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DISTANCE TO THE INTERSECTION OF TWO SETS

ANTONIO MARTINON

We give sufficient conditions so that the distance of a point to the intersection of
two sets agrees with the maximum of the distances to each of them. The results are
established in several settings: complete metric spaces, Banach spaces and spaces of
subsets of Banach spaces.

1. INTRODUCTION

Let E be a metric space and d its distance. Given a point z in E and a nonempty
subset R of E, the distance of z to R is d(z, R) := inf {d(z,u) : u £ R}. If R ^ 0 and
S 7̂  0 are subsets of E and z € E, then

RC S =>d{z,R) ^ d{z,S).

From this, we obtain, for 0 ̂  R, S C E and z € E,

d{z,Rr\S)^ max {d(z,R),d(z,S)} .

It is very easy to find examples for the strict inequality. Take E = R2 , the real
space of two dimensions, endowed with the Euclidean distance, R = {(a,/3) : (3 > 0},
S = {(a,P) :a > 0} and z = (-3,-4); then d(z,RnS) = 5 and max \d(z,R),d(z,S)}

= 4. In this paper we are interested in finding sufficient conditions for the validity of the
equality

(1) d{z,RHS)= max {d{z,R),d(z,S)} .

Taking into account that the inequality "^" is always correct, we look for conditions
which assure the other inequality

d(z,Rr\S)^ max {d(z,R),d(z,S)} .

The following theorem refers to Banach spaces and it is the prototype of the theorems
which we obtain in this paper. We give several proofs of it in the next sections, since it
is obtained as corollary of other theorems.
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330 A. Martinon [2]

THEOREM 1 . Let X be a Banach space. IfR and S are nonempty closed subsets

of X such that Ru S is a convex set, then Rn 5 ^ 0 and

d(z, RnS) = max{d(z, R), d{z, S)},

for every z 6 X.

The essential hypothesis in the above theorem is that R U 5 is a convex subset of
the Banach space. We want to obtain similar results to Theorem 1 in other settings. For
this purpose we need to work with other notions of convexity.

First we consider a complete metric space E. The notions of metric segment and
metrically convex subset turn out to be very useful. We show that if the union of the
subsets R and 5 of E is metrically convex and the point z has a special position with
respect to R and 5, then the equality (1) is correct (Theorem 2). Theorem 1 is obtained
by applying Theorem 2, and the proof is based on the fact that segments of a Banach
space are metric segments, and convex subsets are metrically convex subsets.

We also study two spaces of subsets of a Banach space X: the space bc(X) of all the
nonempty bounded and closed subsets of X, endowed with the Hausdorff metric, and its
subspace bcx(X) of all the nonempty bounded closed and convex subsets of X. In this
setting we work with the concept pseudo natural segment and with the related notion
pseudo naturally convex subset.

In the space bcx(X) we obtain the following result: if for the subsets R and S

the union R U 5 is pseudo naturally convex, then the equality (1) holds (Theorem 3).
The proof is an application of Theorem 2 since pseudo natural segments in bc(X) are
metrically convex; moreover, Theorem 1 can to be deduced from it.

In bc(X) also we achieve a similar result under the assumption that RuS is pseudo
naturally convex. Now it is necessary to demand some additional condition because
pseudo natural segments in bc(X) need not be metrically convex: either (1) the point z
is a convex subset of X (Theorem 4); or (2) the intersection R D S is a family of subsets
which is closed under inclusion (Theorem 5). Theorem 1 also is deduced from Theorems
4 and 5: segments of a Banach space X are pseudo natural segments in bc(X). Also
Theorem 3 can to be obtained from Theorem 4.

Note that the logic order between the above theorems is the following: 2 => 3 => 1,
4 => 3 => 1 and 5 =>• 1.

Other authors have studied the distance of a point to the intersection of a family
of subsets. Thus using the distance of a point to two convex sets, Hoffmann [6] obtains
an upper estimation of the distance of that point to the intersection of these two sets;
his viewpoint is different from ours. On the other hand, Martinez-Legaz, Rubinov and
Singer [8, 11, 12, 13] have proved in several papers the validity of the equality

(2) d(z,f]Gi) = supd(z,Gi),
iei ieI
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where (Gj)i6/ is a certain family contained in some classes of subsets of R n , endowed
with the ^oo-norm:

| |(x1,x2, . . . ,xn) | | o o:=imaxji t | .

