Large Sieve Inequalities via Subharmonic Methods and the Mahler Measure of the Fekete Polynomials

T. Erdélyi and D. S. Lubinsky

Abstract. We investigate large sieve inequalities such as

$$
\frac{1}{m} \sum_{j=1}^{m} \psi\left(\log \left|P\left(e^{i \tau_{j}}\right)\right|\right) \leq \frac{C}{2 \pi} \int_{0}^{2 \pi} \psi\left(\log \left[e\left|P\left(e^{i \tau}\right)\right|\right]\right) d \tau
$$

where ψ is convex and increasing, P is a polynomial or an exponential of a potential, and the constant C depends on the degree of P, and the distribution of the points $0 \leq \tau_{1}<\tau_{2}<\cdots<\tau_{m} \leq 2 \pi$. The method allows greater generality and is in some ways simpler than earlier ones. We apply our results to estimate the Mahler measure of Fekete polynomials.

1 Results

The large sieve of number theory [14, p. 559] asserts that if

$$
P(z)=\sum_{k=-n}^{n} a_{k} z^{k}
$$

is a trigonometric polyonomial of degree $\leq n$,

$$
0 \leq \tau_{1}<\tau_{2}<\cdots<\tau_{m} \leq 2 \pi
$$

and

$$
\delta:=\min \left\{\tau_{2}-\tau_{1}, \tau_{3}-\tau_{2}, \ldots, \tau_{m}-\tau_{m-1}, 2 \pi-\left(\tau_{m}-\tau_{1}\right)\right\}
$$

then

$$
\begin{equation*}
\sum_{j=1}^{m}\left|P\left(e^{i \tau_{j}}\right)\right|^{2} \leq\left(\frac{n}{2 \pi}+\delta^{-1}\right) \int_{0}^{2 \pi}\left|P\left(e^{i \tau}\right)\right|^{2} d \tau \tag{1}
\end{equation*}
$$

There are numerous extensions of this to L_{p} norms, or involving $\psi\left(\left|P\left(e^{i \tau}\right)\right|^{p}\right)$, where ψ is a convex function and $p>0[8,12]$. There are versions that estimate Riemann sums, for example,

$$
\begin{equation*}
\sum_{j=1}^{m}\left|P\left(e^{i \tau_{j}}\right)\right|^{2}\left(\tau_{j}-\tau_{j-1}\right) \leq C \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \tau}\right)\right|^{2} d \tau \tag{2}
\end{equation*}
$$

Received by the editors December 23, 2004.
Research supported in part by NSF grant DMS 0400446
AMS subject classification: 41A17.
(C)Canadian Mathematical Society 2007.
with C independent of $n, P,\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{m}\right\}$. These are often called forward Marcin-kiewicz-Zygmund inequalities. Converse Marcinkiewicz-Zygmund inequalities provide estimates for the integrals above in terms of the sums on the left-hand side [11, 13, 16].

A particularly interesting case is that of the L_{0} norm. A result of the first author asserts that if $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ are the n-th roots of unity and P is a polynomial of degree $\leq n$, then

$$
\begin{equation*}
\prod_{j=1}^{n}\left|P\left(z_{j}\right)\right|^{1 / n} \leq 2 M_{0}(P) \tag{3}
\end{equation*}
$$

where

$$
M_{0}(P):=\exp \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|P\left(e^{i t}\right)\right| d t\right)
$$

is the Mahler measure of P.
The focus of this paper is to show that methods of subharmonic function theory provide a simple and direct way to generalize previous results. We also extend (3) to points other than the roots of unity. Given $c \geq 0, \kappa \in[0, \infty)$, and a positive measure ν of compact support and total mass at most $\kappa \geq 0$ on the plane, we define the associated exponential of its potential by

$$
P(z)=c \exp \left(\int \log |z-t| d \nu(t)\right) .
$$

We say that this is an exponential of a potential of mass $\leq \kappa$, and that its degree is $\leq \kappa$. The set of all such functions is denoted by \mathbb{P}_{κ}. Note that if P is a polynomial of degree $\leq n$, then $|P| \in \mathbb{P}{ }_{n}$. More generally, the generalized polynomials studied by several authors $[3,7]$ also lie in \mathbb{P}_{κ}, for an appropriate κ. We prove the following.

