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Laminar natural convection is investigated in an infinite vertical slot which has one wall
with a corrugated profile, and which is subject to either a uniform or periodic heating
profile. This configuration has the attractive feature that it enables a study of the effects
that may be produced via the interaction of heating and topography patterns. It is found that
the addition of the grooves to an isothermal plate leads to a reduction in the vertical fluid
flow and an increase of the transverse heat flow. In contrast, imposing sinusoidal heating
on a flat surface generates convection that appears as counter-rotating rolls but there is no
net vertical flow. The combination of the two effects of corrugation together with periodic
heating leads to a plethora of flow patterns involving a combination of rolls and stream
tubes that carry the fluid along the slot. The details of this vertical flow are governed by a
pattern interaction effect dictated by the relative positions of the heating and corrugation
patterns; when hot spots of the imposed heating overlap the peaks in the grooves the net
flow is upward; in contrast, when they lie over the troughs the resultant flow is downward.
The interplay between the thermal and geometrical effects weakens as the wavelength of
the structure is reduced. The inclusion of a sufficiently strong uniform heating also seems
to wash away the pattern interaction effect.

Key words: convection

1. Introduction

Natural convection in vertical openings is of interest in architectural design as it provides
the means for passive ventilation through the so-called stack effect, whereby heated air
flows in the upward direction and draws in cool air at the base of a structure (Linden
1999; Wong & Heryanto 2004; Nagler 2021). A reverse stack effect can also occur in
which relatively hot air is brought down from above into a cooler environment. Vertical
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openings are also of importance in the design of various fire prevention measures owing
to the possibility of controlling the intensification of combustion and the spreading of fires
(Song et al. 2020). Upright fault lines are known to be significant in the context of thermal
recovery processes (Tournier, Gethon & Rabinowicz 2000). Convection can be used for
cooling by arranging hot surfaces to form vertical slots − this process is known as the
chimney effect, a name coined from the first type configuration used to remove smoke
from fireplaces (Putnam 1882). More contemporary uses of the chimney effect include the
passive cooling of electronic components (Naylor, Floryan & Tarasuk 1991; Straatman,
Tarasuk & Floryan 1993; Straatman et al. 1994; Novak & Floryan 1995; Shahin & Floryan
1999; Andreozzi, Buonomo & Manca 2005) as well as in the design of passively cooled
nuclear reactors (Weil 2012).

Fundamental studies of vertical natural convection can be traced back to Zeldovich
(1937), who developed the theory for self-similar, laminar plane and axisymmetric plumes,
and to Batchelor (1954), who considered a closed vertical cavity. Subsequent studies
have been focused on the possible transition to secondary states (Vest & Arpaci 1969;
Lee & Korpela 1983; Hall 2012), and on turbulent convection (Ng et al. 2015) and the
effect of roughness (Shishkina & Wagner 2011; Toppaladoddi, Succi & Wettlaufer 2017).
Further work has examined the modifications created by ratchet surfaces (Jiang et al.
2019). All these studies typically involved bounding surfaces kept at prescribed uniform
temperatures.

A more recent direction in convection research involves the use of patterned heating
(Hossain & Floryan 2013, 2015a) in which the temperature of the boundaries is not
constant, but rather it adopts some form of prescribed spatial structure (Hughes & Griffiths
2008). Most of the results available are restricted to horizontal slots and demonstrate
similarities in the system response regardless of whether the heating is applied from above
or below (Hossain & Floryan 2014, 2015b). Transition to secondary states is driven by
a competition between the spatial parametric resonance and the Rayleigh–Bénard (RB)
mechanism (Bénard 1900; Rayleigh 1916; Hossain & Floryan 2013) and often exhibits a
strong dependence on the Prandtl number Pr. The use of isothermal corrugated surfaces
leads to a different type of convection which represents a forced response rather than a
bifurcation as in the case of RB convection and exhibits Pr dependence (Abtahi & Floryan
2017a). The combination of heating and topography patterns activates the interaction
mechanism (Floryan & Inasawa 2021), which leads to thermal drift (Abtahi & Floryan
2017b, 2018; Inasawa, Hara & Floryan 2021). It is known that patterned heating can lead to
a reduction in the pressure losses along a horizontal conduit (Hossain, Floryan & Floryan
2012; Floryan & Floryan 2015; Hossain & Floryan 2016) as well as a weakening in the
driving force in the case of the relative motion between two plates (Floryan, Shadman &
Hossain 2018). The combination of heating and groove patterns may conceivably lead to a
reduction in pressure losses greater than can be achieved by pure heating alone (Hossain &
Floryan 2020). This opens the door to the opportunity for the development of flow control
techniques based on carefully setting the relative positions of the heating elements and the
corrugations in the surface.

With this possibility in mind, this paper is focused on the analysis of natural convection
in vertical slots driven by patterned heating and modified by surface grooves. One side
of the slot is smooth and isothermal while the other is corrugated and subject to a
combination of periodic and uniform heating. It is important to emphasize at this early
juncture that our concern is with laminar flow. Turbulent situations are undoubtedly
possible with sufficiently strong heating, as evidenced by the work of Ng et al. (2015).
They demonstrated that flows which exhibit the chimney effect can be laminar-like or
turbulent.
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Figure 1. Schematic diagram of the flow system.

We begin our study in § 2, which provides a description of the model problem. The
next few sections of the paper are devoted to a description of the numerical results and
focus on various aspects of the flow. In § 3 we concentrate on the effect of the geometry
of the wall and so consider the flows that are generated when the amplitude of the grooves
is varied while the temperature of wall is uniform. In § 4 we introduce periodic heating
to the grooved wall; it is found that, under certain circumstances, stream tubes may be
created. We combine the uniform and periodic heating components in § 5 and discuss the
modifications that ensue. In § 6 we consider a long-wavelength analysis of the problem
which helps confirm some of the preceding numerical findings. We round off the paper
with some final remarks and discussion.

