest is taken into account, and the other one looks at premiums charged by
layers. We look at the speed of convergence of the estimate when different
assumptions are made. The method proposed in this paper is put in perspective with
alternative ones in the last section.

2. THE SURPLUS PROCESS AND THE STORAGE PROCESS

In the following, the surplus process {U(t); (>0) is defined by the initial value
U(Q) = u and the stochastic differential equation

(2.1) dU(t) = c(U(t))dt - dS(t),

where {S(t); ?&0} is the aggregate claims process and c(-) is the premium rate
function such that

(2.2) c(w)>0 for a > 0 .

It is assumed that {5(f); t^O] is a compound Poisson process with parameter X
and claim amount distribution />(•). We wish to stress the fact that the claims are
not necessarily positive.

It is worth mentioning that (2.1) is a quite general definition of the surplus
process. The classical case is retrieved if c(-) is constant. If it is assumed that the
surplus earns interest at a constant force <5, we have

(2.3) c(x) = c + dx.

Thus earning interest is in fact " equivalent" to receiving premiums at a rate which
is a linear function of the surplus. Another example is the case where premiums are
charged by layers. These two examples are treated in section 5.

In order to build a dual process, let {X(t)} be defined by an initial value X(0)
and the stochastic differential equation

(2.4) dX(t) = -c(X(t))dt + dS(t),

where c ( ) and S(t) are the same as in (2.1). In addition to (2.4), we impose on
{X(t)} the condition that it be a process with non-negative values. Thus the
increments of {X(t}} are defined by (2.4) unless they would cause the process to
fall below 0, in which case the process is equal to 0 until the next positive jump.
Figure 1 illustrates a sample path of {X(t)} and {£/(?)} with same initial value.
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0'

X{t)

F I G U R E 1. Typica l s amp le pa ths of \X(t)) and \U(t)}.

The process \X(t)) is called a storage process due the following interpretation.
Suppose that {X(t)} is in state x at time t (call x the stock) and consider the
infinitesimal time interval (t, t + dt). In that interval, there is an input of amount
dS (t) and an output equal to c (x) dt. In this context, c (x) is called the release rate,
which in our case is a function of the current stock. It is assumed that stocks cannot
be negative. This heuristically explains (2.4).

3. A PROOF OF THE DUALITY

For completeness, we give a proof of the duality between the risk process and the
storage process defined by (2.1) and (2.4). The reader is referred to SIEGMUND

(1976), HARRISON and RESNICK (1978) and ASMUSSEN and PETERSEN (1989) for
alternative arguments. We use the classical notation t/> (M) for the probability of ruin
given the initial surplus u, i.e.

(3.1) V(M) = Pr(U(t)<0 for some t>0),
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and define the survival probability as xp(u) = 1 - \p(w). It is shown next that rp(u) is
a solution of the integro-differential equation

f"
J - X

(3.2) c(u)ip'(u) = X%p(u) - X tp(u-y)dP(y), u>0.
J - X

First, we define implicitly the function u(t) by

(3.3) u(t) = u + c(u(s))ds.f
U(t) = M + l

Jo
Before the first claim, «(f) and U(t) will be equal. Second, consider an interval of
arbitrary length h. Now condition on whether there is a claim between times 0 and h
and on the time of this possible first claim. There is no claim with probability e~Xh

and a claim at time t<h with probability Xe~dt. With no claim in the interval, the
surplus grows to u (h) at time h. With a claim a time t, the surplus becomes u(t)-y
at time t with probability dP(y). Applying the law of total probability yields

(3.4) y>(u) = e-Xh$(u(h))+l\ e-x'\ xp(u{t)-y)dP{y)dt.

J J
Note that rp(u) = 0 for negative values of u, i.e., ruin is certain when the initial
surplus is negative. Taking derivatives of both sides of (3.4) with respect to h and
letting h tend to 0 leads to equation (3.2).

