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COHOMOLOGY OF QUANTUM GROUPS: 
THE QUANTUM DIMENSION 

BRIAN PARSHALL AND JIAN-PAN WANG 

ABSTRACT. This paper uses the notion of the quantum dimension to obtain new 
results on the cohomology and representation theory of quantum groups at a root of 
unity. In particular, we consider the elementary theory of support varieties for quantum 
groups. 

Let G be a finite group and k a field of characteristic p > 0. A trivial fact in rep­
resentation theory states that if V is a finite dimensional fcG-module whose dimension 
is not divisible by /?, then the trivial module k occurs as a direct summand of V (g) V*. 
One can ask for a similar result for representations of quantum groups Gq (or quantum 
enveloping algebras U ^ Q ) ) . Here, the field k generally has characteristic zero, and the 
"quantum world" is complicated by several non-commutative phenomena: for example, 
the canonical isomorphisms U ® V = V ® U and V** = V of vector spaces are usually 
not module morphisms. Nevertheless, one may formulate a satisfactory analogue of the 
above finite group-theoretic result by making use of the quantum dimension of a module. 
In this paper, we study this concept in some detail, and then apply it to obtain some new 
results centering on the cohomology of quantum groups. 

We begin in Section 1 with the preliminary notion of the generic dimension of cer­
tain kinds of graded modules. The quantum dimension and several of its properties are 
developed in Section 2. For example, suppose q is a root of unity and Gq —> G is the nat­
ural Frobenius (or "covering") map onto the associated semisimple algebraic group G. 
Then for a G^-module V, the quantum dimension dirn^ V agrees with the usual dimension 
dim V if and only if the action of Gq on V factors through G. 

In Section 3, we relate the quantum dimension to the original question of splitting the 
trivial module k off from V (g) V* in Theorem 3.3. Several interesting applications are 
also presented here; see, in particular, Corollary 3.6 concerning Weyl modules. 

We adapt the notion of quantum dimension to module categories for Levi subgroups 
in Section 4. Section 5 then turns to cohomological questions involving quantum groups. 
Using the notion of quantum dimension, together with recent work of Ginzburg-Kumar 
[ 10] on the calculation of the cohomology ring for the finite quantum groups, we indicate 
how to "quantize" some of the theory of support varieties. (See [7], [8], [14], [15] and 
[16] for this theory in the context of algebraic groups.) We have only indicated a few 
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results in this direction, namely, those which seem most closely to illustrate the use of 
the quantum dimension. We expect to return to this topic in more detail in a sequel. 

We wish to thank the referee for several helpful comments, allowing us to improve and 
shorten our treatment. In particular, he/she pointed out to us the existence of Andersen's 
paper [1] which also discusses the notion of the quantum dimension (and the related 
quantum trace) in his work on tilting modules. 

All X-graded vector spaces considered in § 1 and all modules for quantum groups or 
quantum enveloping algebras considered in §§2-5 are assumed to be finite dimensional 
over the ground field k. 

List of Notation 

k A field, whose characteristic is arbitrary in §1, and 0 in other sections. 
<D Irreducible root system (finite, crystallographic) in a Euclidean space E having 

inner product (, ). Usually, E is the span of O. However, if O has type An_i, 
the following exceptional case is also allowed: E has a basis e\,e2,...,en with 
Q={ei-ej\i^j}. 

0 + , n Fixed set of positive roots and simple roots, respectively. 
h, p The Coxeter number and the Weyl weight \ Eaeo+ oc of O, respectively. 
a v 2a J (a, a), the dual root of a G O. 

W, Q Weyl group of O and the Z-span of O, respectively. 
X Integral weight lattice of O (in the exceptional case above, X is the Z-span of 

e/'s). 
X+ {A G X | (A, av) > 0, Va G n } , the set of dominant integral weights. 

/ An odd integer > 1. (If O has component of type G2, / is assumed to be prime to 
3.) 

Q {A G E | 0 < (A + p, a v ) < /, Va G 0 + } , the bottom /-alcove. 
% Group of translations ti\\ E —>• E, x \—> x + IX for A G Q. 

W[ W tx % the affine Weyl group of O with parameter /. For w G W/ and x G E, write 
w • x = w(x + p) — p. 

£ The Coxeter length function on W/ relative to <Ë>+. 
X(A) V r_n «') M,) e ZX, the Weyl character for A G X. 

1. Generic dimensions. In this section, we assume, for convenience, that the root 
system O is indecomposable. However, our definitions and results can be extended to 
the general case without any difficulties; everything works out componentwise. 

Denote by ao the highest short root of O, and define, for any root a G O, an inte­
ger da = (a,a)/(ao,ao). Note that da G {1,2,3} and the matrix ( ^ ( a , / ^ ) ) is 
symmetric. Therefore, the da's (for a G II) are exactly the d/'s in the definition of the 
quantum enveloping algebra1 associated with O, see [3], [20]. 

One should follow [20] here rather than [3]; otherwise the classical limit of the quantum enveloping algebra 

would not be the enveloping algebra of the Lie algebra with root system O. 
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Suppose for a moment that rankX = rank O. Any À G Xcan be expressed as a rational 
linear combination of simple roots: A = E^en raa. The weighted height wht(A) of A is 
defined to be E«en rada. If rank X > rankO, the weighted height of A G X is defined to 
be the weighted height of the orthogonal projection of A in RO. 

LEMMA 1.1. For any A G X, wht(A) = 2(A, p)/(a0 ,a0) = \ E«GO+ da(\, av). In 
particular, wht(A) is a half integer. 

PROOF. F o r a G n , we have 2(a, p)/(ao, oto) — (p, av)(a, a)/(ao, ao) = t/a, 
so wht(A) = 2(A,p)/(a0, ao) for any A G X. Also, 2(A, p)/(a0 , a0) = 
£aep+ (A, a)/(a0, a0) = \ Ea^

+ da{\ av) . • 

Let V be an X-graded vector space; that is, there is a family of subspaces { V\ } indexed 
by X such that V = ®\ex V\. In this general setting, the formal character of V is the 
element ch(V) in the group ring ZX defined by ch(V) = EAex(dim V\)ex. 

DEFINITION 1.2. The generic dimension of an X-graded vector space V = ©AGX K\ 
is the element 

dimgen V= £(dimVA)r2 w h t ( A ) G Zfc r 1 ] , 
AGX 

r being an indeterminate. 
Clearly, dimgen is a ring homomorphism from the Grothendieck ring of the category 

of X-graded vectors spaces to Z[t,t~1]. We also have the following result. 

THEOREM 1.3. Let V be an X-graded vector space with ch(V) = \{\) for some 
A G X+. Then 

t-da(X+p,av) _ jda(A+p,av) 

( 1 . 3 . 1 ) dim e en V — W j - rr — rr—. 

PROOF. For any p G E, consider the subring R^ of ZX generated by all elements of 
the form e^ with 4(£, /i)/(a0, a0) G Z. Clearly, the map é> H^ f-4(É./*)/(ao,<*o) extends to a 
ring homomorphism i/^:/^ —+ Z[f,f-1]. Thanks to Lemma 1.1, dimgen V = ^ch(V). 

Let D(p) = EWGW(-1)£(W)^W(AI). It is well-known that D(p) = ^ I1«GC^(1 - e~a). 
Thus, 

,0 f /X/i)) — y /_|^(w)^-4(w(^),p)/(a0,o'o) _ y ^ /_j\^(vf)^-4(w(p),/i)/(ao,ao) 

= ^(D(p)) = r4^'0/^0'0^ n 0 - r4(0,'^/(a°'ao)) 

_ TT /^-2(a,/i)/(ûr0,ao) _ p.(a,fi)/(a0,a0)\ _ TT ^-da(p,aw) _ ^da(^i,a^)\ 

aGO+ aGO+ 

Since ch(V) = D(X + p)jD{p), the result follows from the above calculation. • 

Define the generic degree of an element A G X by deggen(A) = ^p{x(X)). The argu­
ment in the above proof is valid also for non-dominant A. Thus, deggen(A) can be calcu­
lated by using the right-hand side of the formula (1.3.1). Since x(w • A) = (—l)^(vv)x(A) 
for w G W and A G X, the following result is immediate: 
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LEMMA 1.4. For anyweW and A G X, deggen(w • A) = (-l)£ ( w ) deggen(A). 