In Rn the natural order is considered:

( i l l i 2 , . . . , i n ) ^ ( 2 / 1 , 2 / 2 , • • • , £ / « ) <?=>Xi ^ 2/i(0 ^ i ^ n).

A subset G of R n + : = { i e R " : 0 ^ i } is said to be normal iIQ^x^y€G=>x€G
[12, 13]; then the equality (2) holds if all the G{ are closed normal subsets of R n + [13,
Theorem 3.1]. Analogously, a subset G of R n is called downward i f i ^ y 6 G ^ - i £ G
[8, Definition 1]; the equality (2) has been proved in [8, Theorem 5.1] under the hypothesis
that all the subsets Gt are closed and downward, putting d(z, 0) = 00. The notions of
convex and downward subset of R n , and normal subset of R n

+ are related with the set
of solutions of an inequality f(x) ^ 0 for / a convex or increasing real function on R n , or
an increasing real function on R n + , respectively. For more details see [8, 11 , 12, 13]. In
the setting of normed spaces a family (C?i)ie/ is said to be linearly regular if there exists
a constant C > 0 such that •

d(z,f|Gi) <C sapd(z,Gi),

for every point z. It is clear that if this inequality holds for C = 1 we obtain the equality

(2).

2. IN METRIC SPACES AND IN BANACH SPACES

Throughout this section E denotes a metric space and d its distance. Now we
consider a notion of metric convexity due to K. Menger, who first introduced it in its
celebrated paper [10].

DEFINITION 1: The metric space E is said to be metrically convex if for any points
u,v € E, with u / t , there exists w € E, u ^ w ^ v, that satisfies

d(u, w) + d(w, v) = d(u, v);

it is said that w lies metrically between u and v.

Of course, the above definition is adequate for nonempty subsets of E (they are also
metric spaces).

DEFINITION 2: The subset T of the metric space E is called a metric segment with
endpoints u, v £ E if there exists an isometry <p : [0, d{u, v)] —> E such that <p(0) = u,
ip(d(u, v)) = v and y( [0, d(u, v)] I — T.
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Note that each metric segment is connected and compact. If E is complete, then
we obtain the following well known Menger's theorem, which tell us that E is metrically
convex if and only if given two points u and v in E there exists a metric segment with
endpoints u and v.

LEMMA 1 . (Menger's Theorem.) If the metric space E is metrically convex and

complete, then, given two points u,v € E, there exists a metric segment with endpoints

u and v.

P R O O F : [3, Theorem 14.1], [4, Theorem 6.2] or [5, p. 24]. D

From the above theorem we obtain that if a complete metric space is metrically
convex, then it is connected: each segment is connected and the whole space is the union
of segments with a endpoint in a fixed point. On the other hand, note that every metric
segment in a complete metric space is a metrically convex subset.

Now we introduce a notion which is very useful in the next theorem.

DEFINITION 3: Let T = tp([0,d{u,v)]J be the metric segment defined by the
isometry </? with endpoints u and v in E. Given z & E we say that z is a point with quasi
convex distance to T if the function f(z,T) defined by

A 6 [0,d(u,t;)] —>f{z,T){X) = d(z,<p(\)).

is quasi convex; that is,

d(z,tp(X)) ^ max.{d(z,u),d{z,v)},

for any A G [0, d(u, v)].

In the following theorem we give sufficient conditions for that the distance to the
intersection Rn S agrees with the maximum of the distances to R and 5.

THEOREM 2 . Let E be a complete metric space. IfR and S are nonempty closed
subsets of E such that R U S is a metrically convex set, then R D S ^ 0 and

d(z, RnS) = max{d(z, R), d{z, 5 ) } ,

for any z € E satisfying the following property: given u € R and v € S, there exists
a metric segment T C R U 5 with endpoints u and v such that z is a point with quasi
convex distance to T.

P R O O F : Let z € E satisfy the property of the statement. Given e > 0 there exist
u € R and v € 5 such that

d{z, u) < d(z, R)+e and d(z, v) < d(z, S) + e .