2. Problem formulation

Consider an infinite vertical slot formed by one smooth and one corrugated plate as
sketched in figure 1; the coordinate axes are such that the positive x-axis points upwards,
and the y-axis is directed from right to left. The geometry of the slot is then given by

yL(x) = 1, yR(x) = −1 + 1
2 A cos(αx), (2.1a,b)

where the subscripts L, R refer to the left and right plates, and we have
non-dimensionalized lengths on half the mean slot opening h. We remark that the left edge
of the slot is flat, while the other boundary is corrugated; the grooves are of peak-to-trough
amplitude A and of wavenumber α or, equivalently, of wavelength

λ = 2π/α. (2.2)

The left plate is supposed to be isothermal while the right boundary is subject to an
imposed heating which is partly uniform and partly periodic in space. This implies that
on the sides of the slot the two temperature distributions are given by

θL(x) = 0 and θR(x) = Rauni + 1
2 Rap,R cos(αx +Ω), (2.3a,b)

where θ denotes the associated temperature field. This is defined to be θ = T − TL where
the temperature of the left plate TL is used as a reference level and θ has been scaled
on κν/(gΓ h3); here g is the gravitational acceleration, Γ denotes the thermal expansion
coefficient, ν is the kinematic viscosity and κ the thermal diffusivity.

We emphasize the presence of the phase angle Ω which allows us to examine a heating
pattern which is offset relative to the underlying groove geometry. The temperature of the

946 A20-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

58
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.582


J.M. Floryan, W. Wang, S. Panday and A.P. Bassom

right boundary of the slot is dictated by the values of two appropriate Rayleigh numbers;
Rauni sets the intensity of the uniform heating component while Rap,R measures the size
of the periodic modulations. The heating and groove patterns are perfectly tuned as they
are characterized by identical wavenumbers.

Two-dimensional convection in the slot is governed by continuity, Navier–Stokes and
energy equations written in the forms

∂u
∂x

+ ∂v

∂y
= 0, u

∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+ ∇2u + Pr−1θ, (2.4a,b)

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ∇2v and u

∂θ

∂x
+ v

∂θ

∂y
= Pr−1∇2θ. (2.4c,d)

In this system (u, v) denote the velocity components in the (x, y) directions, respectively,
scaled with Uν = ν/h while p is the pressure relative to the hydrostatic component and
scaled on ρU2

ν . The parameter Pr = ν/κ is the Prandtl number and in the subsequent
computations we take Pr = 0.71, the value appropriate for air, unless stated otherwise.

The system of (2.4) needs to be solved subject to suitable flow and temperature
constraints. We demand no slip on the sides of the slot so that

u(x, 1) = u(x, yR) = 0, v(x, 1) = v(x, yR) = 0, θ(x, 1) = 0, θ(x, yR) = θR(x),

(2.5)

where yR is defined in (2.1b) and the temperature profile θR(x) is given by (2.3b). We close
the specification of the problem by noting that the solution must be periodic in x (with a
periodicity dictated by the heating and groove patterns) and there is no externally imposed
mean pressure gradient acting along the slot, i.e.

∂p
∂x

∣∣∣∣
mean

= 0. (2.6)

The system (2.4)–(2.6) was solved by expressing the velocity components using the
streamfunction ψ defined in the usual manner so that u = ∂ψ/∂y and v = −∂ψ/∂x. The
pressure is eliminated between (2.4b,c) and the unknowns written in the form of Fourier
expansions in the x-direction combined with Chebyshev expansions in the y-direction; this
ensures that x-periodicity conditions are automatically satisfied.

The main computational challenge is posed by the irregularity of the solution domain
and the need to consider the wide spectrum of geometries that can arise from the variations
in the groove wavenumber and amplitude. There are various strategies that have been
suggested to tackle this type of problem, and we chose to adopt a device known as
the immersed boundary conditions method. The ideas underpinning this strategy are as
follows. The computational domain is fixed, and the specific flow domain is then immersed
within it. The discretized flow equations remain unchanged across all geometries and
are solved simultaneously both inside and outside of the flow domain, but always so
that the region remains inside the larger computational region. The flow boundaries are
also located inside the computational domain and the flow conditions at these boundaries
are posed as constraints (Szumbarski & Floryan 1999; Husain, Szumbarski & Floryan
2009; Husain & Floryan 2010) which are implemented using the tau method. This
formulation circumvents the need for the numerical construction of intricate grids that
replicate the groove geometry, a process which can be very labour intensive and error
prone, and sidesteps the need for delicate grid convergence studies. All the elements
of the discretization have spectral accuracy, so the global accuracy of the computations
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is controlled by changing the number of Fourier modes and Chebyshev polynomials
appropriately. All results presented in this paper were obtained with an accuracy of at least
four digits. The groove shape is encoded within the algorithm by means of appropriate
Fourier expansions which means that variations of groove geometry can be accounted for
by simply changing the various coefficients.

A few important quantities can be used to monitor the properties of the flow. The first
of these is the net vertical flow rate Q which is defined by

Q =
∫ 1

yR(x)
u(x, y) dy. (2.7a)

Useful measures of the heat transfer are provided by the local Nusselt numbers at the right
(NuR) and left (NuL) plates. These are simply given by the appropriate normal derivatives
∂θ/∂n so that on the two walls we have

NuR = −
[

1 + 1
4
α2A2sin2(αx)

]−1/2[1
2

Aα sin(αx)
∂θ

∂x
+ ∂θ

∂y

]
yR

and NuL = − ∂θ

∂y

∣∣∣∣
yL

.