Given a ring R and a ring homomorphism (p: Z[t, t~l] —> R, we obtain a specialization 
dim^ V = (̂ (dinigen V) of dimgen V for an X-graded vector space V. Also, for A G X, we 
have the specialization deg^(A) = (/?(deggen(A)) of the generic degree deggen(A). (Note 
that deg ,̂ (A) always makes sense, even if the denominator of the right-hand side of ( 1.3.1 ) 
is zero; in fact, deggen(A) is a polynomial in t and t~l.) 

EXAMPLE 1.5. The ordinary dimension dim V of an X-graded vector space V is the 
specialization of dimgen V under the ring homomorphism Z[tJ~l]—>Z given by t\—-> 1. 
In particular, the (ordinary) Weyl dimension formula follows from Theorem 1.3 by letting 
t —* 1. (Recall that lim^i Ç^- = n.)2 

EXAMPLE 1.6. A very elementary example of specialization of the generic dimen­
sion occurs when char k = p > 0. Then the ring homomorphism Z[t, rl] —> k given by 
l z h—> I* and f i—> I*; specializes the generic dimension of an X-graded vector space V to 
its modular dimension dim77 V, the image of dim V under the ring homomorphism Z —> & 
given by lz '—• 1*. It can be defined for any vector space over k, without referring to X. 

Also, the generic degree deggen(A) for A G X specializes to the modular degree 
deg/7(A) of A. By (1.3.1), if/? > A, then deg^A +/?/i) = deg^(A) for any A, /x G X. 

Assume that /: is algebraically closed, and that O is a root system with/7 > h. Let G be 
a simply connected, semisimple algebraic group over k with root system O. For A G X+, 
let V(A) denote the Weyl module with highest weight A. Then 

• dinf V(X) ^ 0 iff A is /^-regular; 
• If weWp with w • A G X+, then dinf V(w • A) = (-l)£ ( w ) din/ V(A). 

The first assertion (which is well-known, of course) follows from the Weyl dimension 
formula. If w = tPilw\ where / i Ç g a n d w ' G W, then l(w) = l(wf) (mod 2), and the 
second assertion then follows directly from Lemma 1.4; see also [15, (3.9)]. 

2. Quantum dimensions. In the section, we assume that char/: = 0 and let q G k 
be a primitive /-th root of unity with / odd. And, if O has a component of type G2, it 
is also required that / is not divisible by 3. Moreover, we assume that / > h, so that 
/-regular weights exist. The ring homomorphism Z[tjl] —> k sending l z 1—> lk and 
t \—> q defines a specialization dim^ V, called the quantum q-dimension of V, of the 
generic dimension dimgen V of an X-graded vector space V over k3. Also, the quantum 
q-degree deg^(A) for A G X is defined to be the specialization of deggen(A). 

We will work in the following categories (in [22] we use C instead of Q). 
(1) Ç is the category of rational G-modules, G being the (split) simply connected 

semisimple algebraic group with root system O defined on k, or, equivalently, the cate­
gory of g-modules, g being the Lie algebra of G. One exception: if O is of type Aw_i, 

An unweighted version of the generic dimension is discussed in [ 18, § 10.10]. It is used there to give a proof 

of the Weyl dimension formula. 

As indicated in the introduction, this notion has arisen previously in the literature. See, for example, [1], 

[9]. 
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G — GL(ft) is also allowed. The irreducible objects in Ç are indexed via highest weights 
by X+. Denote the irreducible object with highest weight A G X+ by L(A). 

(2) Qq is the category of the integral modules of type 1 over the standard arithmetic 
quantization \\q = Uq(q) (see, for example, [20], [3]) of the enveloping algebra II(g) 
of g with parameter q, or, if <X> is of type Aw_i, the category of rational modules of the 
quantum linear group Gq = SLq(n) or GLq(n), see [21]. It is a highest weight category 
in the sense of [5]. It has weight poset X+, and for À G X+, the corresponding irreducible, 
Weyl and "induced" objects are denoted by Lq(X), Vq(X) and Aq(X), respectively. Recall 
that ch V«(\) = chAq(X) = *(A) [3, (5.12)], [21, (10.4.4)]. 

Recall that Wq is generated by Et, Éf, Ft, F^] and Kfl for i = 1,2,..., rank O, and it 
has a decomposition \\q = U+II^U", where Uq (resp., II~) is the subalgebra generated 
by Et and £*Z) (resp., Ft and F^) for all /, and II ̂  is a commutative and cocommutative 
sub-Hopf algebra generated by Kfx and some other elements. 

(3) Qq is the category of integral modules of type 1 for the subalgebra û^ of II ̂  gen­
erated by 11°, Et and Ft for / = 1,2,..., rank O, or, if O is of type A„_ i, the category of 
rational modules for the quantum group (Gq)\T as defined in [21]. It is a highest weight 
category with weight poset X. Denote the irreducible, Weyl, and "induced" objects cor­
responding to A G X by L\{X), V\{X) and A\(X), respectively. 

(4) Qq is the category of integral modules of type 1 for the subalgebra u^ of U ̂  gen­
erated by Eu Fi and Kfx for / = 1,2,..., rank O, or, if O is of type Aw_i, the category 
of rational modules for the Frobenius kernel (Gq)\ as defined in [21]. This is not a high­
est weight category. However, we still can use X (more precisely, X/IX) to index the 
irreducibles: L\(X) is the restriction of Lq(X) for A G X. We also have the Weyl objects 
V*(A) = V?(A)|g. and the "induced" objects A\(X) = Â\(X)\çx. 

Although an object in Qq is not, generally speaking, an X-graded object, it is X//X-
graded. And, since q is an /-th root of unity and wht(/x) G ̂ Z, the quantum ^-dimension 
for any X//X-graded vector space, hence for any object in Qx is defined. 

In the following proposition, Oi denotes the category of rational modules for the "di­
agonal" maximal torus T of G, or the category of integral il ̂ -modules of type 1. There 
are "Frobenius twist functors" F: Q —• Qq and F: H —• Ç\. If V G Ob(Ç) or Ob(#0, 
F(V) will be denoted by V*0. 

PROPOSITION 2.1. (1) For U G Ob(£) and V G O b ( ^ ) (resp., U G Ob(^ ) and 
V G Ob(£}X), we have dimq(U

(l) <g> V) = dim U • dirn^ V. 
(2) Suppose that rankX = rankO. IfV G O b ( ^ ) (resp., V G Ob(^ ) , V G Ob(£))j 

is irreducible, then dim^ V = dim V iffV = U(l) for some U G Ob(^) (resp., V = U(l) 

for some U G Ob(^/"), V is trivial as an object in Qx). If I > h, the same is true for any 
object V in one of the above categories. 

PROOF. Clearly, dirn^ U{1) — dim U. Thus, (1) and one direction of (2) follow. 
For the other direction of (2), we first prove that if diir^ V = dim V for V in Çq, Qx

q 

or Çq, then V\ ^ 0 implies A G IX. We may assume that q G C. Then 

I dirndl < ]T dim VA|<r2wht(A)| = £ dim Vx = dim V. 
Xex xex 
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Clearly, the equality holds iff all q 2wht^A^ with V\ ^ 0 are the same. Therefore, 

dim^ V = dim V <̂ => q2 wht(A) = 1 for all weights A of V <̂ => 2 wht(A) 

= 0 (mod /) for all weights A of V. 

It is easy to see that if A is a weight of V, then for any a G IT, there is an element i / G l 
such that sa(\) + Iv is also a weight of V. (In particular, if V G Ob(^) , we always can 
choose v = 0). Thus, under the assumption that dim^ V — dim V, 

2(A, a v K = 2 wht((A, a v )a) = 2 wht(A - sa{\)) = 0 (mod /). 

It follows that (A, av) = 0 (mod /) for any a G IT, i.e., A G /X, as required. In particular, 
if V is irreducible with dirn^ V = dim V, then its highest weight is in IX+, forcing the result 
forV. 