Theorem 1.1 Let $\psi: \mathbb{R} \rightarrow[0, \infty)$ be nondecreasing and convex. Let $m \geq 1, \kappa>0$, $\alpha>0$, and $0<\tau_{1} \leq \tau_{2} \leq \cdots \leq \tau_{m} \leq 2 \pi$. Let $w_{j} \geq 0,1 \leq j \leq m$, with

$$
\sum_{j=1}^{m} w_{j}=1
$$

Let μ_{m} denote the corresponding Riemann-Stieltjes measure, defined for $\theta \in[0,2 \pi]$ by

$$
\mu_{m}([0, \theta]):=\sum_{j: \tau_{j} \leq \theta} w_{j} .
$$

Let

$$
\begin{equation*}
\Delta:=\sup \left\{\left|\mu_{m}([0, \theta])-\frac{\theta}{2 \pi}\right|: \theta \in[0,2 \pi]\right\} \tag{4}
\end{equation*}
$$

denote the discrepancy of μ_{m}. Then for $P \in \mathbb{P}_{k}$,

$$
\begin{equation*}
\sum_{j=1}^{m} w_{j} \psi\left(\log P\left(e^{i \tau_{j}}\right)\right) \leq\left(1+\frac{8}{\alpha} \kappa \Delta\right) \frac{1}{2 \pi} \int_{0}^{2 \pi} \psi\left(\log \left[e^{\alpha} P\left(e^{i \theta}\right)\right]\right) d \theta \tag{5}
\end{equation*}
$$

Example 1 Let us choose all equal weights,

$$
w_{j}=\frac{1}{m}, \quad 1 \leq j \leq m
$$

Then μ_{m} is counting measure,

$$
\mu_{m}([0, \theta])=\frac{1}{m} \#\left\{j: \tau_{j} \in[0, \theta]\right\} .
$$

If we take $\psi(t)=\max \{0, t\}$, and $\alpha=1$, and use the notation $\log ^{+} t=\max \{0, \log t\}$, we obtain

$$
\begin{equation*}
\frac{1}{m} \sum_{j=1}^{m} \log ^{+} P\left(e^{i \tau_{j}}\right) \leq(1+8 \kappa \Delta) \frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left[e P\left(e^{i \theta}\right)\right] d \theta \tag{6}
\end{equation*}
$$

This result is new. Previous inequalities have been limited to sums involving $\psi\left(P\left(e^{i \tau_{j}}\right)^{p}\right)$ for some $p>0$. If we let $p>0, \psi(t)=e^{p t}$, and $\alpha=\frac{1}{p}$, then (5) becomes

$$
\begin{equation*}
\frac{1}{m} \sum_{j=1}^{m} P\left(e^{i \tau_{j}}\right)^{p} \leq(1+8 p \kappa \Delta) \frac{e}{2 \pi} \int_{0}^{2 \pi} P\left(e^{i \theta}\right)^{p} d \theta \tag{7}
\end{equation*}
$$

This choice of α is not optimal. The optimal choice is

$$
\alpha=4 \kappa \Delta\left[-1+\sqrt{1+\frac{1}{2 p \kappa \Delta}}\right]
$$

but one needs further information on the size of $p \kappa \Delta$ to exploit this. For example, if $p \kappa \Delta \leq 1$, the optimal choice is of order $\sqrt{\frac{\kappa \Delta}{p}}$, and choosing this α in (5), we obtain

$$
\begin{equation*}
\frac{1}{m} \sum_{j=1}^{m} P\left(e^{i \tau_{j}}\right)^{p} \leq(1+C \sqrt{p \kappa \Delta}) \frac{1}{2 \pi} \int_{0}^{2 \pi} P\left(e^{i \theta}\right)^{p} d \theta \tag{8}
\end{equation*}
$$

where C is an absolute constant.
For well-distributed $\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{m}\right\}, \Delta$ is of order $\frac{1}{m}$. In particular, when these points are equally spaced and include 2π, but not 0 , so that

$$
\tau_{j}=\frac{2 j \pi}{m}, \quad 1 \leq j \leq m
$$

we have $\Delta=\frac{2 \pi}{m}$, and (7) becomes

$$
\begin{equation*}
\frac{1}{m} \sum_{j=1}^{m} P\left(e^{i \tau_{j}}\right)^{p} \leq\left(1+\frac{16 \pi p \kappa}{m}\right) \frac{e}{2 \pi} \int_{0}^{2 \pi} P\left(e^{i \theta}\right)^{p} d \theta \tag{9}
\end{equation*}
$$

Example 2 Another important choice of the weights w_{j} is

$$
w_{j}=\frac{\tau_{j}-\tau_{j-1}}{2 \pi}, \quad 1 \leq j \leq m
$$

where now we assume $\tau_{0}=0$ and $\tau_{m}=2 \pi$. For this case (5) becomes an estimate for Riemann sums,
(10) $\frac{1}{2 \pi} \sum_{j=1}^{m}\left(\tau_{j}-\tau_{j-1}\right) \psi\left(\log P\left(e^{i \tau_{j}}\right)\right) \leq\left(1+\frac{8}{\alpha} \kappa \Delta\right) \frac{1}{2 \pi} \int_{0}^{2 \pi} \psi\left(\log \left[\left(e^{\alpha} P\left(e^{i \theta}\right)\right]\right) d \theta\right.$.