(2.8a,b)

These local values can be spatially averaged over the wavelength λ = 2π/α thereby giving
a mean value

Nuav = −λ−1
∫ λ

0

∂θ

∂y

∣∣∣∣
yL

dx = −λ−1
∫ λ

0

[
1
2

A α sin(αx)
∂θ

∂x
+ ∂θ

∂y

]
yR

dx, (2.8c)

we remark that, necessarily, these values must be the same irrespective of which edge of
the slot is used. This property was used as a check on the veracity of the computational
work. For the analytical studies that we describe later it is evidently easier to evaluate Nuav
using values on the flat left-hand side of the slot. We also point out that a positive value of
Nuav implies that the left plate is gaining energy.

3. Isothermal plates

We commence our discussion of the properties of the induced convection when the two
edges of the slot are isothermal so that the periodic part of the imposed heating is turned
off (Rap,R = 0). Thus, we have an imposed uniform heating on the right-hand side of the
slot together with any effects induced geometrically by the presence of the grooves.

Of course, when there is no corrugation, so A = 0, the governing equations admit a very
simple exact solution in which the temperature, the streamwise velocity, the flow rate and
the transverse heat flow are given by

θS = Rauni

2
(1 − y), uS = Rauni

4
Pr−1

(
1
3

y − 1
)
(y2 − 1), QS = Rauni

3
Pr−1, Nuav,S = 1

2
Rauni;

(3.1a–d)

here, the subscript S denotes that the various fields are associated with a smooth slot. We
can conclude from these expressions that if Rauni > 0 the system undergoes heating, and
the fluid moves upwards; conversely if Rauni < 0 there is cooling and downward motion.

Now we consider the introduction of the grooves so that A /= 0. The results are presented
in several complementary ways, and these are summarized in figure 2. Here, we consider
the flow rate Q and the average Nusselt number Nuav relative to their respective values QS
and Nuav,S in the absence of grooves. We take as a base case the flow when Rauni =
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Figure 2. Variations of the reduction in the flow rate Qs − Q (solid line) and the increase of the heat flow
Nuav − Nuav,S (dashed line). Calculations were initially performed with the groove amplitude A = 0.05,
wavenumber α = 1 and a Rayleigh number Rauni = 100. The three plots show the effects of changing (a)
the amplitude A, (b) the wavenumber α and (c) Rauni away from the initial state. The horizontal lines in the
upper right corner in (b) denote the limits achieved as α → ∞.

100, the wavenumber α = 1 and the groove amplitude A = 0.05 and then in figure 2
consider the effects of varying the groove amplitude, the wavenumber and Rauni separately.
The results shown in figure 2(a) suggest that Qs − Q and Nuav − Nuav,S increases are
proportional to A2, at least over the range of groove sizes examined. In contrast, the effects
of varying the groove wavenumber are somewhat more complex. There is a well-defined
limit as α → 0 which can be determined using analysis that is deferred to § 6 below. As
α increases, so Qs − Q and Nuav − Nuav,S grow roughly proportional to α but this does
not continue indefinitely; rather, there are upper bounds that are approached as α increases
further. Last, we note that flux and heat transfer measures increase in proportion to Rauni
(see figure 2c).

It is instructive to look at the various forces that act on the edges of the slot. The stresses
on the plates can be ascribed to viscous and pressure forces. On the right-hand boundary
the viscous part is

σxv,R =
[
−αA sin(αx)

∂u
∂x

∣∣∣∣
yR

−
(
∂u
∂y

+ ∂v

∂x

)∣∣∣∣
yR

][
1 + 1

4
α2A2sin2(αx)

]−1/2

, (3.2a)

and the pressure part is

σxp,R = 1
2αA sin(αx)p|yR[1 + 1

4α
2A2sin2(αx)]−1/2, (3.2b)

and the corresponding mean forces (Fxv,R,Fxp,R) are obtained by spatially averaging over
a wavelength. On the flat left-hand plate, the local viscous stress is simply

σxv,L = ∂u
∂y

∣∣∣∣
yL

, (3.2c)

while σxp,L = 0 and the mean value Fxv,L is defined in the natural way.
We note that in the case of no grooves in the right-hand plate we have

Fxv,SR = −2
3 RauniPr−1, Fxv,SL = −1

3 RauniPr−1; (3.3a,b)

again, the S designation reminds us that there are values associated with a smooth
right-hand boundary.
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Figure 3. (a) The spatial distribution of the pressure force σxp,R at the right plate for the parameter choices
Rauni = 100, A = 0.05, α = 1 (red lines) and α = 10 (blue lines). In (b) are shown the x-components of the
viscous forces at the right (σxv,R) and the left (σxv,L) plates shown by solid and dashed lines, respectively. The
two local Nusselt numbers at the right (NuR) and left (NuL) plates are shown in (c) by solid and dashed lines
respectively. The grey lines at the bottom of each figure denote the shape of the groove.

The results summarized in figure 3 suggest that the addition of grooves tends to add
pressure resistance while decreasing the viscous component and this effect becomes
increasingly pronounced at larger α. The distributions of the local heat fluxes as described
by (2.8a,b) show that the heat flow tends to concentrate at the groove peaks. On the other
hand, variations in the mean values Nuav are minimal as the grooves are insufficiently
powerful to generate significant transverse fluid movement.

4. Periodic heating

We now switch attention to the case when convection is driven by periodic heating and,
once again, start with the situation without grooves. The flow is driven by the buoyancy
force which switches direction every half-wavelength. The fluid flows upwards along the
heated segment of the plate and downwards along the cooled section which gives rise
to counter-rotating rolls with one pair per wavelength, as illustrated in figure 4(a). The
downwards moving fluid meets the upwards moving fluid with pressure rising in the
collision zone and reaching a maximum around x = 0.25λ (see figure 4b) forcing the fluid
to turn into the interior of the slot. The pressure minimum forms around x = 0.75λ as the
fluid is drawn by buoyancy force away from the plate. This pressure minimum draws the
fluid from the interior of the slot. The pressure remains nearly constant in the horizontal
direction, as illustrated in figure 4(b).