If V is not irreducible and does not have the form of U(l\ then V is not completely 
reducible. Thus, there exist À,/x with Ext^ (Z^(/A),L^(//i)) ^ 0 (Qq case), or 
ExtL (p[(l\),Lq

x{lii)\ ^ 0 (Çq case), or Ext^i(k,k) ^ 0. Since the restriction from Qq 

or Çq to ^ preserves the socle of an object (see, for example, [22, (3.2)]) the above 
extension groups for Qq and Çq remain nonzero when restricted to Çq, giving also 
Ext^ (&, k) ^ 0. This contradicts to Hx(Çq, k) = 0 (see Theorem 5.1), proving (2). • 

One cannot expect that Proposition 2.1(2) holds if dim E = rankX > rankO. This is 
because the extra dimension of E is ignored in defining the quantum dimension. 

The following proposition is the quantum analogue of Example 1.6. Statements (1) 
and (2) are contained in [1, (3.2) and (3.3)]. 

PROPOSITION 2.2. Let A G X+. Then 
(1) We have 

-da(\+p,aw) _ da(X+p,aw) 

(2) dirn^ V*(A) ^ 0 iffX is l-regular; 
(3)Ifw G Wi satisfies w • A G X+, then 

dim^ Vq(w • A) = (-l)£(vv) dim^ V*(A). 

PROOF. Since / > h, 0 is /-regular. By (1.3.1), (1) and (2) follow from the fact that 
the image of ^ptDifi + p)) (see the proof of Theorem 1.3) under the specialization t\—> q 
vanishes iff /i is not /-regular. This is an easy exercise. 

(1), in fact, is a formula for deg^(A) (A G X), and implies that deg (̂A + Iji) = 
deg (A), for all A,/z G X. Thus, by Lemma 1.4, for w = t^w' G Wi with [i G Q and 
W G W, we have deg^(w-A) = deg^w'-A + //i) = deg^w'-A) = ( - l / ^ d e g ^ A ) -
(-l)£(vv) deg^(A). Therefore, dim^ V%w • A) = (-1)£<W) dim^ V%\). • 

REMARK 2.3. The same argument shows dirn^ Vq(w • A) equals dirn^ Vq{\) up to sign 
for w G W/, where W/ is the extended affine Weyl group of O with parameter /, which is, 
by definition, generated by W and all translations of the form x i—» x + /i/ with i/ E X. 
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COROLLARY 2.4. For any \ eX,we have dirn^ V (̂A) = dim^ Vf (A) = 0. 

PROOF. Sincech V*(A) = ex-(l~'i)p chVq{(l-l)p), we can apply Proposition 2.2(2). 
• 

COROLLARY 2.5. Let V be an indecomposable object in Qq, Çq or Çq. Then 
<\\mq V = nydiniq Vq(\) for some ny G Z, where A G Q is Wrconjugate (under the 
dot action) to the highest weight of a composition factor ofV. 

PROOF. By the linkage principle, if V G Ob(^ ) , ch(V) is a Z-linear combination of 
ch Vq(w • A) for w G Wi dominant. The result follows from Proposition 2.2(3). 

We also have linkage principles for Qq and Çq (see [4, §2.9] and [22, (2.8)]), where 
the irreducible objects in these categories are, up to a tensor factor of the form l/i, the 
restrictions of irreducible objects in Qq. The result follows formally. • 

PROPOSITION 2.6. Let V be an object in Çq, Çq or Çq. Then: 

(1) dirn^ V G Q[q + q~l] C Q[(q — #-1)\/—T]; in particular, dim^ V is totally real 
(i.e., its image is a real number under any field embedding Q[q] c—» Cj; 

(2) dim^ V = dim^-i V; 
(3) dirn^ V = dim^ V*. 

PROOF. (l)Supposeg G C.Thenq = COS#+A/-1 sin#for# = 2r7r//with(r,/) = 1. 
Thus, for s G Z, g~* — gs = — 2\^ï sin sO. By Theorem (1.3), we obtain, for A G X+, 
that 

n , i-r sinda(A + p, ay)0 

,2.6.,) ^ ^ > - ^ ' - „ n . J ^ , W -
This, together with Corollary 2.5, shows that dim^ V is totally real. We need to prove 
thatdim^VG Q[cos#] C Q[sin0]. By (2.6.1), dim^ Vq(A) is a product of factors of the 
form (sin sO sin 0)/ (sin s'O sin 0) for s, s7 G Z. Or, being a real number, dirn^ V can be 
calculated by the formula that 
(2.6.2) 

dirn^ V = ]T(dimV^)cos(2 wht(/i)0), for V G O b ( ^ ) , O b ( ^ ) or O b ( ^ ) . 
nex 

Therefore, to prove dim^ V G Q[cos 0], it is enough to show that, for s G Z (or equiva-
lently, for s G Z+) and a variable x, cos sx and sin sx sinx are polynomials in cosx with 
coefficients in Z. This can be down simultaneously by induction on s. Finally, / being 
odd, cos# = cos(/ + 1)0 = cos(^y- • 20) is a polynomial in cos 20 — 1—2 sin2 0 with 
coefficients in Z. This shows that Q[cos#] C Q[sin#]. 

(2) We have dim^ Vq(X) = dim^-i Vq(X) by the formula in Theorem 1.3. Now use 
Corollary 2.5. 

(3) From the definition we have dim^ V* — dim^i V, so (3) follows from (2). • 

Observe Q[(q — q~l)>/—!] may not be contained in Q[g + q~x], e.g., let q = e2m/3. 
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THEOREM 2.7. Assume that the quantum Lusztig conjecture is true for Qq. Then 

(1) For X G X+, dim^ U{\) ^ 0 iffX is l-regular; 

(2) For A G X, dim^Lq(X) ^ 0 iffX is l-regular; 

(3) For A G X, à\mq L\(X) ^ 0 iffX is l-regular. 

PROOF. (1) If A is not /-regular, Proposition 2.2, together with Corollary 2.5, shows 

that dirr^ Lq{\) — 0. Now assume that A G Q H X+ and w G Wt is dominant. We have 

d i m , L V • A) = £ ( - D ^ ^ - ^ ^ ^ ^ C - D d i m , Vq(y • A) 
y G W[ dominant 

= ((-i)m £ <PyWQ,WWo(-\))dimqV(X), 
y£W[ dominant 

where the Kazhdan-Lusztig polynomials (Pywç^ww^s are regarded as polynomials in t2. It 

is known (see, for example, [12, §7.12]) that (PyW(hWw0 has nonnegative coefficients (and 

there do exist some nonzero polynomials among these (Pyw^^ 's), so 

nmw-X) = ( - D ' ( w ) £ 2Www 0 ( - l ) ^ 0, 
yeWt dominant 

since char/: = 0. Also, dim^ Vq(X) ^ 0, by Proposition2.2. Therefore, dim^Lq(w • A) ^ 

0. 

(2) and (3) now follow from (1), since dim^ Lq(X) = dirn^ Lq
{(X) = dirn^ Lq{X'), where 

À7 is the unique /-restricted dominant weight in the coset X + IX. m 

REMARK 2.8. The analogues result for modular characters fails: p(p — l)p is p-

regular, but dim77 L(p(p — l)p) = 0. Even though, we have a weaker result as follows. 

For two primes p and q, the affine Weyl groups Wp and Wq (with respect to the same 

root system O) are canonically isomorphic. The isomorphism is the identity on W, and 

maps tpa G Wp to tqa G Wq for a G O. Clearly, the isomorphism sends dominant 

elements to dominant elements, where w G Wp is dominant provided w • Cp is a dominant 

alcove. Fix a dominant affine Weyl element w. As in the above proof, we have (see [14, 

(4.17)]): 

Assume the Lusztig conjecture holds for groups G with root system O and p > h. 

There exists a positive integer Mw > h depending only on w such that for any p > Mw 

and any X G Cp Pi X+, we have dim77 L(w • A) ^ 0. Thus, there is a positive integer M<& 

such that for any restricted dominant weight [i, dim77 L{ji) ^ 0 provided p > M®. 

3. An isomorphism between a module and its double dual. As in the Appendix, 

denote by 7 the antipode of a Hopf algebra. 

LEMMA 3.1. Let Gq — GLq(n) or SL^rc). Let Tq be the diagonal maximal torus in 

Gq, and H be a closed subgroup of Gq. Iff G K[H] is a weight vector of weight [x with 

respect to the coadj oint action ofTq, then I2 if) = g- 2 w hWy. 