The discrepancy Δ in this case is

$$
\Delta=\sup _{j} \frac{\tau_{j}-\tau_{j-1}}{2 \pi}
$$

Remarks

(a) In many ways, the approach of this paper is simpler than that in [12] where Dirichlet kernels were used, or that of [8], where Carleson measures were used. The main idea is to use the Poisson integral inequality for subharmonic functions.
(b) We can reformulate (5) as

$$
\int_{0}^{2 \pi} \psi\left(\log \left|P\left(e^{i \tau}\right)\right|\right) d \mu_{m}(\tau) \leq\left(1+\frac{8}{\alpha} \kappa \Delta\right) \frac{1}{2 \pi} \int_{0}^{2 \pi} \psi\left(\log \left[e^{\alpha} P\left(e^{i \theta}\right)\right]\right) d \theta
$$

In fact this estimate holds for any probability measure μ_{m} on $[0,2 \pi]$, not just the pure jump measures above.
(c) The one severe restriction above is that ψ is nonnegative.

In particular, this excludes $\psi(x)=x$. For that case, we prove two different results.
Theorem 1.2 Assume that $m, \kappa,\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{m}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ are as in Theorem 1.1. Let

$$
\begin{equation*}
Q(z)=\prod_{j=1}^{m}\left|z-e^{i \tau_{j}}\right|^{w_{j}} . \tag{11}
\end{equation*}
$$

Then for $P \in \mathbb{P}_{k}$,

$$
\begin{equation*}
\sum_{j=1}^{m} w_{j} \log P\left(e^{i \tau_{j}}\right) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \log P\left(e^{i \theta}\right) d \theta+\kappa \log \|Q\|_{L_{\infty}(|z|=1)} \tag{12}
\end{equation*}
$$

Remarks If we choose all $w_{j}=\frac{1}{m}$, this yields

$$
\begin{equation*}
\prod_{j=1}^{m} P\left(e^{i \tau_{j}}\right)^{1 / m} \leq\|Q\|_{L_{\infty}(|z|=1)}^{\kappa} \exp \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \log P\left(e^{i \theta}\right) d \theta\right) \tag{13}
\end{equation*}
$$

If we take $\left\{e^{i \tau_{1}}, e^{i \tau_{2}}, \ldots, e^{i \tau_{m}}\right\}$ to be the m-th roots of unity, then $Q(z)=\left|z^{m}-1\right|^{1 / m}$ and (13) becomes

$$
\begin{equation*}
\prod_{j=1}^{m} P\left(e^{i \tau_{j}}\right)^{1 / m} \leq 2^{\kappa / m} \exp \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \log P\left(e^{i \theta}\right) d \theta\right) \tag{14}
\end{equation*}
$$

In the case $\kappa=m=n$, this gives the first author's inequality (3). In general, however, it is not easy to bound $\|Q\|_{L_{\infty}(|z|=1)}$. Using an alternative method, we can avoid the term involving Q when the spacing between successive τ_{j} is $O\left(\kappa^{-1}\right)$.

Theorem 1.3 Assume that m, κ and $\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{m}\right\}$ are as in Theorem 1.1. Let $\tau_{0}:=$ $\tau_{m}-2 \pi$ and $\tau_{m+1}:=\tau_{1}+2 \pi$. Let

$$
\delta:=\max \left\{\tau_{1}-\tau_{0}, \tau_{2}-\tau_{1}, \ldots, \tau_{m}-\tau_{m-1}\right\}
$$

Let $A>0$. There exists $B>0$ such that if $\kappa \geq 1$ and $\delta \leq A \kappa^{-1}$, then for all $P \in \mathbb{P}{ }_{k}$,

$$
\begin{equation*}
\sum_{j=1}^{m} \frac{\tau_{j+1}-\tau_{j-1}}{2} \log P\left(e^{i \tau_{j}}\right) \leq \int_{0}^{2 \pi} \log P\left(e^{i \theta}\right) d \theta+B \tag{15}
\end{equation*}
$$

One application of Theorem 1.2 is to the estimation of Mahler measure. Recall that for a bounded measurable function Q on $[0,2 \pi]$, its Mahler measure is

$$
M_{0}(Q)=\exp \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|Q\left(e^{i \theta}\right)\right| d \theta\right)
$$

It is well known that $M_{0}(Q)=\lim _{p \rightarrow 0+} M_{p}(Q)$, where for $p>0$,

$$
M_{p}(Q):=\|Q\|_{p}:=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|Q\left(e^{i \theta}\right)\right|^{p} d \theta\right)^{1 / p}
$$