Typical velocity and temperature distributions are displayed in figure 5 and confirm the
expectation that the temperature varies across the whole slot and the rolls fill the region
when the heating wavenumber α = O(1). As α grows, we see the formation of a thermal
boundary layer attached to the heated plate with the associated convection confined to this
thin region (see figure 5b,c).

In fact, it is not difficult to describe the flow when α is large. Elementary scaling of the
governing equations (2.4) shows that the flow is confined to an O(α−1) zone next to the
right-hand wall and, if y = −1 + α−1Y here, the leading-order temperature field is given
by

θ(x, Y) = 1
2 Rap,Rexp(−Y) cosαx. (4.1)
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Figure 4. (a) The flow and temperature fields and (b) the flow and pressure fields for periodic heating in a
slot with smooth sides. Parameter values are Rap,R = 400, α = 1. Temperature has been normalized so that its
maximum value is unity.
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Figure 5. The distribution of the x-velocity component u (black lines, left axis) and the temperature θ (red
lines, right axis) as functions of y at x = 0 (solid lines) and x = λ/2 (dashed lines) when Rap,R = 400: (a)
α = 1; (b) α = 10; (c) the flow and the temperature fields associated with α = 10.

This thermal profile drives a weak flow

u = − α−2

16Pr
Rap,RY(2 − Y)exp(−Y) cosαx, v = − α−2

16Pr
Rap,RY2exp(−Y) sinαx,

(4.2a,b)

and we see how there is exponential decay as we leave the boundary layer.
The flow patterns change significantly when grooves are introduced. This is depicted in

figure 6 where we can see a stream tube that meanders between the rolls and transports
fluid either upwards or downwards depending on the relative positioning of the imposed
temperature hot spots and the groove peaks. When the hot spots are located close to
the peaks, the stream tube is attached to the heated section of the groove and carries
fluid upwards (see figure 6a). Conversely, when the hot spots are nearer to the groove
troughs, the stream tube is adjacent to the cooled section of the groove and moves fluid
downwards (see figure 6c). The maximum upward flow occurs when the phase shift is
almost Ω = 0, which corresponds to hot spots virtually coinciding with the groove peaks
(see figure 6a) with the greatest downward flow occurring near Ω = π. When the hots
spots are positioned half-way between the groove peaks and troughs the stream tube is
extinguished, as seen in figure 6(b,d).

As the heating pattern moves with respect to the grooves from Ω = 0 through π and
back to 2π the convection flow field evolves in the sequence shown in figure 6(a–d) while
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Figure 6. (a–d) The flow and the temperature fields and (e–h) the flow and pressure fields for the four phase
angles Ω = 0,π/2,π and 3π/2. The parameter values for the periodic heating are Rap,R = 400 and α = 1
and the groove amplitude A = 0.05. Temperature has been normalized so that its maximum value is unity.

the pressure field development is described in figure 6(e–h). As the position of the pressure
field moves relative to the grooves, so its projection onto the surface topography also
changes, thereby producing a net surface pressure force that can be directed upwards (see,
for example, figure 6e), downwards (figure 6g) or disappears completely (figure 6f,h). This
is a manifestation of a pattern interaction effect (Floryan & Inasawa 2021) which is known
to generate thermal drift in horizontal slots (Abtahi & Floryan 2017b; Inasawa et al. 2021).

The mechanism that controls the generation of the surface force is illustrated in detail in
figure 7. The distributions of surface pressure at the heated plate displayed in figure 7(a)
suggest how it shifts in the x-direction as the heating pattern moves. The projections of
the surface pressure onto the topography generate an x-component of the pressure force
which can be evaluated using equation (3.2b). Various distributions of σxp,R are shown
in figure 7(b). The surface pressure force is directed upwards nearly everywhere when
Ω = 0, downwards when Ω = π, and averages to zero when Ω = π/2 or Ω = 3π/2.
It is interesting to note that the choices Ω = π/2, 3π/2 produce the largest flow rate in
horizontal slots while Ω = 0,π generate no net flow (Abtahi & Floryan 2017b,c, 2018;
Inasawa et al. 2021).

The above discussion summarizes how the flow is dictated by two processes; namely,
the buoyancy force which acts within the fluid and the surface pressure force which works
on the corrugated plate. Changes in the relative position of the hot spots with respect to
the grooves result in a continuous variation in Q and Nuav .

4.1. Convection with stream tubes
Unless the phase angle Ω = π/2 or 3π/2 the flow structure includes the emergence of
stream tubes. At such values of Ω typical flow rates Q and mean Nusselt numbers Nuav
are proportional to both the groove amplitude A and the periodic Rayleigh number Rap,R
(see figures 8b and 8e). The dependence of these quantities on the wavenumber α is rather
complex, as shown in figures 8(c) and 8( f ) and requires closer inspection. Figure 8(c)
suggests that the flow rate increases proportionally to α when α is greater than about one.
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Figure 7. (a) The distribution of the surface pressure at the right plate pR and (b) the x-component of the
pressure force σxp,R for the four phase angles Ω shown. The parameter values are Rap,R = 400,Rauni = 0,
α = 1, A = 0.05. The grey line at the bottom of each figure shows the shape of the groove.

