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Large Sieve Inequalities via Subharmonic
Methods and the Mahler Measure of the
Fekete Polynomials

T. Erdélyi and D. S. Lubinsky

Abstract. We investigate large sieve inequalities such as

1

m

m
∑

j=1

ψ(log |P(eiτ j )|) ≤
C

2π

∫

2π

0

ψ
(

log[e|P(eiτ )|]
)

dτ ,

where ψ is convex and increasing, P is a polynomial or an exponential of a potential, and the constant

C depends on the degree of P, and the distribution of the points 0 ≤ τ1 < τ2 < · · · < τm ≤ 2π. The

method allows greater generality and is in some ways simpler than earlier ones. We apply our results

to estimate the Mahler measure of Fekete polynomials.

1 Results

The large sieve of number theory [14, p. 559] asserts that if

P(z) =

n
∑

k=−n

akzk

is a trigonometric polyonomial of degree ≤ n,

0 ≤ τ1 < τ2 < · · · < τm ≤ 2π,

and

δ := min{τ2 − τ1, τ3 − τ2, . . . , τm − τm−1, 2π − (τm − τ1)},
then

(1)

m
∑

j=1

|P(eiτ j )|2 ≤
( n

2π
+ δ−1

)

∫ 2π

0

|P(eiτ )|2 dτ .

There are numerous extensions of this to Lp norms, or involving ψ(|P(eiτ )|p), where

ψ is a convex function and p > 0 [8, 12]. There are versions that estimate Riemann

sums, for example,

(2)

m
∑

j=1

|P(eiτ j )|2(τ j − τ j−1) ≤ C
1

2π

∫ 2π

0

|P(eiτ )|2dτ ,
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Large Sieve Inequalities 731

with C independent of n, P, {τ1, τ2, . . . , τm}. These are often called forward Marcin-

kiewicz–Zygmund inequalities. Converse Marcinkiewicz–Zygmund inequalities pro-

vide estimates for the integrals above in terms of the sums on the left-hand side

[11, 13, 16].

A particularly interesting case is that of the L0 norm. A result of the first author

asserts that if {z1, z2, . . . , zn} are the n-th roots of unity and P is a polynomial of

degree ≤ n, then

(3)

n
∏

j=1

|P(z j )|1/n ≤ 2M0(P),

where

M0(P) := exp
( 1

2π

∫ 2π

0

log |P(eit )| dt
)

is the Mahler measure of P.

The focus of this paper is to show that methods of subharmonic function theory

provide a simple and direct way to generalize previous results. We also extend (3)

to points other than the roots of unity. Given c ≥ 0, κ ∈ [0,∞), and a positive

measure ν of compact support and total mass at most κ ≥ 0 on the plane, we define

the associated exponential of its potential by

P(z) = c exp
(

∫

log |z − t| dν(t)
)

.

We say that this is an exponential of a potential of mass ≤ κ, and that its degree is ≤ κ.

The set of all such functions is denoted by Pκ. Note that if P is a polynomial of degree

≤ n, then |P| ∈ Pn. More generally, the generalized polynomials studied by several

authors [3, 7] also lie in Pκ, for an appropriate κ. We prove the following.

Theorem 1.1 Let ψ : R → [0,∞) be nondecreasing and convex. Let m ≥ 1, κ > 0,

α > 0, and 0 < τ1 ≤ τ2 ≤ · · · ≤ τm ≤ 2π. Let w j ≥ 0, 1 ≤ j ≤ m, with

m
∑

j=1

w j = 1.

Let µm denote the corresponding Riemann–Stieltjes measure, defined for θ ∈ [0, 2π] by

µm ([0, θ]) :=
∑

j:τ j≤θ

w j .

Let

(4) ∆ := sup
{∣

∣

∣
µm([0, θ]) − θ

2π

∣

∣

∣
: θ ∈ [0, 2π]

}

denote the discrepancy of µm. Then for P ∈ Pκ,

(5)

m
∑

j=1

w jψ(log P(eiτ j )) ≤
(

1 +
8

α
κ∆

) 1

2π

∫ 2π

0

ψ(log[eαP(eiθ)]) dθ.
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732 T. Erdélyi and D. S. Lubinsky

Example 1 Let us choose all equal weights,

w j =
1

m
, 1 ≤ j ≤ m.