It is a simple consequence of Jensen's formula that if

$$
Q(z)=c \prod_{k=1}^{n}\left(z-z_{k}\right)
$$

is a polynomial, then

$$
M_{0}(Q)=|c| \prod_{k=1}^{n} \max \left\{1,\left|z_{k}\right|\right\}
$$

The construction of polynomials with suitably restricted coefficients and maximal Mahler measure has interested many authors. The Littlewood polynomials,

$$
L_{n}:=\left\{p: p(z)=\sum_{k=0}^{n} \alpha_{k} z^{k}, \alpha_{k} \in\{-1,1\}\right\}
$$

which have coefficients ± 1, and the unimodular polynomials,

$$
K_{n}:=\left\{p: p(z)=\sum_{k=0}^{n} \alpha_{k} z^{k},\left|\alpha_{k}\right|=1\right\}
$$

are two of the most important classes considered. Beller and Newman [1] constructed unimodular polynomials of degree n whose Mahler measure is at least $\sqrt{n}-c / \log n$. Here we show that for Littlewood polynomials, we can achieve almost $\frac{1}{2} \sqrt{n}$ by considering the Fekete polynomials.

For a prime number p, the p-th Fekete polynomial is

$$
f_{p}(z)=\sum_{k=1}^{p-1}\left(\frac{k}{p}\right) z^{k}
$$

where

$$
\left(\frac{k}{p}\right)= \begin{cases}1 & \text { if } x^{2} \equiv k(\bmod p) \text { has a non-zero solution } x \\ 0 & \text { if } p \text { divides } k \\ -1 & \text { otherwise }\end{cases}
$$

Since f_{p} has constant coefficient 0 , it is not a Littlewood polynomial, but

$$
g_{p}(z)=f_{p}(z) / z
$$

is a Littlewood polynomial which has the same Mahler measure as f_{p}. Fekete polynomials are examined in detail in [2, pp. 37-42].

Theorem 1.4 Let $\varepsilon>0$. For large enough prime p, we have

$$
\begin{equation*}
M_{0}\left(f_{p}\right)=M_{0}\left(g_{p}\right) \geq\left(\frac{1}{2}-\varepsilon\right) \sqrt{p} . \tag{16}
\end{equation*}
$$

Remarks From Jensen's inequality, $M_{0}\left(f_{p}\right) \leq\left\|f_{p}\right\|_{2}=\sqrt{p-1}$. However $\frac{1}{2}-\varepsilon$ in Theorem 1.4 cannot be replaced by $1-\varepsilon$. Indeed if p is prime, and we write $p=4 m+1$, then g_{p} is self-reciprocal, that is, $z^{p-1} g_{p}\left(\frac{1}{z}\right)=g_{p}(z)$, and hence

$$
g_{p}\left(e^{2 i t}\right)=e^{i(p-2) t} \sum_{k=0}^{(p-3) / 2} a_{k} \cos ((2 k+1) t), \quad a_{k} \in\{-2,2\} .
$$

A result of Littlewood [10, Theorem 2] implies that

$$
M_{0}\left(f_{p}\right)=M_{0}\left(g_{p}\right) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|g_{p}\left(e^{2 i t}\right)\right| d t \leq\left(1-\varepsilon_{0}\right) \sqrt{p-1}
$$

for some absolute constant $\varepsilon_{0}>0$. It is an interesting question whether there is a sequence of Littlewood polynomials $\left(f_{n}\right)$ with $f_{n} \in L_{n}$ such that, for an arbitrary $\varepsilon>0$ and n large enough, $M_{0}\left(f_{n}\right) \geq(1-\varepsilon) \sqrt{n}$.

The results are proved in the next section.

2 Proofs

We assume the notation of Theorem 1.1. We let

$$
\begin{equation*}
r=1+\frac{\alpha}{\kappa}, \tag{17}
\end{equation*}
$$

and define the Poisson kernel for the ball $|z| \leq r(c f .[15, \mathrm{p} .8])$,

$$
\mathcal{P}_{r}\left(s e^{i \theta}, r e^{i t}\right)=\frac{r^{2}-s^{2}}{r^{2}-2 r s \cos (t-\theta)+s^{2}}
$$

where $0 \leq s<r$ and $t, \theta \in \mathbb{R}$.