Assume u ^ v. There exists a metric segment T = y?( [0, d(u, v)] J c i J u S with
endpoints u and v such that z is a point with quasi convex distance to T. We have that
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T is connected compact and, moreover, T C\R and T n 5 are non empty closed subsets
of T, hence there is w e T n R n 5. Then we obtain

d(z, i? n 5) ^ d(z, w) ^ max {d(z,u),d{z,v)} < max {d(z,R),d(z,S)} + e .

These inequalities are obvious if u = v, since we may to take w = u = v. Because of the
arbitrariness of z we obtain the announced result. D

Now we can deduce Theorem 1 from Theorem 2. Let is recall some definitions: given
two vectors x, y in a linear space, the segment

is defined; a subset C is convex if holds the implication x,y €. C => [x,y] C C. Note that

every segment is a convex subset.

P R O O F 1 OF THEOREM 1: It is sufficient note some facts. As it is customary,

the norm in the Banach space X is denoted by ||.||, hence the distance is given by

d(u,u) = | |«-T;| | .

(1) Given two points u,v in the Banach space X, u ^ v, the function y :

[0, ||u - v\\] ->• X defined by <p{\) = (1 - A > + \'v, where A' = A/||u - u||

£ [0,1], defines the segment [u, v] — ip( [0, ||« - u||] J with endpoints u and

v.

(2) Every segment [u, v] of the Banach space X is metrically convex. Indeed,
with the notation of (1),

||u - <PW\\ + \\<fW - v\\ = (1 - A')||« - «|| + A'||u - w|| = ||u - u||.

Consequently, every convex subset of X is a metrically convex subset.

(3) Every z G X is a point with quasi convex distance to every usual segment
[u,v]. Indeed, with the same notation of (1):

||* - <p(\)\\ $ (1 - A')||z - u\\ + \'\\z - v\\ < max{| | 2 - u||, \\z - v\\).

(4) Let R and S be nonempty closed subsets of the Banach space X such that
RL)S is convex. By (2) RuS is metrically convex and because of (3) every
z € X is a. point with quasi convex distance to every segment [u, v] with
u € R and v € 5 . From Theorem 2 we obtain

d(z,RnS) = max {d(z,R),d(z,S)} . D

In part (2) of the above proof it is showed that

C c X i s convex => C C X is metrically convex,
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where X is a Banach space. In general, the converse implication is not true. Indeed, we
take X = R 2 with the ^-norm ||(a,/8)|| := \a\ + |/3|; the set

C := {(0,/3) : 0 ̂  0 < 1} U {(a,0) : 0 ̂  a ^ l}

is metrically convex, but it is not a convex subset. This example holds because the space
X is not a strictly convex Banach space. Let us recall the definition now.

DEFINITION 4: A Banach space X is strictly convex (or rotund) if given x,y
6 X , I / J I , ||x|| = \\y\\ = 1, then ||ax + (1 - a)y\\ < 1 for every 0 < a < 1.

The reader interested can to find the main properties and examples of strictly convex

spaces in [9].

PROPOSITION 1 . Let X be a strictly convex Banach space. The subset C of X
is metrically convex if and only if C is convex.

P R O O F : Assume tha t C is metrically convex. Let x,y € X, x ^ y, and let w € X

lie metrically between x and y:

H z - i u | | + I I ™ - 3 / 1 1 = l l ^ - l / l l -

Let u = T(X — w), for 0 ^ T ^ 1, and v = cr(y — w), for 0 ^ a ^ 1. It is clear that u and
v lie in the usual sense between x — w and 0, and w — y and 0, respectively. Moreover
we choose r and a such that ||u|| = \\v\\. Then

II* - y l K | | ( a : - w - u)\\ + \\u - v\\ + \\v ~ ( y - w)\\
^ | | ( i - t o ) - u | | + | | u | | + \\v\\ + \\v - ( y - w)\\

= \\x - w\\ + \\w - y\\ = \\x - y \ \ ,

hence
| |«- t ; | | = IMI + IMI=2||u||.

Since X is strictly convex, from

we obtain u — -v, that is r(x—w) = a(w-y), hence w = TJX+(\— rj)y, with r) = T/(T+G).