Let F(x, t) be the probability distribution function of the random variable X(t),
that is

(3.5) Fix, t) = Pr(Xit)<x).

From here on, it is assumed that c ( ) is "sufficiently large" so that the process
{Xit)} does not escape to infinity and has a stationary distribution. Let Fix) be the
stationary distribution. Then we have (see Ross (1983), theorem 4.3.3)

(3.6) Fix) = lim Fix, t).
1 - > -x

With arguments similar to the ones leading to (3.2), we can derive the following
integro-differential equation for Fix):

(3.7) cix)F\x) = XFix) - X Fix-y)dPiy), x>0.
J - X

Consider the function | (f) defined by

f°
(3.8) Ut)=x+ c(£(s))ds,

J t
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and the time interval to-h<t<to (0<h<t0). In other words, we look backward
from tQ at an interval of length h. Then the event (X(to)^x) is equivalent to one of
the following events:
• (X (t{) - h) < % (-h)) if no jumps occur in the given time interval, or
• (X (to - T) < £ (- r) - y) if, in the given time interval, the last jump of the sample

path is of amount y and occurs at time to-x, z<h.
Thus, by the law of total probability, we have

(3.9) F(x, t0) = e-XhF{^(-h), tQ-h)

[ F(i(-t)-y, to-r)dP(y)dz.

Taking limits as t0 tends to infinity and successively applying the Dominated
Convergence Theoren
bounded by 1) yields

(3.10) F(x) = e~AV(§(-/?)) +A I e~kT I F{S,(-z)-y, to-z)dP{y)dr.

yg
Convergence Theorem (RUDIN (1976), p. 321; note that \e~Xx\ and IF(-)I are

Jo J-

Taking derivatives with respect to h and letting h tend to 0 gives us (3.7).
If we compare (3.2) and (3.7), we see that rp(x) and F(x) are solutions of the

same integro-differential equation. In conjunction with the conditions F(°°) = 1 and
yJ(cc)=l, these equations have a unique solution (see DUFRESNE and GERBER

(1989), p. 78), and we conclude that F(x) = xp(x). Thus we can estimate the
probability of ruin by estimating F(x).

Remark

In the proof of (3.2), it must be kept in mind that rp(u) is not differentiable at the
points of discontinuity of c(u). However, note that the expression on the right-hand
side of (3.2) is a continuous function of u and it follows that the left-hand side is
also continuous. Thus, although xp'(u) does not exist at points of discontinuity of
c(u), the product yJ'(u)c(u) is continuous. This remark holds true for (3.7) and
F{x).

4. STATIONARY DISTRIBUTION AND RUIN PROBABILITY

Following the reasoning of DUFRESNE and GERBER (1989), define D(x, t) as the
total time that the process {X(t)} spends below level x before time t. From (3.6) we
have

D(x, t)
(4.1) lim = F(x) almost surely.

/ -> * ^

Heuristically, (4.1) means that in the long run, the probability that a chosen point of
the sample path is below x is equal to the proportion of time spent by the process
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below x. This intuitively makes sense. A proof of (4.1) can be found in HOEL, PORT

and STONE (1972) (Theorem 1, p. 58), which sums up to an application of the
strong law of large numbers. Hence, F(x) and the probability of ruin can be
obtained with the simulation of a single sample path of \X(t)}.

Still along the idea of DUFRESNE and GERBER (1989), one way to keep track of
the total time spent below level x by a sample path is to consider the random
variables Dn(x), which are defined as the total time spent below x before the rath
jump. If Tn is the random time elapsed between the (n — l)th and nth jump, we have
that

(4.2) lim — = F(x) almost surely

IT,

n

since lim J , Tt = °° almost surely.

5. ILLUSTRATION

According to (4.2), if we perform a sufficiently large number of simulations, the
convergence of the estimate to F(x) is certain. Still we must test how fast this
convergence occurs. We will look at two cases for the premium function c ( ) . The
first consists in allowing the surplus to earn interest and the second one treats the
case of premiums by layers.