Then µm is counting measure,

µm([0, θ]) =
1

m
#{ j : τ j ∈ [0, θ]}.

If we take ψ(t) = max{0, t}, and α = 1, and use the notation log+ t = max{0, log t},

we obtain

(6)
1

m

m
∑

j=1

log+ P(eiτ j ) ≤ (1 + 8κ∆)
1

2π

∫ 2π

0

log+[eP(eiθ)] dθ.

This result is new. Previous inequalities have been limited to sums involving

ψ(P(eiτ j )p) for some p > 0. If we let p > 0, ψ(t) = ept , and α =
1
p

, then (5)

becomes

(7)
1

m

m
∑

j=1

P(eiτ j )p ≤ (1 + 8pκ∆)
e

2π

∫ 2π

0

P(eiθ)p dθ.

This choice of α is not optimal. The optimal choice is

α = 4κ∆

[

−1 +

√

1 +
1

2pκ∆

]

,

but one needs further information on the size of pκ∆ to exploit this. For example, if

pκ∆ ≤ 1, the optimal choice is of order
√

κ∆
p

, and choosing this α in (5), we obtain

(8)
1

m

m
∑

j=1

P(eiτ j )p ≤
(

1 + C
√

pκ∆
) 1

2π

∫ 2π

0

P(eiθ)p dθ,

where C is an absolute constant.

For well-distributed {τ1, τ2, . . . , τm}, ∆ is of order 1
m

. In particular, when these

points are equally spaced and include 2π, but not 0, so that

τ j =
2 jπ

m
, 1 ≤ j ≤ m,

we have ∆ =
2π
m

, and (7) becomes

(9)
1

m

m
∑

j=1

P(eiτ j )p ≤
(

1 +
16πpκ

m

) e

2π

∫ 2π

0

P(eiθ)p dθ.
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Example 2 Another important choice of the weights w j is

w j =
τ j − τ j−1

2π
, 1 ≤ j ≤ m,

where now we assume τ0 = 0 and τm = 2π. For this case (5) becomes an estimate

for Riemann sums,

(10)
1

2π

m
∑

j=1

(τ j −τ j−1)ψ(log P(eiτ j )) ≤
(

1+
8

α
κ∆

) 1

2π

∫ 2π

0

ψ(log[(eαP(eiθ)]) dθ.

The discrepancy ∆ in this case is

∆ = sup
j

τ j − τ j−1

2π
.

Remarks

(a) In many ways, the approach of this paper is simpler than that in [12] where

Dirichlet kernels were used, or that of [8], where Carleson measures were used. The

main idea is to use the Poisson integral inequality for subharmonic functions.

(b) We can reformulate (5) as

∫ 2π

0

ψ(log |P(eiτ )|) dµm(τ ) ≤
(

1 +
8

α
κ∆

) 1

2π

∫ 2π

0

ψ(log[eαP(eiθ)]) dθ.

In fact this estimate holds for any probability measure µm on [0, 2π], not just the

pure jump measures above.

(c) The one severe restriction above is that ψ is nonnegative.

In particular, this excludes ψ(x) = x. For that case, we prove two different results.

Theorem 1.2 Assume that m, κ, {τ1, τ2, . . . , τm} and {w1,w2, . . . ,wm} are as in

Theorem 1.1. Let

(11) Q(z) =

m
∏

j=1

|z − eiτ j |w j .

Then for P ∈ Pκ,

(12)

m
∑

j=1

w j log P(eiτ j ) ≤ 1

2π

∫ 2π

0

log P(eiθ) dθ + κ log ‖Q‖L∞(|z|=1).