Proof of Theorem 1.1

Step 1: The Basic Inequality Let $P \in \mathbb{P}_{\kappa} \backslash\{0\}$, so that for some $c>0$ and some measure ν with total mass $\leq \kappa$ and compact support,

$$
\log P(z)=\log c+\int \log |z-t| d \nu(t)
$$

As $\log P$ is subharmonic, and as ψ is convex and increasing, $\psi(\log P)$ is subharmonic [15, Theorem 2.6.3, p. 43]. Then we have, for $|z|<r$, the inequality [15, Theorem 2.4.1, p. 35]

$$
\psi(\log P(z)) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \psi\left(\log P\left(r e^{i t}\right)\right) \mathcal{P}_{r}\left(z, r e^{i t}\right) d t
$$

Choosing $z=e^{i \tau_{j}}$, multiplying by w_{j}, and summing over j gives
(18) $\sum_{j=1}^{m} w_{j} \psi\left(\log P\left(e^{i \tau_{j}}\right)\right)-\frac{1}{2 \pi} \int_{0}^{2 \pi} \psi\left(\log P\left(r e^{i t}\right)\right) d t$

$$
\leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \psi\left(\log P\left(r e^{i t}\right)\right) \mathcal{H}(t) d t
$$

where

$$
\mathcal{H}(t):=\sum_{j=1}^{m} w_{j} \mathcal{P}_{r}\left(e^{i \tau_{j}}, r e^{i t}\right)-1=\int_{0}^{2 \pi} \mathcal{P}_{r}\left(e^{i \tau}, r e^{i t}\right) d\left(\mu_{m}(\tau)-\frac{\tau}{2 \pi}\right) .
$$

Here we have used the elementary property of the Poisson kernel, that it integrates to 1 over any circle with center 0 inside its ball of definition.
Step 2: Estimating \mathcal{H} We integrate this relation by parts, and note that both

$$
\mu_{m}[0,0]=0 \quad \text { and } \quad \mu_{m}[0,2 \pi]=1
$$

This gives

$$
\mathcal{H}(t)=-\int_{0}^{2 \pi}\left(\frac{\partial}{\partial \tau} \mathcal{P}_{r}\left(e^{i \tau}, r e^{i t}\right)\right)\left(\mu_{m}([0, \tau])-\frac{\tau}{2 \pi}\right) d \tau
$$

and hence

$$
\begin{equation*}
|\mathcal{H}(t)| \leq \Delta \int_{0}^{2 \pi}\left|\frac{\partial}{\partial \tau} \mathcal{P}_{r}\left(e^{i \tau}, r e^{i t}\right)\right| d \tau \tag{19}
\end{equation*}
$$

Now

$$
\frac{\partial}{\partial \tau} \mathcal{P}_{r}\left(e^{i \tau}, r e^{i t}\right)=\frac{\left(r^{2}-1\right) 2 r \sin (t-\tau)}{\left(r^{2}-2 r \cos (t-\tau)+1\right)^{2}}
$$

so a substitution $s=t-\tau$ and 2π-periodicity give

$$
\begin{align*}
\int_{0}^{2 \pi}\left|\frac{\partial}{\partial \tau} \mathcal{P}_{r}\left(e^{i \tau}, r e^{i t}\right)\right| d \tau & =\int_{-\pi}^{\pi}\left|\frac{\partial}{\partial s} \mathcal{P}_{r}\left(e^{i s}, r\right)\right| d s \tag{20}\\
& =-2 \int_{0}^{\pi} \frac{\partial}{\partial s} \mathcal{P}_{r}\left(e^{i s}, r\right) d s \\
& =-2\left[\mathcal{P}_{r}\left(e^{i \pi}, r\right)-\mathcal{P}_{r}(1, r)\right]=\frac{8 r}{r^{2}-1}
\end{align*}
$$

Combining (18)-(20), gives

$$
\begin{equation*}
\sum_{j=1}^{m} w_{j} \psi\left(\log P\left(e^{i \tau_{j}}\right)\right) \leq\left(1+\Delta \frac{8 r}{r^{2}-1}\right) \frac{1}{2 \pi} \int_{0}^{2 \pi} \psi\left(\log P\left(r e^{i t}\right)\right) d t \tag{21}
\end{equation*}
$$

Step 3: Return to the Unit Circle Next, we estimate the integral on the right-hand side in terms of an integral over the unit circle. Let us assume that ν has total mass $\lambda(\leq \kappa)$. Let $S(z)=|z|^{\lambda} P\left(\frac{r}{z}\right)$, so that $\log S(z)=\log c+\int \log |r-t z| d \nu(t)$, a function subharmonic in \mathbb{C}. Then the same is true of $\psi(\log S)$, so its integrals over circles with centre 0 increase with the radius [15, Theorem 2.6.8, p. 46]. In particular, recalling our choice (17) of r,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \psi\left(\log S\left(e^{i \theta}\right)\right) d \theta \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \psi\left(\log S\left(r e^{i \theta}\right)\right) d \theta
$$

and a substitution $\theta \rightarrow-\theta$ gives

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \psi\left(\log P\left(r e^{i \theta}\right)\right) d \theta & \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \psi\left(\lambda \log r+\log P\left(e^{i \theta}\right)\right) d \theta \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \psi\left(\kappa \log r+\log P\left(e^{i \theta}\right)\right) d \theta \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \psi\left(\alpha+\log P\left(e^{i \theta}\right)\right) d \theta
\end{aligned}
$$