PROOF. We only need to verify the result for the (image in K[H]) of the coordinate 

function Xy. The weight of Xy under the coadj oint action is p — X^Xjj, whose weighted 

4 See [19]. 
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height i s / -j (see [21, §6.4]). On the other hand, by [21, (5.4.2)], 72(X/,) = q-2(H)Xij = 

q-2wh^l)Xij, as required. • 

Now we can prove the following isomorphism theorem, which, in the context of quan­

tum enveloping algebras, is contained in [1, (3.6)]. 

THEOREM 3.2. Let V be an object in Qq, Qx
q or Qx

q. For v G V, the canonical image 

ofvinV** is denoted by v. Then the linear map 6: V'—> V** defined by 6(vx) = q2èwht(^vx 

for any weight vector v\ G V\ is an isomorphism in the category to which V belongs. 

Here 6 — I if we consider the case of quantum linear groups, and 6 — —1 if quantum 

enveloping algebras are in consideration. 

PROOF. We only give a proof for quantum groups. Let the structure maps of V and 

V** be r and r**, respectively. We may assume that r(v\) — E ^ e x ^ <S> fx-^, where 

v^ G V^, and / / has weight v under the coadjoint action of Tq (see [21, (6.4.3)]) (or 

(Tq)\ if V G O b ( ^ ) , the proof of [21, (6.4.3)] works for this situation also). Then, by 

Lemma 3.1, 

r " o 0(vA) = r* VW h t ( A )VA) = q2whtW E >^ ® ^ A - „ ) 

= E « 2 w h t ( ' l ) ^ ®/A_„ = (0® id) or(vA). 

THEOREM 3.3. Le£ V Z?£ arc object in (D = ^ , Qx or Çq. Then there is a morphism 

nq\ V 0 V* —> k whose composition with the canonical morphism n\k —> V <g> V* is the 

morphism k —> k sending a G k to (dim^ V)a. Therefore: 

(1) If dimq V ^ 0, then k is a direct summand ofV® V*; 

(2) If End<£,(V) = k • idy, then k is a direct summand of V 0 V* iff dimq V ^ 0. 

PROOF. By Lemma A.5, the canonical map TT: V** 0 V* —> &, sending v 0 / to / (v) 

for v G V a n d / G V*, is a morphism. Consider the morphism nq = 7ro(0(g)idv*)> 0 being 

as Theorem 3.2. Using a basis of V consisting of weight vectors, we see immediately that 

nqoK(\k) = Ex dim(VA)<72(5wht(A), which is, by definition, dim^ V or dim^ . V . I fd iny i V 

is obtained, we can use Proposition 2.6. 

The composition of K : k —+ V® V* and nq : V(g) V* —> k gives a morphi sm ixq o « : /c —> /: 

sending « G /:to(dim^ V)a. The assertion (1) and part of (2) follow immediately. To prove 

(2), we can assume k is a direct summand of V (g) V*. By hypothesis, there is a unique 

(up to scalar) homomorphism k —» V(g) V* = End^ V; taking duals, there is also a unique 

(up to scalar) homomorphism V 0 V* —> k. Thus, ft equals (up to scalar) the canonical 

injection determined by the direct sum decomposition of V® V*, and ixq is (up to scalar) 

the projection. Thus, ixq o « ^ 0 and hence dim^ V ^ 0. • 

Note that the objects Lq(X), Vq(\) and Aq(X) in ^ all have the property mentioned in 

Theorem 3.3(2). Thus, for these modules, the conclusion in Theorem 3.3(2) holds. The 

same is true for the objects L\{\), V\(\) and Â\(X) in the category Qx 
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REMARK 3.4. A result similar to Theorem 3.3 holds for modular dimension: 
Let char k = p > 0 and V be a finite dimensional (in the usual sense) (co)module over 

a Hopf ^-algebra $ whose antipode is an involution. Then: 
(1) If dim77 V ^ 0, then the trivial (co)module k is a direct summand of V <S> V*. 
(2) If End£0(V) = k-idy (e.g., V is absolutely irreducible), then the trivial (co)module 

k is a direct summand of V ® V* iff dim77 V ̂  0. 

COROLLARY 3.5. If I is an injective (= projective) object (in particular, if I is an 
indecomposable, injective object) in Qq, Çq or Çq, then dim^/ = 0. 

PROOF. If not, Theorem 3.3 forces k to be an injective object. As is well-known, this 
is not the case. • 

The following is a very easy application of Corollary 3.5. 

COROLLARY 3.6. Suppose that A <E X+ is l-regular. Then 

Y, (-lY(w)[Vq(w • A) : Lq(X)] = 0. 
weWi 

WÀGX+ 

PROOF. The ^-injective envelope Iq(X) ofLq(X) has a good filtration with Aq(w • X) 
occurring [Vq(w-X) : Lq(X)] times as a section of the filtration (cf. [5, (3.11)]). Since Aq(w-
X) and Vq(w - X) have the same formal character (thus the same quantum ^-dimension), 
we see that 

]T [Vq(w • A) : Lq(X)] dirr^ Vq(w • A) = dirr^ Iq(X) = 0. 
wewt 

w-\ex+ 

Now use Proposition 2.2(3), noting that dim^ V(X) ^ 0 by Proposition 2.2(2). The result 
follows. • 

4. Generic and quantum dimensions for objects in a Levi category. In this sec­
tion, we will consider a new class of categories related to the quantum enveloping algebra 
11 q or the quantum group Gq—the Levi categories Çqj. 

For a subset / of {1,2, . . . , rank(O)}, the corresponding subset of n is also denoted 
by /. (Note that, once the quantum group or quantum enveloping algebra is defined, the 
set n is numbered.) Let O/ be the subroot system of O generated by /. 

In the quantum group case, Qqj is the category of modules for the Levi subgroup 
Gqi as defined in [21, §6.1]. Recall that the coordinate algebra k[Gq] is generated by the 
coordinate functions X^ (and D~l if Gq — GLq(ri), Dq being the quantum determinant). 
Then k[Gq j] is the quotient algebra of k[Gq] by the ideal generated by all Xy with / ^ j 
and(/j) $ I+x I+, where I+ = JTU{/+1 | / G / } . If lis connected in the obvious sense, 
Gq j is essentially the "central product" of the quantum group SL^(r), r = card 7+, and 
a central torus. If / is disconnected, Gqj is the "central product" of SL^(r)'s for various 
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r together with a central torus. Thus, the representation theory of SLq(n) is applicable to 
the category Qqj. 

In the quantum enveloping case, Qqj is the category of integral modules of type 1 
for the Levi subalgebra VLqj of Uq generated by 11° and £/, E^\ Fj and F[/} with / G / . 
Clearly, \\q j is the quantum enveloping algebra corresponding to the root system O; 
with parameter q' (where q' = q if O/ contains a short root of O, and q' = qda for any 
a G O / otherwise), regardless of the size of II0. We can use the representation theory of 
quantum enveloping algebras to the category Qqj. 

We also consider categories Qj (the analogue of Ç), Çx
 l (the analogue of Qq) and 

Qx j (the analogue of Qq). For example, Qi is simply the category of rational modules 
for the Levi subgroup GjofG corresponding to / . The details are left to the reader. 

The objects in Qqj are X-graded, so their generic and quantum dimensions are de­
fined. In this direction, we have the following result, generalizing Theorem 1.3. 

PROPOSITION 4.1. Let VqJ(X) be the Weyl module in Qqi with highest weight A, 
where A G X is dominant with respect to I (i.e., (A, av) > 0 for all a G I). Then 

f-da(X+Pi,av) _ fda(\+pj,av) 

dimgen V
qJ(X) = c(X) IT TI—T, n—^—, 

where pi = (1/2) Eaeo+ <*» the Weyl weight in O/, and c(X) = naGo+\o+ rda{X^\ 

PROOF. Let p\ = p-pi. Note that w(p'j) = p\ for all w G Wj, the Weyl group of O/. 
Let Dj(p) = E W G W / C - I ) ^ ^ ^ ^ for p G X dominant with respect to / . A calculation 
similar to that in the proof of Lemma 3.1 gives 

VV(0/(AO)= Il rd^aV) n (rJ^aV) - td^aJ)). 