5.1 Interest on the surplus

Recall (2.3) which gave as a premium function

(5.1) c(u) = c + du.

We will simulate sample paths of the process {X(t)\ defined by the arbitrarily
chosen initial value X(0) = 0 and

(5.2) dX(t) = -(c + 6X(t))dt + dS(t).

If we look at the process between jumps, then solving X'(t) = -c-6X(t) yields

(5.3) X(t) = X{tQ)e-6{'-'«] - c\ , t>t0.

First, we simulate jump amounts Yx, Y2, ..., and interjump times T{, T2, ..., where
F, is the amount of the rth jump and Tt is the time between jumps Y,_, and Y{. 7, is
defined as the time before the first jump. Then, to keep track of the process, let X,
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be the value of the process immediately after jump ;', with Xo = 0. Keeping in mind
that negative jumps are allowed and that {X(t)} is non-negative, we get with (5.3)
that

(5.4) Xn = max \o,Yn,Xn_x e~dT" - c f i Z f _ " 1 + YJ .

The amount of time Dn (x) spent by the process below level x before the nth jump
is obtained recursively by

D < x ) l
lDn(x) - (Tn+i-rn + l)+, Xn>x,

with DQ (X) = 0, x+ = max (0, x), and rn + , being the time needed to reach level x
starting from Xn (assuming no jumps occur during this time interval). The period
rn + ] is implicitly defined by t — t0 in (5.3) with X(to) = Xn and X(t)-x. Thus

1 (Xn + eld
(5.6) rn + 1 = —- In

6 {x+c/d

Table 1 gives estimates of the probability of ruin for different numbers of
simulations n and different initial surplus values u. The Poisson parameter is X = 1
and the jump amount distribution is exponential with mean equal to 1. The premium
c is equal to 1 and the force of interest 6 is 0.05. Thus no security margin is
included in the premium. Although in the classical model ruin is certain when no
security margin is included in the premium, it is not the case when the surplus
yields interest. Moreover, it can be seen that if the initial surplus is sufficiently
high, the probability of ruin becomes quite small, even in the absence of a security
margin. The exact values at the bottom of each column are given by the
formula

(5.7)
,A c \ d ( c \ t _ —

,6 dM X

with the incomplete gamma function defined as

(5.8) r(a, b) = I xa-le~xdx.
I b

Formula (5.7) is attributed to SEGERDAHL (1942).

(a, *) = [ xa-
J b
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TABLE I

THE PROBABILITY OF RUIN OBTAINED BY SIMULATION WITH
A= 1, c= 1, (5 = 0.05, P(x) = 1 - e ' \ x>0.