Then (21) becomes

$$
\begin{aligned}
\sum_{j=1}^{m} w_{j} \psi\left(\log P\left(e^{i \tau_{j}}\right)\right) & \leq\left(1+\Delta \frac{8 r}{r^{2}-1}\right) \frac{1}{2 \pi} \int_{0}^{2 \pi} \psi\left(\log \left[e^{\alpha} P\left(e^{i \theta}\right)\right]\right) d \theta \\
& \leq\left(1+8 \Delta \frac{\kappa}{\alpha}\right) \frac{1}{2 \pi} \int_{0}^{2 \pi} \psi\left(\log \left[e^{\alpha} P\left(e^{i \theta}\right)\right]\right) d \theta
\end{aligned}
$$

Proof of Theorem 1.2 Write $\log P(z)=\log c+\int \log |z-t| d \nu(t)$, so (recall (11)),

$$
\begin{align*}
\sum_{j=1}^{m} w_{j} \log P\left(e^{i \tau_{j}}\right) & =\log c+\int\left(\sum_{j=1}^{m} w_{j} \log \left|e^{i \tau_{j}}-t\right|\right) d \nu(t) \tag{22}\\
& =\log c+\int \log Q(t) d \nu(t)
\end{align*}
$$

Now as all zeros of Q are on the unit circle,

$$
g(u):=\log Q(u)-\log \|Q\|_{L_{\infty}(|z|=1)}-\log |u|
$$

is harmonic in the exterior $\{u:|u|>1\}$ of the unit ball, with finite limit at ∞, and with $g(u) \leq 0$ for $|u|=1$. By the maximum principle for subharmonic functions,

$$
g(u) \leq 0, \quad|u|>1
$$

We deduce that for $|u|>1, \log Q(u) \leq \log \|Q\|_{L_{\infty}(|z|=1)}+\log ^{+}|u|$. Moreover, inside the unit ball, we can regard Q as the absolute value of a function analytic there (with any choice of branches). So the last inequality holds for all $u \in \mathbb{C}$. Then, assuming (as above) that ν has total mass $\lambda \leq \kappa$,

$$
\begin{align*}
\int \log Q(t) d \nu(t) & \leq \lambda \log \|Q\|_{L_{\infty}(|z|=1)}+\int \log ^{+}|t| d \nu(t) \tag{23}\\
& =\lambda \log \|Q\|_{L_{\infty}(|z|=1)}+\int\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|e^{i \theta}-t\right| d \theta\right) d \nu(t) \\
& \leq \kappa \log \|Q\|_{L_{\infty}(|z|=1)}+\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\int \log \left|e^{i \theta}-t\right| d \nu(t)\right) d \theta
\end{align*}
$$

In the second line we used a well-known identity [15, Exercise 2.2, p. 29], and in the last line we used the fact that the sup norm of Q on the unit circle is larger than 1. This is true because

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log Q\left(e^{i \theta}\right) d \theta=\sum_{j=1}^{m} w_{j} \frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|e^{i \tau_{j}}-e^{i \theta}\right| d \theta=0
$$

while $\log Q<0$ in a neighborhood of each τ_{j}, so that $\log Q\left(e^{i \theta}\right)>0$ on a set of θ of positive measure. Substituting (23) into (22) gives

$$
\sum_{j=1}^{m} w_{j} \log P\left(e^{i \tau_{j}}\right) \leq \kappa \log \|Q\|_{L_{\infty}(|z|=1)}+\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|P\left(e^{i \theta}\right)\right| d \theta
$$

Proof of Theorem 1.3 Note first that our choice of τ_{0}, τ_{m+1} gives

$$
\sum_{j=1}^{m} \frac{\tau_{j+1}-\tau_{j-1}}{2}=2 \pi
$$

It suffices to prove that for every $a \in \mathbb{C}$,

$$
\begin{align*}
\sum_{j=1}^{m} \frac{\tau_{j+1}-\tau_{j-1}}{2} \log \left|e^{i \tau_{j}}-a\right| & \leq \int_{0}^{2 \pi} \log \left|e^{i t}-a\right| d t+B \kappa^{-1} \tag{24}\\
& =2 \pi \log ^{+}|a|+B \kappa^{-1}
\end{align*}
$$

for we can integrate this against the measure $d \nu(a)$ that appears in the representation of $P \in \mathbb{P}^{\prime}{ }_{k}$. Since

$$
\log \left|e^{i \tau}-a\right|=\log \left|e^{i \tau}-\bar{a}^{-1}\right|+\log |a|
$$