Since ch VqI(X) = Z)/(A + Pi)/Dj(pj), the formula in the proposition follows. • 

COROLLARY 4.2. Let X e X be dominant with respect to I. Then dim£/ V
qJ(X) ^ 0 

iffX is l-regular with respect to O/ (i.e., (A + p/, a v) ^ 0 (mod I) for all a G 0"J). 

REMARK 4.3. Let cq(X) = naeo+\o+ q~daiKa"\ the specialization of c(A) under the 
assignment t \—> q. Clearly, cq:X —> k is constant on orbits for the ordinary action of 
the affine Weyl group Wjj of O/. The function is also constant on orbits for the dot 
action of WJJ. In fact, for w G WJJ and A G X, cq(w • A) = cq(w(X + pj)cq(—p) = 
cq(X + p)cq(-p) = cq(X). 

REMARK 4.4. One may define a quantum dimension dimq/j for an object in Çqj with 
respect to O/. That is, regard the object as an Xj-graded vector space, Xj being the weight 
lattice of O/, and define the quantum dimension by referring to Xj and parameter q' in­
stead of X and parameter q. It is easy to determine the relation between these two quantum 
dimensions: for any indecomposable object V in Ç j , dim^ V = cq(X) dimq,j V, A being 
the highest weight of a composition factor of V. These two quantum dimensions serve 
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equally for our purpose. In fact, because of the above relation, we may develop a theory 
for the category Qqj as we did in §§3-4 by using just dim^, with small modifications. 
For example, if V is as before, then dim^ V = cq(X)2 dirn^ V*. 

Next, we "quantize" some methods and results in [15]. Let 3E/ be the quotient group 
X/(Z7), and denote the coset A + II for À G X by [A]. Define a ring homomoiphism 
map r7: IX —> kXr by r/(eA) = ^-2wht<AVAl. 

Any V G O b ( ^ j ) decomposes as 

V= © V[A] with V[AJ = 0 V„. 
[A]G3E7 ue[X] 

LEMMA 4.5. For any V G Ob(Çq j), we have 

r7ch(V)= £ (dim,V[A])e
fA1. 

[A]e3E7 

In particular, ifV is indecomposable with X G X as one of its weights, then 

rIch(V) = (dimqV)e[X]. 

Furthermore, ifrj ch(V) ^ 0/or V G O b ( ^ /), r/ẑ n f/ie trivial object k is a Çqj-direct 
summand o / V 0 f . 

PROOF. The formulas follow from the definition of 77 and the decomposition of V. 
Now, suppose rj ch(V) ^ 0. Then there is A G X with dim^ V[A] ^ 0. Therefore, & is a 
^ /-direct summand of V[A] 0 Vj*A], hence a ^ /-direct summand of V 0 V*. • 

We will apply Lemma 4.5 to V = V (̂A) for A G X+. First, recall the well-known 
formula: 

(4.6) x ' / chV(A)= £ ( - l ) ' ( w ) d i ( V * V - A ) ) . 
wew7 

Here W7 is the set of distinguished coset representatives of W over Wj, i.e., the set of 
elements w G W with i(wwf) = l(w) + ^(w7) for all w' G W/, see [12]. Also, 

x'/= n ( i - o . 

Applying r/ to formula 4.6 and using Lemma 4.5, we obtain that 

(4.7) r /(X ' /)r /(ch(V(A))) = £ (-l) ' ( w )dim, V * V • A)e>[""A]. 

PROPOSITION 4.8. Let A G X+. If there is an element w G W1 such that w • A is 
l-regular with respect to O/ vwY/z 

(4. 8.1) {w' G W7 I [w'-A] = [w-A] andw'-X is l-regular with respect to O/} = {w}, 
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then k is a Çqj-direct summand of Vq(X) 0 Vq(X)*. 

PROOF. Thanks to Corollary 4.2, the coefficient of e[w'X] on the right-hand side of the 
formula 4.7 is (— l)£(vv) dim^ Vq,I(w • A) ^ 0, under the assumption. Thus, the right-hand 
side of formula 4.7 is nonzero. So rj ch V (̂A) ^ 0. Now use Lemma 4.5 to obtain the 
result. • 

REMARK 4.9. In type A„_i, some observations of [15, §3] are clearly applicable: 
Namely, let À G X+, and let TT(X) = (m\ > • • • > mr > 0) be a partition of n such that 
the subroot system {a G O | (A + p, av) = 0 (mod /)} has type Am,_i x • • • x Am/_i. 
If n(X)f = (£i > • • • > Çs > 0) is the partition dual to 7r(A), choose / C n of type 
A^_i x • • • x A^_i. Then there is a w G W7 with dim^ VqJ(w • A) ^ 0 and such that 
(4.8.1) holds. 

5. Support varieties in quantum case. In this section, we assume that / > h and 
k is algebraically closed. The results in the previous sections, together with methods 
adapted from the theory of algebraic groups in prime characteristic ([7], [8], [14], [15] 
and [16]), yield some facts about (homological) support varieties in quantum case. We 
need the following result of Ginzberg and Kumar [10, §3]. 

THEOREM 5.1. We have Hl(Çq,k) = 0 for odd i. Also, there is a natural graded 
Ç-algebra isomorphism 

H2\Ç\,k)^k[9tl 

where C\£ is the variety of ad-nilpotent elements ofq. 

For V G O b ( ^ ) , End^(V) = V 0 V* is a ^-algebra (see Lemma A.5), and hence 
we have a natural graded algebra homomorphism ipy:Hm(Çq,k) —-> H*{Çq, V 0 V*). 
The ideal 3 y = Ker t/v determines a closed subvariety Supp^(V) of fA£, called the sup­
port variety of V. The following lemma gathers certain elementary facts about support 
varieties. 

LEMMA 5.2. (1) Supp^(V) is a cone for any V G Ob(^ ) . 
(2) For V G Ob(#) , Supp,(V) = [Jxex/ix Wvm*(A))> where 3lv,for U G Oh(#) , 

stands for the left annihilât or of the Hm(Çq,k)-module Hm(Çx
q, U), and 1 (̂9?£/) denotes 

the subvariety of9\£ determined by 3lv. 
(3) IfVe Ob(gq\ then Supp^(V) is a G-variety. 
(4)IfO —> V\ —> V2 —> V3 —> 0 is an exact sequence in Qx, then, for any a G S3, 

Supp^(Va(i)) C Supp^(Va(2))USupp^(V(J(3)). Therefore, ifany two Supp^V/)* are proper 
subvarieties of 9^ so is the third. 

(5) IfVuV2 G Ob($) , then Supp,(Vi 0 V2) = Supp^V,) U Supp,(V2). 
(6)IfVuV2 G Ob(^) , ^nSupp 9 (Vi0V 2 ) C Supp^(Vi). Mo^ov^ i/dirn^ V2 ^ 0, 

ften Supp^(Vi ® V2) = Supp^(Vi). 

PROOF. (1) is trivial, and (2) follows from Proposition A.8. 
(3) In this case, Hm(Qx, V® V*) is a ^-algebra and i/jy is a (j-algebra homomorphism. 
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(4) For any À G X/IX, by tensoring the exact sequence with Lq
{(\) and taking coho-

mology, one arrives at an exact triangle of Hm(Çq, /:)-modules 

\ / 
W{QlVi®L\(\)) 

This gives 

arguing as in the proof of A.8. Therefore, 

The first assertion of (4) now follows from (2), and the second follows from the fact that 
9£ is irreducible. 