This rise does not continue indefinitely − an upper bound on Q is furnished in the limit
as α → ∞ when the groove peaks, which correspond to hot spots, bunch together − the
plate behaves in a way not dissimilar to the situation that arises should the corrugated plate
centred at y = 1 be replaced by an isothermal smooth plate located at y = −1 + 1

2 A (i.e.
at the peaks of the grooves) and held at a temperature Rauni = 1

2 Rap,R = 200. We also
notice that at certain values of α the direction of the net flow switches. The heat flow also
changes in a complicated way; it attains a local maximum near α = 1.5 and there is a local
minimum near α = 3 (see figure 8f ).

The forms of the flow and temperature fields for a selection of increasing values of α
are illustrated in figure 9. When α = 1 there are well-defined counter-rotating rolls which
stretch between plates. As α increases towards 2 these rolls contract, with the structure
near the left-hand plate being markedly reduced, see figure 9(a). This behaviour continues
at α grows further (figure 9b), with the left rolls being eliminated completely once α
reaches a value of 3. The right rolls persist but they too are barely visible once α = 5
and are extinguished at α = 10. The results shown in figure 8(c) suggest that the observed
growth of Q roughly proportional to α begins near α = 2.48, which correlates well with
the value at which the rolls diminish. We suppose that at this juncture the corrugations
in the grooved plate vary on a scale that is so small that the boundary begins to play
a role more reminiscent of that of a smooth hot plate. The reduction in Nuav apparent
in figure 8( f ) as α increases from 1.5 to approximately 3 corresponds to the gradual
elimination of the rolls and the subsequent recovery and increase in Nuav indicates onset
of the dominance of conduction; this is very similar to what has been previously observed
in the case of horizontal slots (Abtahi & Floryan 2017c). The structure of the temperature
field clearly shows the formation of a thermal boundary layer near the heated plate as α
grows; in contrast, the character of the flow field can be interpreted as the intensification
of the stream tube as no velocity boundary layer appears.

Some details of the evolution of the flow and temperature fields are summarized in
figure 10. As the wavenumber grows the process by which the thermal boundary layer is
created is quite clear. The corresponding velocity field demonstrates a gradual elimination
of downward movement when Ω = 0 (and of upward motion should Ω = π). It can be
concluded that the preferred direction of motion obtained when the corrugations are of a
short wavelength is set by the relative position of the heating and grooves.
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Figure 8. Flow characteristics for convection with periodic heating with Rap,R = 400, α = 1,A = 0.05 and
Ω = 0. (a) The variations of the flow rate Q as a function of the phase difference Ω for the three amplitudes
A = 0, 0.05, 0.1 and two wavenumbers α = 0.1 and 1. (b) Dependence of Q on the periodic Rayleigh number
Rap,R and the groove amplitude A and (c) on the groove wavenumber α with all the other parameters held fixed.
The results for the average Nusselt number under the same flow conditions are shown in (d–f ). The dashed lines
on (c) denote a change in direction and the horizontal lines in the upper right corners of (c) and ( f ) denote the
upper bounds for α → ∞.
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Figure 9. Convection properties for the parameter values Rap,R = 400,A = 0.05 and Ω = 0. Shown are the
flow and temperature fields for the five wavenumbers α = (a) 2, (b) 2.5, (c) 3, (d) 5 and (e) 10. Temperature
has been normalized so that its maximum value is unity.

As α increases, the flow pattern becomes similar to that produced by a uniformly heated
grooved slot while the pressure distribution on the surface of the heated plate replicates
that in a flow through a grooved channel, see figure 11(a). The pressure acting on the
fluid at the heated plate is positively contributing to the net driving force when α <∼ 9
(see figure 11b). Further increase in α leads to elimination of the rolls and the upward
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Figure 11. (a) The distribution of the surface pressure at the right plate pR and (b) the x-component of the
pressure force at the right plate σxp,R when Rap,R = 400, A = 0.05 and Ω = 0. Results are shown for the
wavenumbers α = 5, 6, 7, 8, 9, 10. The grey line at the bottom of each figure denotes the shape of the groove.

movement dominates the flow. Furthermore, the pressure force changes direction, and the
grooves begin to play a role akin to that of roughness, thereby opposing the fluid movement
(Mohammadi & Floryan 2013).

Next, we consider the long-wavelength limit α → 0. Once α falls below roughly 0.28
the direction of the stream tube switches (as shown in figure 8c) and it also moves and
now is attached to the cooled section of the plate. The direction of the fluid transport is
fixed by the value of the phase offset Ω . The pressure fields displayed in figures 6 and 12
are similar in as much that the x-components of the pressure forces are almost identical in
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central plots show enlargements of the zones near the respective plates. The flow and pressure fields associated
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Figure 13. The distributions of (a) the surface pressure and (b) the x-component of the pressure force at the
right plate when Rap,R = 400, α = 0.2 and A = 0.05 Solid lines denote Ω = 0 and dashed lines denote Ω =
π. The grey profile at the bottom of each figure represents shape of the groove.

the two cases (cf. figures 7 and 13) and the stream tube positions shown in figures 6 and
12 are kinematically consistent with the locations of the rolls. The only marked difference
between the two flows is an order of magnitude increase in the pressure variations when
α is small, but this in itself is insufficient to explain the change in the position of the
stream tube. We conclude that it is the interplay between the buoyancy and the pressure
forces which sets the location of the stream tubes and the direction of the flow within
them; moreover, this changes as α decreases. Once the repositioning of the stream tube
has occurred, any further reduction in α leads to a weakening of the overall flow field and
the magnitude of Q diminishes proportional to α2 (see figure 8c).