for $\tau \in \mathbb{R}$ and $|a|<1$, we can assume that $|a| \geq 1$. Moreover, it is sufficient to prove (24) in the case $|a| \geq 1+\kappa^{-1}$. Indeed the case $|a| \in\left[1,1+\kappa^{-1}\right]$ follows easily from the case $|a|=1+\kappa^{-1}$ and the fact that the left-hand and right-hand sides in (24) increase as we increase $|a|$, while keeping $\arg (a)$ fixed. We may also assume that $a \in\left[1+\kappa^{-1}, \infty\right)$ (simply rotate the unit circle). To prove (24), we use the integral form of the error for the trapezoidal rule [6, p. 288, (4.3.16)]: if $f^{\prime \prime}$ exists and is integrable in $[\alpha, \beta]$,

$$
\int_{\alpha}^{\beta} f(t) d t-\frac{\beta-\alpha}{2}(f(\alpha)+f(\beta))=\frac{1}{2} \int_{\alpha}^{\beta} f^{\prime \prime}(t)(\alpha-t)(\beta-t) d t
$$

From this we deduce that if $f^{\prime \prime}$ does not change sign on $[\alpha, \beta]$, then

$$
\begin{equation*}
\left|\int_{\alpha}^{\beta} f(t) d t-\frac{\beta-\alpha}{2}(f(\alpha)+f(\beta))\right| \leq \frac{(\beta-\alpha)^{2}}{2}\left|f^{\prime}(\beta)-f^{\prime}(\alpha)\right| . \tag{25}
\end{equation*}
$$

Moreover, if $f^{\prime \prime}$ changes sign at most twice, then

$$
\begin{equation*}
\left|\int_{\alpha}^{\beta} f(t) d t-\frac{\beta-\alpha}{2}(f(\alpha)+f(\beta))\right| \leq 3(\beta-\alpha)^{2} \max _{t \in[\alpha, \beta]}\left|f^{\prime}(t)\right| \tag{26}
\end{equation*}
$$

Now let $f(t):=\log \left|e^{i t}-a\right|$. Then

$$
f^{\prime}(t)=\frac{a \sin t}{1+a^{2}-2 a \cos t} \quad \text { and } \quad f^{\prime \prime}(t)=\frac{-2 a^{2}+\left(1+a^{2}\right) a \cos t}{\left(1+a^{2}-2 a \cos t\right)^{2}}
$$

Elementary calculus shows that $\left|f^{\prime}\right|$ achieves its maximum on $[0,2 \pi]$ when $\cos t=$ $\frac{2 a}{1+a^{2}}$. Then $|\sin t|=\frac{a^{2}-1}{a^{2}+1}$. Hence, as $a \geq 1+\kappa^{-1}$, and $\kappa \geq 1$,

$$
\begin{equation*}
\left|f^{\prime}(t)\right| \leq\left(a-a^{-1}\right)^{-1} \leq \kappa, \quad t \in \mathbb{R} \tag{27}
\end{equation*}
$$

Also, since $f^{\prime \prime}$ has at most two zeros in the period, the total variation $V_{0}^{2 \pi} f^{\prime}$ on $[0,2 \pi]$ satisfies

$$
\begin{equation*}
V_{0}^{2 \pi} f^{\prime} \leq 6 \max _{[0,2 \pi]}\left|f^{\prime}\right| \leq 6 \kappa \tag{28}
\end{equation*}
$$

Now we apply (25)-(28) to the interval $[\alpha, \beta]=\left[\tau_{j-1}, \tau_{j}\right]$ and sum over j. We also use our conventions on τ_{m+1} and τ_{m}. Then

$$
\left.\begin{array}{l}
\mid \int_{0}^{2 \pi} f(t) d t
\end{array}\right) \sum_{j=1}^{m} \frac{\tau_{j+1}-\tau_{j-1}}{2} f\left(\tau_{j}\right)\left|, \sum_{j=1}^{m}\left(\int_{\tau_{j-1}}^{\tau_{j}} f(t) d t-\frac{\tau_{j}-\tau_{j-1}}{2}\left[f\left(\tau_{j-1}\right)+f\left(\tau_{j}\right)\right]\right)\right|
$$

so we have (24) with $B=9 A^{2}$.