(5) Clearly, i/v1©v2
 = Vv, © vV2,

 so> ^Viev2 = %Vx U3v2, and hence the result. 
(6) The first claim is clear from Proposition A.7. The second follows from Theo­

rem 3.3 and Proposition A.7. • 

REMARK 5.3. One may expect that Supp^( V*) = Supp^(V) and that Supp^(V® U) C 
Supp^(V) H Suppôt/) for any U, V G Ob(^) . This will follow provided U ®V ^ 
V <g) U for any U, V G Ob(^ ) . If V, U G Ob(^) , there exists a functorial isomorphism 
y® £/ = £/ ® V, at least in the case O has type A. In fact, Hayashi [11] gives a beautiful 
proof for the (complete) "Schur algebra" corresponding to a Yang-Baxter operator to be 
quasi-triangular, yielding a functorial isomorphism V <g> U = U 0 V for comodules U 
and V over the matrix bialgebra defined by the operator. This result applies to quantum 
linear groups (of type A), and to quantum enveloping algebras of type A, because of 
the duality there between the quantized functional algebras and the quantum enveloping 
algebras. Although Hayashi's result also applies to other quantized classical groups, there 
seems to be no duality available (in the case q is a root of unity). On the other hand, 
by Drinfeld [6], any (complete) quantum enveloping algebra is quasi-triangular if q is 
generic, thus the category Qq is a tensor category in this case. Kazhdan and Lusztig 
claimed in [19] that Drinfeld's proof can be extended to cover the case q is a root of 
unity. If so, a functorial isomorphism U (8) V = V ® U for U, V G Ob(^ ) always exist, 
and therefore we have Supply*) = Supp^(V)andSupp^(V(g)f/) C Supp^V) H Suppôt/) 
for any U, V G Ob(^ ) (but not necessarily for U, V G Ob(Çl

q)). 

Recall for À, /i G C/, the translation functor T% is defined as follows. Let v be the 
unique dominant weight in the VK-orbit (under the ordinary action) of [i — À, and M = 
M(A, [i) an indecomposable object in Qq such that v is the unique maximal weight of 
M and the weight space Mv is 1-dimensional. For example, take M = Lq(v). Then for 
any V G O b ( ^ ) belonging to À (i.e., all composition factors of V have highest weights 
in Wi • A), T^(V) is the largest submodule of V <g> M belonging to \i (which is a direct 
summand). The functor T^ is independent of the choice of M. The theory developed in 
[17, II§7] for algebraic groups can be adapted to the context of quantum groups formally. 

From the definition of 7^ and Lemma 5.2(4)(5), the following result is obvious. 
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COROLLARY 5.4. Let V e Ob (^ ) belonging to A. Then Suppq(T^(V)) c Supp^V). 

The following is an easy consequence of the theory developed in §§2-3. 

THEOREM 5.5. For any V £ O b ( ^ ) with dim^ V ^ 0 we have Supp^(V0 = fA£. In 
particular, ifX G X+ is l-regular, then 

Supp,(V(A)) = Supp,(A«(A)) = f*£ 

Moreover, if the quantum Lusztig conjecture is true for the category Qq, then for any 
l-regular dominant weight A, we have 

Supp,(L*(A)) = 3\C 

PROOF. By Theorem 3.3, the natural homomorphism k —> V<S> V* is a split injection. 
This forces Vv to be a split injection also. The first statement is clear. Now the other 
conclusions follow from Proposition 2.2 and Theorem 2.7. • 

To prove the converse of the Theorem 5.5, namely, that if A G X+ is not /-regular, then 
Supp^V7(A)), Supp^A^A)) and Supp<?(L^(A)) are proper subvarieties of fA£, we need 
to work with the following categories (and the categories introduced in §3): 

(1) The category $—the category of rational ^-modules, B being the Borel subgroup 
of G corresponding to negative roots. This is also a category of b-modules, b being the 
Borel subalgebra of q corresponding to negative roots. 

(2) The category <Bq—the category of rational Bq-modules, Bq being the Borel sub­
group of Bq corresponding to negative roots, or the category of the integral modules of 
type 1 over the Borel subalgebra U^U~. 

(3) The category *Bq—the infinitesimal version of *Bq. 
(4) The category Qx

q—the category of rational (G(?)i^-modules, or the category of 
integral modules of type 1 over the subalgebra of Uq generated by u^ and U°U~. 

We have the following sequences of categories with F the Frobenius twist functor 
and R the restriction functor. Here 1 stands for the category of k-vector spaces. These 
sequences are "exact" in the sense that the arrow-reversing sequences of quantum groups 
and quantum enveloping algebras are exact. 

R F 

Let 1 <— ^C <— X- <— y <— 1 be one of the above sequences. As in §3, for 
U e Ob(90, F(U) is denoted by U(l). Conversely, if V e Ob(X) has the form F(U) for 
U G Ob(90, then U, which is uniquely determined by V, will be denoted as V*_/). In 
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particular, for V G Ob(Jt), H\^ V) = rffaRÇVJ) has the form F(U) for U G Ob(90 
(see [21, §§2.9-2.10] and [10, (5.2.1)]), so that H\%, V)(~° is defined. Also, since 

H o m r ( [ / , / / ) ( ^ V)(~l)) 9* Hornet /0 , / /°(3C V)) ^ Horne t / 0 , v) 

naturally for U G Ob(90 and V G Ob(Jf), the functor V ^ H°(^ V)(_/) is the right 
adjoint of the functor U K-> F(U). It follows that //'(^C V)(_/) = /?' Ind£ V, functorially. 

The conclusions (1) and (2) of the following lemma appear in [10, §2.5]. 

LEMMA 5.6. (1) We have Hl((Bq,k) = Ofor odd i. Also, there is a natural graded 

^-algebra isomorphism 

/ /2*(^,£) (- / }^Â:[n], 

where n = fA£n b, the subalgebra of ad-nilpotent elements in b. 

(2) IfX G X is not of the form w • 0 + Iv for weWandv G X, then H*((Bl
q,\) = 0. 

(3) For w G W and v G X, we have a ^-isomorphism 

H\<Bl w • 0 + lvf-l) ^ ff-'(w)(!8l, £)(~/} 0 i/. 

PROOF. We only give a proof for (3). Obviously, it is enough to consider the case v — 
0. Thanks to [10, §2.5], H\% w • 0)(~/} is a free / / # ( ^ , ^^ -module with a generator 
in degree t(w). (This implies the existence of an isomorphism of vector spaces as in (3)). 
Thus, H^CBy, w • 0) ( - / ) is 1-dimensional with weight £, say, and, since the cup product 
is compatible with the action of B, 

H\<B\, w • 0)(~/} ^ Hj-m(<B\,kf-l) ® Ç. 

We have to show £ = 0. 
Since Ind^ = Ind^oInd| = Ind | olndg7, we have the following two spectral 

sequences 

É{ = Rl Indf (ff(2£, w • 0)M )) => T?'̂  Indf w • 0, 

;£f = H\Ç\,Rj Indf w • 0)(-° => fl^ Indf w • 0. 

Since W(fBx
q, w-0)(_/) = 0 for j < l(w), the first spectral sequence yields a ^-isomorph­

ism 
lnd%^Rmlnd% w-0. 

On the other hand, we have (see [3, (6.7)], [21, (10.2.3)]) 

#Indf«w-0-(* ' '=*&>> 3« \ 0, otherwise. 

Thus, the second spectral sequence degenerates to a (^-isomorphism 

H\Q\M~l)=RM{w)^à^w-(). 

Combining the isomorphisms obtained from these spectral sequences, we see that 

as ^-objects. This forces £ = 0, as required. 

Now we are ready to prove the following result. 
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PROPOSITION 5.7. Suppose O is indecomposable. IfX be a dominant weight in C\ \ Q, 
then$>x\wq{yq(X)) = Supp^A^A)) = Supp^L^A)) is a proper subvariety of fA£ 

PROOF. Using Lemma 5.6, the proof in [14, §§4.8-4.11] for the corresponding alge­
braic group result can be translated mutatis mutandis. Since this is the key point of the 
next theorem, we sketch the argument. 

By hypothesis, {a G O | (A + p, av) = 0 (mod /)} = {ao, —ao}, where OLQ is 

the highest short root. Let m = (l(sao) + l ) / 2 . Let also A\(v) = Ind^* v for v G X, 

Mi = T\A\(X) and M = T°XA«(\). We split the proof into 5 steps. 

STEP 1. For / < 2m — 1, we have5 

HG\.MA^^ lk[n]l/ i even, 

and, for / > m there exists an exact $-sequence 
(5.7.2) 

0 —> H2l~\g{
rMx){~l) -^ k[n]i-m ® « o ^ *[n]/ - ^ H2XÇq,Mx){~l) — 0. 

This follows from the «-isomorphism / / ' ( ^ A ^ z / ) ) ^ 0 ^ W^B^vf l) {v G X), 
Lemma 5.6 and the long exact sequence of cohomology corresponding to the short exact 
^-sequence 0 —> A*(0) —> Mj —> A^(^0 • 0 + /a0) —> 0 (compare [17, (II.9.19)]). 

