ON THE ABSOLUTE SUMMABILITY BY BOREL'S INTEGRAL METHOD OF THE DERIVED FOURIER SERIES AND ITS CONJUGATE SERIES

by R. M. SHARMA
(Received 14th September 1966)

Summary. Mohanty (1) and (3) considered the absolute summability of conjugate series and Fourier series by Borel's integral method by proving the following theorems.

Theorem A. If \(\psi(t) \log \frac{k}{t} \) is of bounded variation in \((0, \pi)\), then \(\sum_{n=1}^{\infty} B_n(\theta) \) is summable \(\left| B' \right| \).

Theorem B. If \(g(t) \) is of bounded variation in \((0, \pi)\), then the series \(\sum_{n=1}^{\infty} A_n(\theta) \) is summable \(\left| B' \right| \).

The present author considered the absolute summability of derived Fourier series and its conjugate series by Borel's integral method. Theorems proved by the present author are

Theorem 1. If

(i) \(\psi(+0) = 0 \)

and

(ii) \(\int_{0}^{b} t^{-2} |d\psi(t)| < \infty; 0 < \delta < 1. \)

then the series \(\sum_{n=1}^{\infty} nB_n(\theta) \) is summable \(\left| B' \right| \).

Theorem 2. If

(i) \(\phi(+0) = O(1) \)

and

(ii) \(\int_{0}^{b} t^{-2} |d\phi(t)| < \infty; 0 < \delta < 1. \)

then the series \(\sum_{n=1}^{\infty} nA_n(\theta) \) is summable \(\left| B' \right| \).

https://doi.org/10.1017/S0013091500011913 Published online by Cambridge University Press
1. Definition

A series \(\sum_{n=0}^{\infty} a_n \) is said to be summable \((B')\) to sum \(A\) if

\[
\int_0^\infty e^{-x} \sum_{n=0}^{\infty} \frac{a_n x^n}{n!} \, dx = \lim_{x \to \infty} \int_0^x e^{-x} \sum_{n=0}^{\infty} \frac{a_n x^n}{n!} \, dx = A.
\]

If the above integral is absolutely convergent, we say that the series \(\sum_{n=0}^{\infty} a_n \) is absolutely summable by Borel’s integral method \((2)\) or summable \(|B'|\).

2. Let \(f(t) \) be Lebesgue integrable in \((-\pi, \pi)\) and periodic with period \(2\pi\) and let

\[
f(t) \sim \frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} A_n(t). \tag{2.1}
\]

The allied series of \((2.1)\) at \(t = \theta\) is

\[
\sum_{n=1}^{\infty} (b_n \cos n\theta - a_n \sin n\theta) = \sum_{n=1}^{\infty} B_n(\theta)
\]

and the derived Fourier series is

\[
\sum_{n=1}^{\infty} nB_n(\theta). \tag{2.2}
\]

The conjugate series of \((2.2)\) is

\[
\sum_{n=1}^{\infty} nA_n(\theta). \tag{2.3}
\]

We write

\[
\phi(t) = \frac{1}{2} \{f(\theta + t) + f(\theta - t)\} \tag{2.4}
\]

\[
\psi(t) = \frac{1}{2} \{f(\theta + t) - f(\theta - t)\} \tag{2.5}
\]

and

\[
g(t) = \phi(t) \log \frac{k}{t}. \tag{2.6}
\]

Mohanty \((1)\) and \((3)\) proved

Theorem A. If \(\psi(t) \log \frac{k}{t} \) is of bounded variation in \((0, \pi)\), then \(\sum_{n=1}^{\infty} B_n(\theta) \) is summable \(|B'|\).

Theorem B. If \(g(t) \) is of bounded variation in \((0, \pi)\) then the series \(\sum_{n=1}^{\infty} A_n(\theta) \) is summable \(|B'|\).

3. The object of the present paper is to prove the following two theorems.

Theorem 1. If \((i)\) \(\psi(+0) = 0 \)

and \((ii)\)

\[
\int_0^{\delta} t^{-2} |d\psi(t)| < \infty; \quad 0 < \delta < 1,
\]

then the series \(\sum_{n=1}^{\infty} nB_n(\theta) \) is summable \(|B'|\).
Theorem 2. If (i) $\phi(+0) = O(1)$
and (ii) $\int_0^\delta t^{-2} |d\phi(t)| < \infty$; $0 < \delta < 1$
then the series $\sum_{n=1}^\infty nA_n(\theta)$ is summable $|B'|$.