Proof of Theorem 1.4 We begin by recalling two facts about zeros of Littlewood and unimodular polynomials:
(I) There exists $c>0$ such that every unimodular polynomial of degree $\leq n$ has at most $c \sqrt{n}$ real zeros [4].
(II) There exists $c>0$ such that every Littlewood polynomial of degree $\leq n$ has at most $c \log ^{2} n / \log \log n$ zeros at 1 [5].
Now suppose that 1 is a zero of f_{p} with multiplicity $m=m(p)$. By (I) or (II), $m=$ $O\left(p^{1 / 2}\right)$. Let $h_{m}(z)=(z-1)^{m}$ and $F_{p}(z)=f_{p}(z) / h_{m}(z)$. Note that all coefficients of F_{p} are integers (as $1 / h_{m}(z)$ has Maclaurin series with integer coefficients), so $F_{p}(1)$ is a non-zero integer. Also h_{m} is monic and has all zeros on the unit circle, so its Mahler measure is 1 . Then as Mahler measure is multiplicative,

$$
M_{0}\left(f_{p}\right)=M_{0}\left(F_{p}\right) M_{0}\left(h_{m}\right)=M_{0}\left(F_{p}\right)
$$

Let $z_{p}=\exp \left(\frac{2 \pi i}{p}\right)$. The special case (3) of Theorem 1.2 gives

$$
\begin{aligned}
M_{0}\left(f_{p}\right) & \geq \frac{1}{2}\left(\left|F_{p}(1)\right| \prod_{k=1}^{p-1}\left|F_{p}\left(z_{p}^{k}\right)\right|\right)^{1 / p} \\
& \geq \frac{1}{2}\left(1 \cdot \prod_{k=1}^{p-1}\left|\frac{f_{p}\left(z_{p}^{k}\right)}{\left(z_{p}^{k}-1\right)^{m}}\right|\right)^{1 / p}
\end{aligned}
$$

It is known $[2, \S 5$] that for $1 \leq k \leq p-1$,

$$
f_{p}\left(z_{p}^{k}\right)=\sqrt{\left(\frac{-1}{p}\right) p}
$$

Then

$$
M_{0}\left(f_{p}\right) \geq \frac{1}{2}\left(\frac{\sqrt{p}^{p-1}}{p^{m}}\right)^{1 / p}=\frac{1}{2} \sqrt{p} p^{-\left(\frac{1}{2}+m\right) / p}
$$

Since $m=O\left(p^{1 / 2}\right)$, the bound (16) follows for large p.

References

[1] E. Beller and D. J. Newman, An extremal problem for the geometric mean of polynomials. Proc. Amer. Math. Soc. 39(1973), 313-317.
[2] P. Borwein, Computational Excursions in Analysis and Number Theory. CMS Books in Mathematics 10, Springer-Verlag, New York, 2002.
[3] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities. Graduate Texts in Mathematics 161, Springer-Verlag, New York, 1995.
[4] \longrightarrow On the zeros of polynomials with restricted coefficients. Illinois J. Math. 41(1997), no. 4, 667-675.
[5] D. Boyd, On a problem of Byrnes concerning polynomials with restricted coefficients. Math. Comput. 66(1997), no. 220, 1697-1703.
[6] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration. 2nd edition. Academic Press, Orlando, FL, 1984.
[7] T. Erdélyi, X. Li, and E. B. Saff, Remez- and Nikolskii-type inequalities for logarithmic potentials. SIAM J. Math. Anal. 25(1994), 365-383.
[8] L. Golinskii, D. S. Lubinsky, and P. Nevai, Large sieve estimates on arcs of a circle. J. Number Theory 91(2001), no. 2, 206-229.
[9] C. K. Kobindarajah and D. S. Lubinsky, Marcinkiewicz-Zygmund inequalities for all arcs of the circle. In: Advances in Constructive Approximation, Nashboro Press, Brentwood, TN, 2004, pp. 255-264.
[10] J. E. Littlewood, The real zeros and value distributions of real trigonometric polynomials. J. London Math. Soc. 41(1966), 336-342.
[11] D. S. Lubinsky, Marcinkiewicz-Zygmund inequalities: methods and results. In: Recent Progress in Inequalities, Math. Appl. 430, Kluwer Academic Publishers, Dordrecht, 1998, pp. 213-240.
[12] D. S. Lubinsky, A. Mate, and P. Nevai, Quadrature sums involving pth powers of polynomials. SIAM J. Math. Anal. 18(1987), no. 2, 531-544.
[13] G. Mastroianni and M. G. Russo, Weighted Marcinkiewicz inequalities and boundedness of the Lagrange operator. In: Mathematical Analysis and Applications, Hadronic Press, Palm Harbor, FL, 2000, pp. 149-182.
[14] H. L. Montgomery, The analytic principle of the large sieve. Bull. Amer. Math. Soc. 84(1978), no. 4, 547-567.
[15] T. Ransford, Potential Theory in the Complex Plane. London Mathematical Society Student Texts 28, Cambridge University Press, Cambridge, 1995.
[16] L. Zhong and L. Y. Zhu, The Marcinkiewicz-Zygmund inequality on a smooth simple arc. J. Approx. Theory 83(1995), no. 1, 65-83.

Department of Mathematics

Texas A\&M University
College Station TX 77843
U.S.A.
e-mail: terdelyi@math.tamu.edu

School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332-0160
U.S.A.
e-mail: lubinsky@math.gatech.edu