STEP 2. (5.7.2) for / = m is actually a short exact sequence 

(5.7.3) 0 - ^ a 0 - ^ * [ n ] m —^ H2m{Çx
q,Mx){~l) - ^ 0. 

By (5.7.2), it is enough to show 

Hom s(a 0 , / / 2 ' " - |(^ ,M 1)<- , )) ^ ( ^ / ^ ' ( ^ M , ®(- /a 0 ) ) (~") = 0 . 

This is the £^'2m_1-term in the Hochschild-Serre spectral sequence 

(5.7.4) E\ = &($,& (Çl
q9Mi 0 ( - / a o ) ) ( ~ 0 ) ^ lf+j(Çl

q9M\ ®(-lcc0)). 

By (5.7.1), we have £f7 ^ //<(«, fc[n]; (g) ( -a 0 ) ) and £f7'_1 = 0 for./ < m. Then, by [2, 
(6.7(2)(3))] (the argument there works for characteristic 0), E\ — 0 for 2m — 2/ <j<2m 
and / j ^ ' 2 " 1 - 2 = &• Thus, the spectral sequence (5.7.4) gives an exact sequence 

(5.7.5) 0—>£—>H 2 m - \ ç \ ,Mx 0 ( - /«o ) ) — > ^ ' 2 m _ 1 —• 0. 

Since Mj 0 (-/a0) = 7̂ A (̂A - /a0) = T°xAq(sao • A), by the Borel-Weil-Bott theorem 
for small weights (see [3, (6.7)], [21, (10.2.3)]), we obtain 

&(M* to(-lrv»\\ <* rtVln&f*.. • W^ | ^ ( A ) = M , j = 2 m - \ , Rj I n d | (M! 0 (-/a0)) ~ 7^/P I n d | ^ a o • A) ^ ^ 
otherwise. 

&[n], denotes the i-th homogeneous component of the graded algebra k[n]. A similar notational convention 

is adopted for k[9£\. 
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Therefore, the spectral sequence arising from the reciprocity for induction yields an iso­
morphism//' {Qx

q, M\ ®(—/a0)) = Hl~2m+x(Çq,M). Since we have an exact ^-sequence 
0 -> k -+ M -> Ai(sao • 0 + la0) -> 0 (compare [17, (11.7.19)1), H\Qq,M) = 0 for i > 0 
(see [21, (10.4.6)]; the argument works for quantum enveloping algebras). Thus, 

k, i = 2m — 1, 
0, otherwise. lf(Çx

rM\®{-l(Xo)) 

This, together with (5.7.5), shows H° (<B, H2m~l (Q\, Mx ® (-/a0)) ( _ / ) 

STEP 3. There is a ^-isomorphism 

(5.7.6) Indf (/?'(£], Mi )(- /)) ^ H\Q\,M){~1\ for/ < 2m. 

Since the induction from S to ^ is exact, we have 

Rl Ind^ Mi ^ 7?/? Indf A ^ ( Jf ' ' 7 °' . 
^ A A 0, otherwise. 

= 0. 

0 Thus, one of the spectral sequences associated to Mi and Ind^. = Ind^ o Ind? 

Ind^ o Ind^l degenerates, and the other one gives 

We obtain (5.7.6) from this spectral sequence by using (5.7.1) and the following fact 
from the theory of algebraic groups (see, for example, [17, (11.12.12)]) 

(5.7.7) / f l n d g * [ n ] = ( W Û ' ' = 0 ' . 
3 {0, otherwise. 

STEP 4. There is a short exact ^-sequence 

(5.7. 8) 0 -^ L(a0) —+ k[9i]m —> / / 2 m (^ ,M) ( " / } - ^ 0. 

This is obtained by inducing (5.7.3) to Ç, using (5.7.6), (5.7.7) and the Borel-Weil-
Bott Theorem. 

STEP 5. The exact sequence (5.7.8) means that dimk[9£]m > dimH2m(Çq,M)(~l\ 
so any homomorphism from k[9\[}m to Hlm{Qx

q,Mf~l) has nontrivial kernel. 
Since M - T\Aq{\) is the direct summand of A«(A) 0 V*(-w0A) = A*(A) <g) A«(A)* 

belonging to 0, the canonical homomorphism & —>• Aq(X) ® A (̂A)* factors through M, 
so ^A^(A) factors through Hm((jl,M). Thus, Ker V^A) 7̂  0, proving the proposition for 
A*(A), and also for V*(A) and L*(A), since V*(A) = Lq(X) = Aq(X). m 

THEOREM 5.8. Let X eX+be not l-regular. Then Supp (A*(A)), Supp (V*(A)) and 

Supp \Lq{X)j are proper subvarieties of^C 

PROOF. Suppose for a moment that O is indecomposable. Let C be the /-alcove hav­
ing A in its upper closure. We proceed by induction on the distance d(C) from C to the 
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bottom /-alcove Q . Recall that d(C) is the number of /-walls separating C and Q . If 

d(C) = 0, C — C\, and Proposition 5.7 applies. So assume d(C) > 0. Choose a wall 

H of C separating C and Q, and choose a weight fi G C in the facet of codimension 1 

contained in H. Let Ao (resp. /io) be the ^/-conjugate of À (resp. n) in Q. Then we have 

an exact sequence (compare [17, (II.7.13)]) 

0 — A*(s • A) —^ 7^A V ) — • A*(A) - ^ 0, 

where 5 = SH is the affine reflection with respect to H. The induction hypothesis can be 

applied to \i and s • A. (It may happen that Aq(s • A) = 0.) Thus, by Corollary 5.4 and 

Lemma 5.2(4), Supp^A^A)) is proper. 

A similar argument applies to Vq(X). For irreducible modules, we can use induction 

on the standard partial ordering on X. We have an exact sequence 

0 —> Lq(X) —> Aq(X) —> Mq(X) —> 0. 

The highest weights of composition factors of Mq(\) are strictly smaller than A. The 

induction, together with Lemma 5.2(4), ensures tha tSupp^M^A)) is proper. Then, by 

Lemma 5.2(4) again, Supp (Z^(A)) is also proper. 

If O is decomposable, the algebra H%(Çq,k) decomposes into the tensor product of 

ideals corresponding to indecomposable components of O; similarly for the algebra 

H*(Çx
q, V <S> V*) for V G O b ( ^ ) . The homomorphism if;y decomposes correspondingly 

into a tensor product. If V = Vq(\), Aq(\) or Lq(X) with A not /-regular, then one of the 

components of ipy has nontrivial kernel, by the above. Thus, Vv has nontrivial kernel 

and Supp^V) is proper. • 

Note that !A£ has a unique dense G-orbit, the orbit fAfcg of regular ad-nilpotent ele­

ments. Thus, for V G O b ( ^ ) , Supp^(V) is proper iff Supp^(V) C 0\[ \ fA£eg-

For / e l l , one may define the support variety Supp^ j(V) for V G Qx
 l (see §4). This 

is a subvariety of fAfi, the variety of ad-nilpotent elements in the Levi subalgebra ç\j of 

q. In particular, if V G Ob(£j ) , viewing as an object of Qx j , Supp^ j(V) is canonically 

a subvariety of Supp (V). 

Using the results of §4, we have the following analogue of [15, §3], Its proof is clear 

from the définitions above, together with the results of §2 and §4. 

PROPOSITION 5.9. Let A G X+ and let I CU satisfy the condition of Theorem 5.8. 

Then G • CMj C Suppq(V
q(\)) and G • 9{j C Supp^A^A)) . Moreover, if the quantum 

Lusztig conjecture is true for Qq j , we also have G • 9{j C Supp \Lq(Xyj. 

Finally, we give the following exact description of Supp^(V^(A)) and Supp^(A^(A)) 

for A in a facet of codimension 1 in the case O has type A. For the algebraic group case, 

see [15] and [17]. 

THEOREM 5.10. Assume that O is of type An-\. Let X be a dominant weight in a 

facet of codimension 1. Then 

Supp,(V(A)) = Supp(A«(A)) = *C \ Ht 
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Moreover, if the quantum Lusztig conjecture is true for root system of type An_2> w^ also 
have 

Supp(^(A)) = fAt\5^g. 