4. In order to simplify the proof we require the following estimates for the function
\[g_1(x, t) = \int_t^\delta e^{x \cos u} \sin (u + x \sin u) du; \ 0 < t < \delta < 1, \ x > 0. \]
\[= O(e^x) \quad (4.1) \]
\[= O(x^{-1} e^{x \cos t}) \quad (4.2) \]
\[= O(x^{-1} e^x) \quad (4.3) \]
\[g_2(x, t) = \int_t^\delta e^{x \cos u} \cos (u + x \sin u) du; \ 0 < t < \delta < 1, \ x > 0. \]
\[= O(e^x) \quad (4.4) \]
\[= O(x^{-1} e^{x \cos t}) \quad (4.5) \]
\[= O(x^{-1} e^x) \quad (4.6) \]

Proof. Let $0 < t < \delta < 1, \ x > 0$ and $\epsilon_1, \ \epsilon_2$ be either 0 or 1. Define
\[h(x, t) = \int_t^\delta e^{x \cos u} \sin (u + \frac{1}{2} \pi \epsilon_1) \sin (x \sin u + \frac{1}{2} \pi \epsilon_2) du, \]
using the second mean value theorem for integrals twice
\[h(x, t) = e^{x \cos t} \int_t^\delta \sin (u + \frac{1}{2} \pi \epsilon_1) \sin (x \sin u + \frac{1}{2} \pi \epsilon_2) du; \ (t < s < \delta) \]
\[= x^{-1} e^{x \cos t} \int_t^\delta x \cos u \sin (x \sin u + \frac{1}{2} \pi \epsilon_2) \sec u \sin (x \sin u + \frac{1}{2} \pi \epsilon_1) du \]
\[= x^{-1} e^{x \cos t} \left[\epsilon_1 + (1 - \epsilon_1) \tan s \right] \int_r^s x \cos u \sin (x \sin u + \frac{1}{2} \pi \epsilon_2) du \]
\[= 0(x^{-1} e^{x \cos t}) \]
from which properties (4.2), (4.3), (4.5) and (4.6) follow at once.

5. Proof of Theorem 1
\[\sum_{n=1}^\infty nB_n(\theta) \text{ is summable } |B'| \text{ if } \]
\[I = \int_0^\infty e^{-x} \left| \sum_{n=1}^\infty \frac{nB_n(\theta)}{n!} x^n \right| dx < \infty. \]
Now

\[
I = 2\pi^{-1} \left(\int_0^\infty e^{-x} \left| \sum_{n=1}^\infty \frac{\psi(t) \sin nt}{(n-1)!} \right| dx \right)
\]

\[
= 2\pi^{-1} \left(\int_0^\infty e^{-x} \left| \int_0^\infty \psi(t) \cdot \sum_{n=1}^\infty \frac{x^n \sin nt}{(n-1)!} dt \right| dx \right)
\]

\[
= 2\pi^{-1} \left(\int_0^\infty e^{-x} \left| \int_0^\infty \psi(t) \cdot xe^{\cos t} \cdot \sin (t+x \sin t) dt \right| dx \right)
\]

\[
\leq 2\pi^{-1} \left(\int_0^\infty xe^{-x} \left| \int_0^\delta \psi(t) \cdot xe^{\cos t} \cdot \sin (t+x \sin t) dt \right| dx \right)
\]

\[
+ 2\pi^{-1} \left(\int_0^\infty xe^{-x} \left| \int_\delta^\infty \psi(t) \cdot xe^{\cos t} \cdot \sin (t+x \sin t) dt \right| dx \right) ; \quad (0 < \delta < 1)
\]

\[
\leq I_1 + I_2, \quad \text{say} \quad (5.1)
\]

We have

\[
I_2 \leq 2\pi^{-1} \int_0^\infty xe^{-x} dx \int_0^\delta \left| \psi(t) \right| e^x \cos \delta dt
\]

\[
\leq 2\pi^{-1} \int_0^\infty xe^{-x} \cdot e^x \cos \delta dx \int_0^\delta \left| \psi(t) \right| dt, \quad (\delta < \zeta < \pi)
\]

\[
\leq 2\pi^{-1} \left\{ \left[\frac{-xe^{-2x\sin^2 \frac{1}{2}\delta}}{2 \sin^2 \frac{1}{2}\delta} \right]_0^\infty + \int_0^\infty \frac{e^{-2x\sin^2 \frac{1}{2}\delta}}{2 \sin^2 \frac{1}{2}\delta} dx \right\} \int_0^\delta \left| \psi(t) \right| dt
\]

\[
\leq \frac{1}{2} \pi^{-1} \cosec^2 \frac{1}{2}\delta \cdot \int_0^\infty \left| \psi(t) \right| dt < \infty. \quad (5.2)
\]