n\ u

10 000
100 000

200 000

300 000

400 000

500 000
600 000

700 000
800 000

900 000
1 000 000

exact

0

0.848728

0.846427

0.844146
0.843202

0.842386

0.842270

0.841583
0.841850

0.841910

0.841728
0.841819

0.841108

2

0.552233

0.553203
0.550787

0.549879
0.548004

0.547173

0.545989
0.546447

0.545976

0.546393

0.546590

0.547364

4

0.334032

0.326112

0.325396
0.324983

0.321891

0.321128

0.319980
0.320371

0.319828

0.320642

0.320795

0.322416

6

0.190215

0.177550
0.176152

0.175151
0.172704

0.171949

0.171063

0.171678

0.171489

0.171790
0.171867

0.173175

8

0.100786
0.087981

0.086685
0.086354

0.085010

0.084398
0.083841

0.084360

0.084383
0.084402

0.084570

0.085508

10

0.052822

0.041057
0.039624

0.039693

0.039081

0.038676
0.038345

0.038706

0.038660

0.038724

0.038740

0.039123

Table 1 seems to indicate that in this case, simulating 1 000 000 claims provides
an estimate with a precision of about ±0.001. One way to verify any statement
about convergence is to carry out the simulation a given number of times and then
compute the sample variance of the estimates for each n and u. However, statistical
common sense suggests that it is not necessary to verify the sample variance for
each n. The reason for this lies in the fact that our estimates are, more or less, just
sample means. Thus using one sample of size mn or m samples of size n should
give similar values for the estimated variance of the population. In other words,
estimating F{x) with 1 000 000 claims should provide a value as precise as taking
the sample mean of 100 estimates of F(x) with 10 000 claims. (Since m samples
have equal initial values, a fact which does not hold if we " split" into m one larger
sample, these statements are not exactly true in our case. However, a few tests
should convince the reader that the bias is small and of no practical importance.)
Table 2 gives sample means and standard deviations for estimates of F{x) obtained
from 100 simulations of 10 000 claims as done in Table 1.

TABLE 2

SAMPLE MEANS AND STANDARD DEVIATIONS OF THE FIRST ROW OF TABLE I.

u

mean

std. dev.

0

0.840817

0.006811

2

0.546415

0.015135

4

0.321480

0.016091

6

0.173301
0.012874

8

0.086320
0.009071

10

0.039825

0.006142

Given the estimated values of the standard deviation in the last row of Table 2,
we know approximately how many claims we must simulate in order to get a
desired precision. A 95.44% confidence interval for the exact value of F(x) is given
by

(5.9) [FR(x) - 2sn(x), FH(x) + 2sn{x)\
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where Fn (x) is the estimate of F(x) and sn (x) is the sample standard deviation when
n claims are simulated. The values of sn (x) can be approximated by the values of

Table 2 divided by •yn/lO 000. In the next section, we shall return to the question of
efficiency and usefulness of this method.

One should note that the standard deviation for u = 4 is almost twice the one for
u= 10. Thus the value of u has an effect on the precision of the estimate. This
makes sense since for high enough values of u, the estimate for F(x) tends to zero.
Hence we must expect that the standard deviation should at some point start
decreasing and reach zero for high values of u.

Table 3 and Table 4 give results for a case similar to Table 1 and Table 2, with
the exception that the premium c is now set equal to 1.5. The reader is invited to
compare the estimates when n - 10 000 with the exact value. The estimates are
already about exact to the second decimal place. It is a consequence of the smaller
standard deviations.

TABLE 3

THE PROBABILITY OF RUIN OBTAINED BY SIMULATION WITH
X= I, c= 1.5, 5 = 0.05, P(x) = 1 -e'\ x>0.

n \ u

10 000
100 000
200 000
300 000
400 000
500 000
600 000
700 000
800 000
900 000

I 000 000

exact

0

0.626483
0.621247
0.621558
0.620434
0.620350
0.621022
0.620897
0.620798
0.620505
0.620099
0.619961

0.619915

2

0.267620
0.267299
0.266750
0.265071
0.265389
0.266831
0.266538
0.266677
0.266258
0.265688
0.265640

0.264757

4

0.103953
0.108216
0.108240
0.106970
0.107332
0.108398
0.108153
0.107939
0.107762
0.107292
0.107393

0.106251

6

0.039879
0.041382
0.041695
0.041265
0.041506
0.041920
0.041820
0.041564
0.041427
0.041051
0.041162

0.040303

8

0.013643
0.015142
0.015280
0.015145
0.015226
0.015207
0.015248
0.015010
0.014983
0.014808
0.014886

0.014525

10

0.003166
0.005366
0.005514
0.005478
0.005473
0.005330
0.005372
0.005222
0.005195
0.005146
0.005187

0.004997

TABLE 4

10

mean
std. dev.