The evolution in Nuav as α falls displays some interesting behaviour. With the particular
parameter choices Rap,R = 400 and A = 0.05 it seems that over the range 0.34 < α <
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Figure 14. The flow and the temperature fields when Rap,R = 400,Rauni = 0, A = 0.05 and the phase offset
Ω = π/2. Shown are the fields for the four wavenumbers α = (a) 2, (b) 3, (c) 5 and (d) 10. Temperature has
been normalized so that its maximum value is unity.
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Figure 15. The distributions of the x-velocity component u (black lines, left axis) and the temperature θ (red
lines, right axis) as functions of y at x = λ/4 (solid lines) and x = 3λ/4 (dashed lines) for the parameter
values Rap,R = 400,Rauni = 0, A = 0.05 and the phase offset Ω = π/2. Shown are the profiles for the four
wavenumbers α = (a) 2, (b) 3, (c) 5 and (d) 10. Temperature has been normalized so that its maximum value
is unity.

1.42 the average Nusselt number roughly changes proportionally to α2. This behaviour
can be ascribed to modifications in the intensity of the roll motion and the local minimum
at around α = 0.34 is associated with the complete elimination of the stream tube. Further
reduction in α leads to the re-appearance of the stream tube (but on the opposite side of the
rolls), an increase of Q and a concomitant rise in Nuav . Eventually, this enhanced value in
Q is arrested before the final α → 0 behaviour sets in. This sees a decrease in Q towards
zero which is accompanied by Nuav approaching a well-defined limit as α → 0 (figure 8f ).
This limit can be determined analytically, as explained in § 6 below.

4.2. Convection without stream tubes: the cases Ω = π/2 and Ω = 3π/2
The stream tubes are not formed for the two special cases when either Ω = π/2 or Ω =
3π/2. In these particular instances an increase in the wavenumber leads to the formation of
both dynamic and thermal boundary layers near the heated plate. These features are clearly
illustrated in figures 14 and 15, which demonstrate that all flow and thermal modulations
are confined to these layers. These flows are distinctive compared with those patterns that
arise at other values of Ω when stream tubes occur, and the only boundary layers are
thermal in character. We also remark that both the flow and temperature fields are similar
to those associated with convection in the case of a smooth slot exposed to periodic heating
in the limit of α → ∞ (cf. figures 5 and 14).
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Figure 16. (a) Variations in the reduction of the flow rate Qs − Q and (b) the increase in the heat flow Nuav −
Nuav,S resulting from the introduction of grooves as functions of the groove wavenumber α. Computations
performed for A = 0.05,Rauni = 100, Rap,R = 10, 20, 30 for Ω = 0 (red lines) and Ω = π (blue lines). The
black lines correspond to the results when Rap,R = 0 with all other parameters unchanged. Solid and dashed
lines correspond to positive and negative values, respectively.

5. Corrugated slot exposed to a combination of periodic and uniform heating/cooling

We shall now discuss convection in a corrugated slot when the applied heating is a
combination of uniform and periodic heating. We shall restrict the discussion to uniform
heating as uniform cooling produces equal and opposite effects. We shall also focus
attention on Ω = 0 and Ω = π as effects of periodic heating change periodically as a
function of Ω in the identical manner as was shown in figure 8(a). The results displayed
in figure 16(a) illustrate the form of (Qs − Q) as a function of α – positive values
mean that the flow rate is less than the reference flow rate. The inclusion of uniformly
heated grooves reduces the flow rate as denoted by the black line in figure 16(a). A
small component of periodic heating with the hot spots coincident with the groove peaks
(Ω = 0) increases this flow rate, which becomes larger than the flow rate in a smooth
channel once Rap,R > 10. This increase becomes more pronounced at larger wavenumbers.
Moving the hot spots to the groove troughs (Ω = π) produces the opposite effect with an
evident reduction in Q. Consideration of the distribution of the x-component of the surface
pressure force acting on the fluid at the right plate shows that the total pressure force is
negative for isothermal grooves as these tend to act as surface roughness thereby increasing
the flow resistance (figure 17). The addition of periodic heating with hot spots at the groove
peaks reduces the magnitude of this force due to the pattern interaction effect, which leads
to an increase of Q. The variations in the mean Nusselt number tend to follow a similar
behaviour. If hot spots are placed on the groove peaks this increases Nuav but putting at
the troughs decreases it and, furthermore, can even reverse the direction of the heat flow
over a small range of α.

The effects of adding a small component of uniform heating to periodically heated
grooves are illustrated in figure 18. The differences for small α are evident since Q → 0 for
periodic heating while Q → const. for uniform heating when α → 0. In these cases, the
addition of even a small component of uniform heating drastically changes the response
of the system (see figure 18a). At larger α the qualitative behaviour in many ways mimics
what has been noted already in as much that uniform heating increases the flow rate when
the hot spots overlap with the groove peaks but decreases it when they overlap with the
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uniform heating. The grey line at the bottom of the plot indicates the profile of the groove. The x-component
of the total pressure force Fxp,R forΩ = 0 and Rap,R = 0, 30 is −0.1287, −0.0901, respectively; whenΩ = π
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Figure 18. (a) Variations in the flow rate Q and (b) the average Nusselt number Nuav as functions of the
groove wavenumber α for Rap,R = 400, α = 1,A = 0.05,Rauni = 0, 0.2, 0.8, 2, 4. Phase offset is set to be
eitherΩ = 0 (red lines) orΩ = π (blue lines). The black lines correspond to a purely periodic heating. Dashed
lines indicate negative values.

troughs. The implications for Nuav follow a similar pattern (cf. figures 16b and 18) but the
changes at small α are less pronounced since Nuav → const. as α → 0 regardless of the
type of heating.