PROOF. In this case, the subroot system {a G O | (À + p, av) = 0 (mod /)} has type 
Ai. Thus, by Remark 4.9, condition (4.8.1) is satisfied by a w G W and a subset I of n 
of type A„_2- Thus, by Proposition 5.9, G - 9{j ÇL Supp^(A^(A)). Since G • 9{j contains 
the unique dense G-orbit of 9\[ \ ^ e g , and Suppq(A

q(X)) C fA£ \ \̂£eg> by Theorem 5.8. 
The result for A (̂A) follows. 

The same argument works for Vq(X), and, if the quantum Lusztig conjecture is true 
for O/, it works for Lq(X), too. • 

Appendix. Some homological foundations. In this appendix 11 is a Hopf algebra 
over k. Let CM be a category of (left) 21 -modules or a category of (right) ïï-comodules, 
satisfying the following hypotheses: 

(A. 1) It is a full abelian subcategory of the category of all 21 -modules or 9I-comodules; 
(A.2) It is closed under taking the dual of finite dimensional object and taking tensor 

products; 
(A.3) It has enough injectives, so that we can develop a cohomological theory in it; 

(A.4) If we consider ^-modules, every object in CM is locally finite, i.e., is the union 
of its subobjects of finite dimension over k. 

An object A in £W is called an CM-algebra if A is also an algebra and if the unit map 
K\ k —> A and the multiplication map //: A®A —• A are fftf-morphisms. An CM-morphism 
between two f^f-algebras is called an CM-algebra homomorphism if it is also an algebra 
homomorphism. The simplest f^f-algebra is the trivial object k in CM, and the unit map 
n\k —> A for any CM -algebra A is an CM- algebra homomorphism. 

As in [22, Appendix], given an CM -algebra A, the cohomology group H*(CM,A) = 
Ext*(&,A) becomes a graded ^-algebra under the cup product, which is induced by the 
Kunneth isomorphism Hl(CM,A) <g) Hj(CM,A) = Hi+j(CM,A 0 A) and the product homo­
morphism A® A —> A. More generally, if A is an fW -̂algebra and V G Ob(!M ) has a left A-
module structure compatible with the CM-structures, then Hm(CM, V) is a left H*(CM, A)-
module. In particular, for any V G Ob(fW), H*(CM, V) is a left //*(fW, &)-module. Also, 
if A and 5 are CM- algebras, then any CM- algebra homomorphism \l)\A^ B will induce a 
graded algebra homomorphism ^*: H*(CM,A) —> Hm(CM,B). In particular, the unit map 
K\ k —» A gives rise to a graded algebra homomorphism /c*: Hm(CM, k) —> H*(CM,A). 

We are mainly interested in a special class of fW-algebras, described in the following 
lemma, whose easy proof is left to the reader. The assertion (2), in the context of co-
modules, appears in [22, (A.4.2)] as an example. Also, the lemma, restricted to quantum 
enveloping algebras, is contained in [1, (3.6)]. 
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LEMMA A.5. Let V £ Ob(fAf) be finite dimensional over k with basis {v,-}. Then: 

(1) The natural map TT: V* 0 V —>• ky sending f 0 v tof(v)forf G V* am/ v G V, is an 

0\{-morphism; 

(2) A = End^(V) = V 0 V* /s an M-algebra with multiplication identity \A = 

E/ v/ ®ft, where {fi} is the basis ofV* dual to the given basis ofV. 

REMARK A.6. Note that Lemma A.5 is not trivial—if we interchange V and V*, the 

results may not hold! In fact, if we still have these results, then the trivial object k will be 

a direct summand of V® V*, provided dim V is not 0 in k. If, in addition, V is an injective 

object in M, then it follows that k (and therefore any object in !M) is injective (see [22, 

(2.8.2)]). Hence any object in 9d is completely reducible. We have counterexamples to 

show this is not true. (For example, the category of rational modules over quantum group 

Gq = Ghq(n) or SLq(n) with char k = 0 and q is a primitive /-th root of unity for an odd 

integer/. See [21, (9.10.4)].) 

If the antipode of % has order 2, then the canonical map V —+ V** is an M -morphism. 

It follows from Lemma A.5 that the canonical map irf: V 0 V* = (V*)* 0 V* —• k is an 

fW-morphism. From this observation, an interesting (perhaps well-known) fact follows 

easily: If the category of comodules or the category of locally finite modules for a /c-Hopf 

algebra with 7 2 = id (e.g., a commutative or cocommutative Hopf algebra) has a finite 

dimensional injective object / with d im/ nonzero in k, then any object in the category is 

completely reducible. In particular, if a finite dimensional Hopf algebra with 7 2 = id has 

dimension nonzero in k (e.g., char k = 0), then any comodule or modules over the Hopf 

algebra is completely reducible. The complete reducibility of ordinary representations of 

a finite group is a special case of the above assertion. 

Denote by S y the kernel of the graded algebra homomorphism ijjy: Hm(!J\{, k) —> 

Hm(M, V 0 V*) induced by the unit map K: k —• V 0 V* given in Lemma A.5(2). Then 

we have the following result. 

PROPOSITION A.7. Let V, U G Ob(fAf) be finite dimensional. Then 3 y C 3VQU> 

Moreover, if there exists an ïM-homomorphism 77: V 0 V* —> k with 77 o K: & —> k nonzero, 

then 3 y = %y®u-

PROOF. Let K: k -^ U 0 U*, «': k -> V 0 V* and K"\ k —> V 0 U 0 (7* 0 V* be the 

unit maps. Clearly, K" = (idy 0 K 0 idy*) OK' , identifying V 0 V * with V 0 & 0 V*. Thus, 

i/jy®u factors through xjjy. This implies the first assertion. 

For the second assertion, note that 77 o K = « • id for a nonzero a E k. Replacing 7/ 

by a~xr\, one may assume a — I. Then K' = (idy 077 0 idy*) 0 (idy 0 K 0 idy*) o K,', i.e., 

K1 — (idy 077 0 idy*) O ft". Thus , l/v = (idy 077 0 idy*)* O l/>V®t/> forcing 3yg£/ C 3 y . 

Therefore, S y = ^y^u- • 

Note that in Proposition A.7,77 may not be an algebra homomorphism. 

Denote by 3lv the left annihilator of H*(9rf, U) in Hm(M,k). This is an ideal of 

Hm(M,k). 
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PROPOSITION A.8. Assume that H'{M, k) is commutative. Let V be a finite dimen­
sional object in 9\{. Then 

3y C (I 9?v<g)£/ C (I yiy®L C y Sy. 
f/GOb(fW) LeOb(ftf) 

irreducible 

PROOF. Let A = V® V*. Viewing V® £/ canonically as a left A-module with the fW-
morphism <̂ / = idy ®7r ® id /̂ (see Lemma A.5(l)) as its structure map, the k-action on 
V® U factors through the action of A. By taking cohomology, the cup product Hl(tM, A)<8> 
Hj(M, V <g) U) -> Hi+j(M,A <g> V (8) *7) and the morphism (&),: Hi+j(M,A ® V ® 
£/) -* /^"(fW, V (g) £/) define an ##(fW, A)-module structure on 7/#(fW, V 0 U), and the 
//•(fW, ^-action on H*(M, V 0 £/) factors through the action of H*(fM,A). It follows 
that 3y C 3lv®u, hence 3y C f)u ^v^u-

The inclusion f|c/ ^v®u C HL ^V®L is trivial. 
Since 3y = 9? y® y*, we complete the proof by showing the inclusion f]L ^V®L C 
y®̂ / for any finite dimensional object U of fW by induction on dim £/. If U is irre­

ducible, this is trivial. In general, let U\ be a proper subobject of U and f/2 = U/U\. 
The exact sequence of A-modules 0 —+ V 0 £/i —> V 0 ( / - - * V ® £/2 —> 0 leads to an 
exact triangle of //*(fW, &)-modules: 

//•(fW, V®U{) —• //#(fW, V 0 £/) 
\ / 

//•(fW, V 0 £/2) 

Let « G HL ^V®L and * G H*(0K, V0 (7). By induction applied to C/2, «r^ is in the image 
of//*(#/", V 0 U\ ) for large r. Then, by induction applied to U\, «5JC = 0 for some s > r. 
Thus, a G \fyiv®u, as required. • 
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