0.619790
0.007323

0.264067
0.009806

0.105692
0.007197

0.040024
0.004605

0.014316
0.002652

0.004799
0.001478

Table 5 and Table 6 show results for the case where the jump amount distribution
is gamma with mean equal to 1 and variance equal to 10 (the values of X, c and 6
are the same as in Table 1). This distribution is heavily skewed to the right. It is
interesting to observe that for low values of w, the probability of ruin is smaller than
that of Table 1. It comes as no big surprise that the opposite is true for sufficiently
high values of u. Note that the convergence of the estimates is quite slow, but it
must be kept in mind that this is a " worst case scenario " example since the claims
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distribution is very skewed and no security margin is included in the premium. As
can be seen by comparison of Table 2 and Table 4, a higher security margin pulls
the storage process faster towards level 0, thereby inducing a smaller standard
deviation for the estimates.

TABLE 5

THE PROBABILITY OF RUIN OBTAINED BY SIMULATION WITH

1 = 1 , c = 1, (5 = 0.05, P'(x) =
(O.I)0-1

r(o.i)

n \ u

10 000
100 000
200 000
300 000
400 000
500 000
600 000
700 000
800 000
900 000

1 000 000

0

0.689627
0.694396
0.692600
0.690774
0.690506
0.690252
0.691321
0.691120
0.691508
0.691812
0.692597

2

0.534063
0.543978
0.542045
0.539260
0.539206
0.538565
0.539879
0.539932
0.540416
0.540971
0.541912

4

0.426268
0.438372
0.437333
0.434332
0.434469
0.433786
0.434928
0.434990
0.435668
0.436270
0.437225

6

0.339340
0.352647
0.352160
0.349699
0.350262
0.349681
0.350625
0.350448
0.351265
0.351890
0.352825

8

0.269248
0.283304
0.283047
0.281290
0.282013
0.281509
0.281986
0.281681
0.282542
0.283268
0.284139

10

0.215301
0.227501
0.227270
0.225822
0.226767
0.226364
0.226477
0.226102
0.226926
0.227778
0.228484

TABLE 6

u

mean
std. dev.

0

0.694120
0.013900

2

0.544448
0.017105

4

0.440406
0.017434

6

0.356273
0.017072

8

0.287755
0.016591

10

0.231561
0.015668

Remark

The special case where c = 0 in (5.1), i.e. c (u) = du, is of unexpected interest. In this
case, the process {X(t)\ will never attain the barrier 0, and there is an explicit
expression for its value at time t:

(5.10) X(t) = xe~dt ['e-6u-n
Jo

dS(r).

The stationary distribution is the distribution of the sum of the discounted claims,
that is

(5.11) F(x) =

For this case, the duality has already been noted by GERBER (1971). Finally, we
note that the distribution (5.11) also contains important information about the
probability of ruin in the general case where c > 0 in (5.1). See Example 1.2 in
Chapter 3 of GERBER (1979).
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5.2 Premiums by layers

Now we look at the case where
c0, 0 = H O < M < M , ,
C, ,

(5.12) c(u) =
I

Ck_U Uk_y<U<Uk = ™.
The premiums vary according to the level of the current surplus. When c0, c,, ... is
a decreasing sequence, one reasoning that can justify the structure of (5.12) is the
following. The greater the surplus of a company, the less the risk of ruin. Thus, a
company can take advantage of this situation to lower its premium rates (and thus
be more competitive) when its surplus increases. Another reasoning is to view the
reduction of premium as a form of dividend payment, where the dividend rate
increases along with the surplus. Increasing patterns of c(u) have already been
explained in section 5.1.

Consider the process {X(t)} with the premium function given by (5.12). Let Yn

and Tn be simulated as in section 5.1 and Xn be the value of the process
immediately after jump Yn. A bit of notation must be introduced to show how to
apply the method of section 4.

We will say that a value x is at level / if Uj<x^ui+\. Let
• b{x) be the level of a value x, i.e., b(x) = i if Uj<x^ui+l,
• tt (x) be the time needed, starting from x, to get to the bottom of level i ̂  b (x),

i.e.
x~ ub(x)

(5.13) ti(x) =

Hi = b{x),

Cb(x)

x~ub(x) ub{x)~ub{x)-\ u i + \ ~ u i - f • < - / , / • • »
cb (x) cb (x) - I ci

e(x, t) be, for a path starting at x, the level of the process at time t (assuming no
jumps occurred), i.e.