Consequently w lies in the usual sense between x and y, hence C is convex. The other
implication has been showed previously. D

3. IN SPACES OF SUBSETS OF A BANACH SPACE

Throughout this section X denotes a Banach space, ||.|| its norm and d the distance

associated. Denote by Bx the closed unit ball of X\ that is, Bx — {x E X : \\x\\ ^ l } .
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Now the space E is the complete metric space bc(X) of all the nonempty bounded

and closed subsets of X, endowed with the Hausdorff metric h, or its subspace bcx(X) of

all the nonempty bounded closed and convex subsets of X.

Given two nonempty bounded subsets U and V of X, the nonsymmetric Hausdorff

distance is given by

h'(U, V) := inf{e > 0 : U C V + sBx}.

The Hausdorff distance between U and V is defined by

h{U,V):=max{ti(U,V),h'{V,U)},

which is a pseudometric on the class of all the nonempty bounded subsets of X. Note
that h(U, V) = 0 if and only if U — V (the overline denotes closure). Then h is a metric
on bc(X) and, moreover, bc(X) and bcx(X) are complete metric spaces. As it is common,
for U c bc{X) and Z £ bc{X), we put

h'{Z,TZ) := inS{ti{Z,U) :U Gil},

h{Z,U) := mi{h(Z,U) : U £ Tl}.

Our goal is to find sufficient conditions for the equality (1) in this setting:

h(Z,TlnS) =max {h{Z,Tl),h(Z,S)},

where Z £ bc(X) and 0 ̂  TZ, S C bc(X), or Z £ bcx(X) and 0 ̂  11, S C bcx{X). In the
following we need some properties of the Hausdorff distance which we collect in the next
lemma.

LEMMA 2 . Let T, U, V, W be nonempty bounded subsets of the Banach space X

and a, /? scalars. We put

| |C/ | |=sup{| |a : | | : * € £ / } .

Then the following properties hold:

1. h{aU,0U)^\a-P\\\U\\

2. h(T + U, V + W) ^ h(T, V) + h{U, W)

PROOF:

(1) It is proven that

aUcpU+\a-p\\\U\\Bx.

Given x £ U, x ^ 0, we have

ax = Px + {a - /3)||i|||p-ji 6 PU + \a - P\ \\U\\ Bx.

If x = 0, then it is obvious.
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(2) In [7, 1.2] the statement is refered to compact subsets, but the proof is
valid for our case. D

As bc(X) and bcx(X) are metric spaces the notion of metrically convex is defined
and it is possible to apply Theorem 2.

Now introduce other notions of convexity which allow us to obtain new results about
the validity of the equality (1).

DEFINITION 5: We define

1. Let 0 ̂  U, V C X. The natural segment with endpoints U and V is

[U, V] := {XU + (1 - X)V : 0 ̂  A < l } .

2. Let T a family of nonempty subsets of X. It says that T is naturally
convex if, for every U,V e T, the natural segment [U, V] is contained in

r.
The notions of natural segment and naturally convex set are introduced in [7, p. 237,

p. 240], but these concepts are not the most adequate for our purpose in the spaces bc{X)
and bcx(X). Indeed, if U and V are bounded, then

W{X):=XU+(l-X)V

is also bounded; if U and V are convex, then W(X) is convex; but it is possible that U
and V are closed and W(A) is not, because the sum of two closed subsets of a Banach
space need not be closed.

However, in the case U, V convex subsets, we have that the natural segment [U, V]

is a naturally convex subset, because

aW(X) + (1 - a)W{n) = W(aX + (1 - a)/x).

In order to define a useful notion of convexity in bc(X) the above remarks lead us to
consider the following concept of pseudo natural segment and pseudo naturally convex
subset.

DEFINITION 6: We define

1. Let % ^ U,V C X. The pseudo natural segment with endpoints U and V

is

[[[/, V}] := {XU + {l-X)V : 0 ̂  A ̂  1}.

2. Let T a family of nonempty subsets ol X. It is said that T is pseudo
naturally convex if, for every U, V £ T, the pseudo natural segment [[[/, V}]

is contained in T.

Note that if U (or V) is finite and V (or U) is closed, then [U, V] and [[[/, V}}

coincide. Moreover, if T C bc(X) is naturally convex, then it is pseudo naturally convex.

First we consider the space bcx(X) and give some properties.
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PROPOSITION 2. Let U, V e bcx(X).

1. [[U,V]] Cbcx(X)

2. [[[/, V]] is a metric segment

3. [[£/, V]] is a pseudo naturally convex subset

PROOF: We put W(X) := XU + (1 - X)V (0 ^ A < 1).