We now briefly discuss effect of the value of the Prandtl number. The flow rate increases
proportionally to Pr−1 for a uniformly heated slot, as suggested by (3.1). The effect of the
introduction of isothermal grooves changes the flow in a similar manner irrespective of
the value of Pr and seems not to affect Nuav at all. The main effects of varying Pr are
summarized by the results given in figure 19.
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Figure 19. The effect on the flow characteristics induced by changes in the Prandtl number Pr. (a) Variations
in Q and Nuav as functions of the groove wavenumber α when A = 0.05,Rauni = 100,Rap,R = 0. Dashed
lines describe variations of Nuav overlap. (b) Variations in Q as a function of the groove wavenumber α when
A = 0.05,Ω = 0, Rap,R = 400, Rauni = 0, Ω = 0 and Pr = 0.1, 0.3, 0.71, 7 (green, red, black, blues lines,
respectively); dashed lines identify change of direction. (c) Variations of Nuav for the same conditions as in
(b).

6. Analysis of flow in a grooved slot

We now attempt to throw light on some of the numerical results described in the preceding
sections. We comment that, while it is relatively straightforward to describe the flow
patterning in the case of a flat walled slot, the presence of the wavy grooves leads to
some unfortunate complications. Foremost among these is the fact that grooves mean that
the equations must be satisfied in a domain of rather complex shape.

There are essentially two ways to proceed. One would be to retain our original
system in the (x, y) coordinate system but this can make the enforcement of the
boundary conditions somewhat intricate. We therefore choose to transform from the
rectangular (x, y) system and introduce the relevant streamwise length scale X = αx and
the cross-channel coordinate

η = 1 + 4( y − 1)
4 − A cos X

, (6.1)

in terms of this new coordinate the edges are given by η = ±1. Expressed in terms of these
new coordinates the various differential operators are given by

∂

∂x
→ α

(
∂

∂X
− A(η − 1) sin X

4 − A cos X
∂

∂η

)
,

∂

∂y
→ 4

4 − A cos X
∂

∂η
, (6.2a,b)

and

∇2 ≡ α2

(
∂2

∂X2 − 2A(η − 1) sin X
4 − A cos X

∂2

∂X∂η
+ (η − 1)2A2sin2X

(4 − A cos X)2
∂2

∂η2

+A(η − 1)(2A − 4 cos X − Acos2X)

(4 − A cos X)2
∂

∂η

)
+ 16

(4 − A cos X)2
∂2

∂η2 . (6.2c)

These transformations need to be made in the governing system (2.4) but we do not write
out the complicated results in the interest of brevity. What is important to emphasize is
that in these new coordinates the boundary conditions become

u(η = 1) = u(η = −1) = 0, v(η = 1) = v(η = −1) = 0, (6.3a,b)

together with θ(η = 1) = 0 and θ(η = −1) = Rauni + 1
2 Rap,R cos(X +Ω).

946 A20-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

58
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.582


J.M. Floryan, W. Wang, S. Panday and A.P. Bassom

6.1. Long-wavelength modes
We start with long-wavelength modes with α � 1. We seek solutions which assume the
structure

(u1, v1, p1, θ1) = α−1(0, 0, P̂−1, 0)+ (Û0, 0, P̂0, θ̂0)

+ α(Û1, V̂0, P̂1, θ̂1)+ α2(Û2, V̂1, P̂2, θ̂2)+ · · · , (6.4)

where all the unknowns are functions of X and η.
The form of cross-mean momentum equation shows that the leading-order pressure term

P̂−1 = P̂−1(X) and the energy equation lead to

θ̂0(X, η) = 1
4 (1 − η)[2Rauni + Rap,L cos(X +Ω)]. (6.5)

Now the streamwise momentum (2.4b) equation gives that

0 = − d
dX

P̂−1 + 16

(4 − A cos X)2
∂2Û0

∂η2 + 1
4Pr

(1 − η)[2Rauni + Rap,R cos(X +Ω)],

(6.6)
whose solution subject to Û0(±1) = 0 is given by

Û0 = 1
32
(4 − A cos X)2(η2 − 1)

d
dX

P̂−1

+ 1
384Pr

[2Rauni + Rap,R cos(X +Ω)](4 − A cos X)2(η − 3)(η2 − 1). (6.7)

If we write this solution as

Û0 = C0(X)(η2 − 1)+ C1(X)(η − 3)(η2 − 1), (6.8)

then the leading-order continuity equation

∂Û0

∂X
− A(η − 1) sin X

4 − A cos X
∂Û0

∂η
+ 4

4 − A cos X
∂V̂0

∂η
= 0, (6.9)

may be integrated once. The solution for V̂0 that vanishes at η = 1 is

V̂0 = 1
4
(4 − A cos X)

[
dC0

dX

(
η − 1

3
η3 − 2

3

)
+ dC1

dX

(
−3η + 1

2
η2 + η3 − 1

4
η4 + 7

4

)]

+ 1
4

A sin X
[

C0

(
η2 − 2

3
η3 − 1

3

)
+ C1

(
−η − 5

2
η2 + 3η3 − 3

4
η4 + 5

4

)]
;

(6.10)

the fact that this must also vanish at η = −1 furnishes a differential constraint on the
functions C0(X) and C1(X). This equation can be integrated to deduce that

(4 − A cos X)(C0 − 3C1) = K, (6.11)

for some constant K to be determined. This result can be rearranged to give

d
dX

P̂−1 = 32K

(4 − A cos X)3
+ 1

4Pr
[2Rauni + Rap,R cos(X +Ω)]. (6.12)
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The constant K is set by ensuring that there is no externally imposed pressure gradient. In
terms of X and η the requirement that ∂p/∂x has a zero mean component implies that∫ 2π

0

d
dX

P̂−1 dX = 0. (6.13)

Now contour integration gives the result that∫ 2π

0

dX

(4 − A cos X)3
= π(32 + A2)

(16 − A2)
5/2 , (6.14)

whereupon, on integrating the expression (6.12) over a period, it follows that

K = −Rauni(16 − A2)
5/2

32Pr(32 + A2)
. (6.15)