(5.14) . w . , , m a x | j . G {Qj j ^ fo(x)j .(_tj(x) < 0 } j f f < / 0 ( x ) .

Thus we have

max(0, Yn) if Tn
(5.15) Xn - , /n ^ ^ N T̂  x ___

where e in (5.15) is given by e(Xn_|, Tn) . Before the (n+l)st jump, the path is
below level x for an amount of time

Dn(x) + \Tn + l - \tHx){Xn) ^ , Xn > x,

and with (4.2), the probability of ruin can be retrieved.
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An illustration is given in Table 7. For the simulation, the Poisson parameter was
equal to 1 and the claims were distributed according to a translated gamma
distribution (claims > - l ) with mean equal to 1 and variance equal to 2. The
premiums and layers are as follows:

(5.17) c(x) =

1.7,
1.6,
1.5,
1.4,
1.3,
1.2,

0<x<2,

x>\0.

TABLE 7

T H E PROBABILITY OF RUIN OBTAINED BY SIMULATION WITH

A= 1, P'(x) = (x+ 1 )<T U + " , X>-\ AND c(-) GIVEN BY (5.17).

n \ u

10 000
100 000
200 000
300 000
400 000
500 000
600 000
700 000
800 000
900 000

1 000 000

0

0.754924
0.75978
0.760895
0.763933
0.764685
0.764652
0.76482
0.764248
0.763817
0.763825
0.762866

2

0.483182
0.497156
0.498213
0.502501
0.503882
0.504126
0.503911
0.503313
0.50263
0.50262
0.501131

4

0.293354
0.303036
0.303498
0.306681
0.307947
0.308297
0.307887
0.307358
0.306994
0.307235
0.305775

6

0.168664
0.17568
0.175486
0.177508
0.178021
0.178533
0.178048
0.177684
0.177603
0.178197
0.17693

8

0.095282
0.098522
0.097763
0.098657
0.098809
0.099493
0.099054
0.098852
0.098887
0.099494
0.098507

10

0.051425
0.054574
0.053552
0.053784
0.053752
0.054241
0.053717
0.05353
0.053637
0.054179
0.053432

TABLE

10

mean
std. dev.

0.762935
0.009878

0.502425
0.014930

0.308143
0.015546

0.178967
0.013561

0.099972 0.054582
0.010778 0.008359

6. DISCUSSION OF THE METHOD

A question has been left unanswered: do other methods exist to obtain the
probability of ruin, and if so, are they more efficient (in the sense of speed of
convergence) ? The answer can be yes or no. Obviously, for cases where an explicit
solution is available, the question is not worth asking. When no explicit formula is
available, another method is to solve the appropriate integral equation numerically.
A few tests show that it is a much faster technique. However, numerical evaluation
cannot provide an answer when claim amounts can be negative. In fact, no other
method seems to be able to deal with possible negative claim amounts. In that sense
simulation is the most general solution.
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The author wishes to point out that, in practice, an actuary does not need an
estimate precise to many digits. What he wants is a reliable idea of this value. So in
light of the examples given in section 5, simulating 10 000 claims can be sufficient.
Moreover, he will not need to know the values of ip (•) for many w's since he will be
needing an answer for a given surplus. With that in mind, the question of efficiency
is not a crucial matter for the practitioner because the required time for such
simulations is a matter of seconds, even for random variables which are time
consuming to simulate (on a Pentium-90 PC with the APL programming language).
Since simulation algorithms are nowadays readily available, the method suggested
here is easy to implement. However, for extensive studies of \p (•) when positive
claims are sufficient, numerical evaluation is much faster. See PETERSON (1989) for
an example of such methods.
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