(1) Note that W(X) is bounded convex and its closure W(X) is bounded closed
convex. Hence [[(/, F]] is a subset of bcx(X).

(2) In [2, Theorem 3.1] it is proved that

h(U, W(X)) = (1 - A)/i(I/, V) and /i(W(A), V) = Xh{U, V).

Moreover, h(U,W(X)) = h(U,W(X)) = (1 - X)h(U,V), hence [[U,V\] is a

metric segment.

(3) Let W(X),W(jJ) € [[U,V]] (0 < A,/i ^ 1). We need to prove that, for

(3) ^

for certain rj € [0,1]. We have already showed that

aW(X) + (1 -

where T? := aX + (1 — a)/x. Then

W{ri) C QW(A) + (1 - a)W(fi) C aW(X) + (1 - a

and we obtain "^" in the equality (3). On the other hand,

(1 - a)W(n) C aW(X) + (1 -

hence "<" in (3). D

THEOREM 3 . Let X be a Banach space. IfR, and S are nonempty closed subsets
ofbcx(X) such that TZ U S is pseudo naturally convex set, then 7 i n 5 ^ 0 and, for any
Z e bcx{X),

h{Z, TlnS) = max{h(Z, 11), h(Z, 5)} .

PROOF: Let U e 71 and V e 5. Now we show that every Z € bcx(X) is a point
with quasi convex distance to the metric segment [[[/, V]]. Let W(X) := XU + (1 - A)V
(0 ^ A s$ 1). As Z is convex we can to write Z = XZ + (1 - X)Z. Then

J»(Z, V7(A)) - h{Z, W{X)) = h{XZ + (1 - A)Z, At/ + (1 - A)V)

Because of Lemma 2

: Xh{Z, [/) + ( ! - A)/i(Z, 1̂ ) ^ max{/i(Z, [/), /i(Z, V)}.
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From Proposition 2(2), 1ZUS is metrically convex. Now we apply Theorem 2 and the
proof is finished. D

The space bc(X) has worse convexity properties than bcx(X). Note that it is possible
that U,V e bc{X), [U,V] = [[U,V]] C bc{X) and [U,V] is not a naturally convex
family. Indeed, take X = R2 endowed with the Euclidean norm, U = {(0, -1 ) , (0,1)},
V = {(1,0)} and W{X) = XU + (1 - X)V; then [W(l/3),W{2/3)] is not contained in
[U, V]. Moreover, in general, natural segments and pseudo natural segments in bc(X) are
not metrically convex, as is showed in the next example.

EXAMPLE 1. A natural segment which is not metrically convex. Let X = R2 with the
Euclidean norm. Let C := {ci,c2} and D := {di,d2}, where cx — (-4,0), c2 = (0,3),
di = (4,0) and d2 = (0, - 3 ) . For 0 < A < 1 we put T(A) := XC + (1 - A)£>. Then the
natural segment

T - {T{X) : 0 < A^ 1}

is not metrically convex, as it is proved in the sequel. It is clear that

h(C, D) = h'(C, D) = ti{D, C) = 5.

It is easy (but some tedious!) to prove that h'(D,T(X)) = 5A and that

8A if 0 < A ̂  25/64

(64A2 - 64A + 25)1/2 if 25/64 ^ A ̂  1/2
6A if 1/2 ^ A ̂  25/36

(36A2 - 36A + 25)1/2 if 25/36 sC A ̂  1

Using symmetry it is easy to calculate the distance between C and T(A); indeed,

= h'(T(X),C)=h'

hence h'(C,T{X)) = 5(1 - A) and

' (36A2 - 36A + 25)1'2 if 0 ^ A ̂  11/36

6-6A if 11/36 < A < 1/2
(64A2-64A + 25)1/2 if 1/2 ^ A sC 39/64

8 - 8A if 39/64 ^ A s$ 1

The function (/(A) = h(T(X),D) is strictly increasing, g(0) = 0 and g(l) — 5; on the

other hand, the function k(X) = h(C, T(A)) is strictly decreasing, k(0) = 5 and k(l) = 0.