Notice that, in the case of purely periodic heating, this constant is zero. We can also look
at the flow rate

Q =
∫ 1

yR(x)
u dy = 1

4
(4 − A cos X)

∫ 1

−1
Û0 dη; (6.16)

routine work yields the result that, at leading order,

Q = −1
3

K = Rauni(16 − A2)
5/2

96Pr(32 + A2)
. (6.17)

To evaluate the mean Nusselt number let us look at the left-hand plate and observe that,
there,

∂θ̂0

∂y
= 4

4 − A cos X
∂θ̂0

∂η
= − 2Rauni

4 − A cos X
− Rap,R cos(X +Ω)

4 − A cos X
. (6.18)

The mean value of this function taken over a period in X is then given by

Nuav = 2Rauni√
16 − A2

+ Rap,R

A

[
4√

16 − A2
− 1

]
cosΩ. (6.19)

We can now make some observations about the results (6.17) and (6.19). One immediate
conclusion to be drawn is that the mass flux seems to be independent of the periodic
component of heating. When there is only uniform heating the formula (6.17) implies that
QS − Q = 0.022 when Rauni = 100 and A = 0.05; this is in excellent agreement with the
small α solution shown in figure 2(b). When there is only periodic heating the results
shown in figure 8(c) suggest that Q ∝ α2 as α → 0, which confirms that the leading-order
value should vanish. We point out that it is theoretically possible to develop further terms
in (6.4) so as to determine the first non-zero term in the flow rate expansion for small α
when Rauni = 0, but this turns out to be a formidable challenge. Last, we also mention that
the results in figure 16(a) lend further credence to the conclusion that Rap,R plays no part
in the leading-order mass flux; here, it is seen that the small α limit gives a value of Q
independent of the value of this parameter.

Next, we comment on the form of the heat transfer measure Nuav . When Rap,R = 0
and A = 0.05 the formula (6.19) shows excellent agreement with the small α limit in
figure 2(b). Notice also that the periodic heating does have an O(1) effect on the mean
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Nusselt number so long as the phase is such that cosΩ /= 0. We can see evidence of
this effect in figure 8(d), where the value of Nuav appears to vanish as Ω → π/2 or
Ω → 3π/2. Moreover, there is excellent agreement between the prediction (6.19) and
the α → 0 limit in figure 8( f ). Again, the results in figure 16(b) demonstrate that Nuav
depends both on the value of Rap,R and the phase angle Ω .

It may be hoped that further asymptotic results could be derived in other suitable limits.
We alluded, when discussing the results of figure 5, to the fact that large α modes are
confined to a thin boundary layer next to the periodically heated flat right-hand wall. Once
grooves are introduced the flow structure becomes extremely intricate. Rather than attempt
to probe the niceties of the relevant structures, we pursue a rather heuristic argument. We
point out that when α 
 1 the rapidly oscillating grooves act as a roughness next to a slot
of effective width 1 − (A/2). If we approximate this large wavenumber limit by the smooth
slot counterparts of results (3.1) for this narrowed slot, then we obtain good agreement with
the numerical results at large α.

We might also attempt to describe the flow in a suitable small-amplitude groove limit.
Again, it turns out that this approach leads to another very lengthy calculation whose
solution requires an effort that is not commensurate with the value of the results. We know
the exact flow solution relating to a slot with flat walls and a uniform applied heating (but
not periodic heating). When the groove amplitude is small the correction to the solution
is given by a problem which can only be solved via the numerical solution of high-order
ordinary differential equations with coefficients that are polynomials of high degree.

7. Discussion

Natural convection in vertical slots has been investigated with the aim of assessing the
effects of heating and topography patterns and exploring their possible interactions.
Topography patterns have been modelled by sinusoidal grooves parametrized by
wavenumber and amplitude while heating patterns have been represented by sinusoidal
temperature variations. The model equations have been solved with spectral accuracy
using a discretization based on Fourier expansions in the vertical direction and Chebyshev
expansions in the transverse direction. All the flows have been assumed to be laminar in
character.

It has been shown that the addition of grooves to an isothermal plate leads to a reduction
in the vertical flow rate and an increase in the transverse heat flow; we conclude that
grooves act in a similar way as would a surface roughness. They reduce the effective slot
opening, thereby increasing hydraulic resistance and restricting the thermal resistance.
Exposing the right plate to a sinusoidal heating while keeping it smooth led to a convection
pattern characterized by counter-rotating rolls with no net vertical flow. This convective
fluid movement increased the transverse heat flow.

The addition of grooves to a sinusoidally heated plate results in a flow pattern that
involves both rolls and stream tubes that carry the fluid vertically. This flow was driven
by an interaction effect and the direction of the movement is determined by the relative
positions of the heating and the corrugations; overlapping hot spots with groove peaks
produce upward flow. An increase in the controlling wavenumber eventually suppresses
and then extinguishes the interaction effect; then the grooves play the role of a surface
roughness, and the plate behaves either as a hot or cold plate depending on the alignment
of the heating and the topography. The addition of a sufficiently large discrepancy between
the mean temperature of the two plates produces convection that is dominated by the
uniform heating, which disperses the pattern interaction effect with the flow being akin
to that found in the case of an isothermal grooved plate.
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What we have presented here is very much a first investigation of pattern effects in
laminar vertical natural convection that results from a combination of relatively simple
thermal and corrugation effects. It would be of interest to extend the scope of the work to
determine whether more intricate driving functions might be capable of producing other
forms for the convection. Also, it is known that laminar convection easily bifurcates to
secondary forms so stability characteristics of various solutions need to be determined
and characteristics of various possible secondary flows need to be investigated. These are
topics that are under active investigation.
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