Now

\[
\int_0^\delta \psi(t) e^{\cos t} \cdot \sin (t+x \sin t) dt
\]

\[
= - \left\{ \psi(t) \int_t^\delta e^{\cos u} \cdot \sin (u+x \sin u) du \right\}_0^\delta + \int_0^\delta d\psi(t) \int_t^\delta e^{\cos u} \cdot \sin (u+x \sin u) du
\]

\[
= \int_0^\delta d\psi(t) g_1(x, t), \quad \text{say} \quad (5.3)
\]

by condition (i) of the theorem. Therefore

\[
I_1 = 2\pi^{-1} \left(\int_0^\infty xe^{-x} \left| \int_0^\delta d\psi(t) g_1(x, t) \right| dx \right)
\]

\[
\leq 2\pi^{-1} \left(\int_0^\delta \left| d\psi(t) \right| \int_0^\infty xe^{-x} \left| g_1(x, t) \right| dx \right)
\]

\[
\leq 2\pi^{-1} \int_0^\delta \left| d\psi(t) \right| \cdot J, \quad \text{say} \quad (5.4)
\]
Now
\[J = \int_{0}^{1} xe^{-x} g_1(x, t) \, dx + \int_{1}^{t^{-1}} xe^{-x} g_1(x, t) \, dx + \int_{t^{-1}}^{\infty} xe^{-x} g_1(x, t) \, dx \]
\[= J_1 + J_2 + J_3, \text{ say} \] (5.5)

By (4.1) we have
\[J_1 = \int_{0}^{1} xe^{-x} \cdot O(e^x) \, dx \]
\[= O(1) \] (5.6)

By (4.3) we have
\[J_2 = \int_{1}^{t^{-1}} xe^{-x} \cdot O(x^{-1}e^x) \, dx \]
\[= O(t^{-1}) \] (5.7)

By (4.2) we have
\[J_3 = \int_{t^{-1}}^{\infty} xe^{-x} \cdot O(x^{-1}e^x \cos t) \, dx \]
\[= O \left(\int_{t^{-1}}^{\infty} e^{-2x\sin^2 \frac{t}{2}} \, dx \right) \]
\[= O(t^{-2}). \] (5.8)

There is therefore an \(A \) with
\[I \leq I_1 + I_2 \leq A + A \int_{0}^{d} t^{-2} \, |d\psi(t)| < \infty. \]

Thus the theorem is proved

6. Proof of Theorem 2

\[\sum_{n=1}^{\infty} nA_n(\theta) \] is summable \(B' \) if
\[I' = \int_{0}^{\infty} e^{-x} \left| \sum_{n=1}^{\infty} \frac{nA_n(\theta)}{n!} x^n \right| \, dx < \infty. \]

Now
\[I' = 2\pi^{-1} \int_{0}^{\infty} e^{-x} \left| \sum_{n=1}^{\infty} \frac{\phi(t) \cos nt \, dt}{(n-1)!} x^n \right| \, dx \]
\[\leq 2\pi^{-1} \int_{0}^{\infty} xe^{-x} \left| \int_{0}^{d} \phi(t)e^{x \cos t} \cdot \cos (t + x \sin t) \, dt \right| \, dx \]
\[+ 2\pi^{-1} \int_{0}^{\infty} xe^{-x} \left| \int_{0}^{d} \phi(t)e^{x \cos t} \cdot \cos (t + x \sin t) \, dt \right| \, dx \]
\[\leq I_1 + I_2; \] (6.1)
say, where $0 < \delta < 1$ and

$$I_2' \leq 2\pi^{-1} \int_0^\infty xe^{-x} \cdot e^x \cos \delta dx \int_0^\delta |\phi(t)| \, dt; \ (\delta < \zeta < \pi) < \infty \quad (6.2)$$

Now

$$\int_0^\delta \phi(t)e^t \cdot \cos (t + x \sin t) \, dt = O(1) + \int_0^\delta d\phi(t)g(x, t)$$

by condition (i) of the theorem. Therefore

$$I_1' \leq 2\pi^{-1} \int_0^\delta |d\phi(t)| \cdot \int_0^\infty xe^{-x} \cdot |g_2(x, t)| \, dx + A$$

$$\leq 2\pi^{-1} \int_0^\delta |d\phi(t)| \cdot J' + A, \ \text{say} \quad (6.3)$$

Proceeding as in the proof of Theorem 1 and using (4.4), (4.5) and (4.6) we have

$$J' = O(t^{-2}) \quad (6.4)$$

Therefore

$$I' \leq A + A \int_0^\delta t^{-2} |d\phi(t)| < \infty.$$

Thus the theorem is proved.

I am much indebted to Dr. B. D. Singh, Head of the Mathematics Department of the University of Saugar and to the referee for valuable suggestions.

REFERENCES