Consequently, there is a unique A such that

/i(C,T(A)) = *(A) = g(X) = h(T(X), D).
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The value A = 1/2 satisfies

hence
h(C, D) ? h(C,T(l/2)) + /i(T(l/2),D)

and, consequently, T is not a metric segment. Indeed, if T is metrically convex, then
there would be an isometry tp : [0,5] —• T such that ip(0) = C and ip(5) = D, hence
<p(3) = T(l/2) and h(tp(Z),ip{5)) = |3 - 5| = 2, which contradicts h(T(l/2),D) = 3.

In order to prove the theorems about the equality (1) in bc(X) we need a previous
result.

PROPOSITION 3 . Given U,V £ bc(X), the pseudo natural segment [[[/, V]] is
connected and compact.

PROOF: Consider the map <p : [0,1] —> bc(X) defined by <p{\) := XU + (1 - \)V.
From Lemma 2 we obtain, for A, /z £ [0,1],

h(<p(\), V(M)) ^ MAC/, fiU) + M(l - A)V, (1 - lAV) ^ |A - M

Hence y> is (uniformly) continuous and <p([0,1]) = [[[/, V]] is connected and compact. D

THEOREM 4 . Let X be a Banach space. IfR and S are nonempty closed subsets
ofbc(X) such that TZuS is a pseudo naturally convex set, then TlnS ^ 0 and

h(Z,TlnS) = ma,x{h(Z,n),h{Z,S)},

for any convex set Z € bc(X).

PROOF: Let Z s bc(X) be a convex subset of X. Let e > 0 satisfy

max

Then there exist U € 71 and V £ S such that h{Z, U) < e and /i(Z, V) < e. The pseudo
natural segment [[(/, V]] is connected compact and is contained in 72. U 5. Moreover,
[[U, V]] n U and [[£/, V]] n 5 are nonempty closed subsets of [[£/, V]], hence there is
We [[U,V}]r\1ZnS. Note that W £ Tin S is the closure of fiU +(l-fi)V for a certain
fi € [0,1]. Since Z is convex we can argue as in the proof of Theorem 3 and we conclude
h{Z, W) < e. U

The proof of Theorem 3 that we have given has been obtained as a consequence of
Theorem 2. Also we can to deduce Theorem 3 from Theorem 4 as a particular case.

Now we can to deduce Theorem 1 from Theorem 4 because the conditions "convex
in X" and "naturally convex in bc(X)" are related.

PROOF 2 OF THEOREM 1: We can to consider the Banach space X as a subspace
of bcx(X) because the map i : X —> bc(X), i{x) :— {x}, is an isometry. Then we
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identify R C X with i(R) C bc(X). Moreover, R C X is convex if and only if i(R) is
naturally convex; {x} is also a convex subset of X. Then Theorem 1 is a particular case
of Theorem 4. D

Note that Theorem 1 can to be deduced from Theorem 3 in an analogous way to the
above Proof 2.

In the following theorem we use the condition "1Z 0 S is closed under inclusions"
instead the condition "Z is convex" of Theorem 4.

DEFINITION 7: A family T of nonempty sets is said to be closed under inclusions
if

Q)^U cVeF^U €T.

The following result is necessary in the proof of the next theorem.

LEMMA 3 . Let T C bc(X) be a family which is closed under inclusions. For any
Z € bc(X) the following equality holds:

h(Z,T) = h'(Z,T),

whenever h' is the nonsymmetric Hausdorff distance.

PROOF: [1, Theorem 1]. D

THEOREM 5 . Let X be a Banach space. If TZ and S are nonempty closed subsets
of bc(X) such that 11 U S is a pseudo naturally convex set, then 1Z n S ^ 0 and, if
moreover TZC\S is closed under inclusions, we have that

h(Z,nr\S)= max {h(Z,H),h(Z,S)}

for every Z £ bc(X).

PROOF: Let Z 6 bc(X) and e, U, V, W as in the proof of Theorem 4. Then

Z cU + eBx md Z CV + eBx,

hence
Z C XZ + (I - X)Z C XU + (I - X)V + eBx C W + sBx,

so h'(Z, W) < e. From Lemma 3 we obtain

h{Z,TZnS) = h'(Z,Tln5) ^ ti(Z,W)^e

and the proof is finished. D
PROOF 3 OF THEOREM 1. It is similar to Proof 2, but now taking into account

that i(T) is a family which is closed under inclusions, for every T C X. D
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