Remarks If we choose all w j =
1
m

, this yields

(13)

m
∏

j=1

P(eiτ j )1/m ≤ ‖Q‖κL∞(|z|=1) exp
( 1

2π

∫ 2π

0

log P(eiθ) dθ
)

.
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734 T. Erdélyi and D. S. Lubinsky

If we take {eiτ1 , eiτ2 , . . . , eiτm} to be the m-th roots of unity, then Q(z) = |zm − 1|1/m

and (13) becomes

(14)

m
∏

j=1

P(eiτ j )1/m ≤ 2κ/m exp
( 1

2π

∫ 2π

0

log P(eiθ) dθ
)

.

In the case κ = m = n, this gives the first author’s inequality (3). In general, however,

it is not easy to bound ‖Q‖L∞(|z|=1). Using an alternative method, we can avoid the

term involving Q when the spacing between successive τ j is O(κ−1).

Theorem 1.3 Assume that m, κ and {τ1, τ2, . . . , τm} are as in Theorem 1.1. Let τ0 :=

τm − 2π and τm+1 := τ1 + 2π. Let

δ := max{τ1 − τ0, τ2 − τ1, . . . , τm − τm−1}.

Let A > 0. There exists B > 0 such that if κ ≥ 1 and δ ≤ Aκ−1, then for all P ∈ Pκ,

(15)

m
∑

j=1

τ j+1 − τ j−1

2
log P(eiτ j ) ≤

∫ 2π

0

log P(eiθ) dθ + B.

One application of Theorem 1.2 is to the estimation of Mahler measure. Recall

that for a bounded measurable function Q on [0, 2π], its Mahler measure is

M0(Q) = exp
( 1

2π

∫ 2π

0

log |Q(eiθ)| dθ
)

.

It is well known that M0(Q) = limp→0+ Mp(Q), where for p > 0,

Mp(Q) := ‖Q‖p :=
( 1

2π

∫ 2π

0

|Q(eiθ)|p dθ
) 1/p

.

It is a simple consequence of Jensen’s formula that if

Q(z) = c

n
∏

k=1

(z − zk)

is a polynomial, then

M0(Q) = |c|
n

∏

k=1

max{1, |zk|}.

The construction of polynomials with suitably restricted coefficients and maximal

Mahler measure has interested many authors. The Littlewood polynomials,

Ln :=
{

p : p(z) =

n
∑

k=0

αkzk, αk ∈ {−1, 1}
}

,
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which have coefficients ±1, and the unimodular polynomials,

Kn :=
{

p : p(z) =

n
∑

k=0

αkzk, |αk| = 1
}

,

are two of the most important classes considered. Beller and Newman [1] con-

structed unimodular polynomials of degree n whose Mahler measure is at least√
n − c/ log n. Here we show that for Littlewood polynomials, we can achieve al-

most 1
2

√
n by considering the Fekete polynomials.

For a prime number p, the p-th Fekete polynomial is

fp(z) =

p−1
∑

k=1

( k

p

)

zk,

where

( k

p

)

=











1 if x2 ≡ k
(

mod p
)

has a non-zero solution x,

0 if p divides k,

−1 otherwise.

Since fp has constant coefficient 0, it is not a Littlewood polynomial, but

gp(z) = fp(z)/z

is a Littlewood polynomial which has the same Mahler measure as fp. Fekete poly-

nomials are examined in detail in [2, pp. 37–42].

Theorem 1.4 Let ε > 0. For large enough prime p, we have

(16) M0( fp) = M0(gp) ≥
( 1

2
− ε

)√
p.

Remarks From Jensen’s inequality, M0( fp) ≤ ‖ fp‖2 =
√

p − 1. However 1
2
− ε

in Theorem 1.4 cannot be replaced by 1 − ε. Indeed if p is prime, and we write

p = 4m + 1, then gp is self-reciprocal, that is, zp−1gp

(

1
z

)

= gp(z), and hence

gp(e2it ) = ei(p−2)t

(p−3)/2
∑

k=0

ak cos((2k + 1)t), ak ∈ {−2, 2}.

A result of Littlewood [10, Theorem 2] implies that

M0( fp) = M0(gp) ≤ 1

2π

∫ 2π

0

|gp(e2it )| dt ≤ (1 − ε0)
√

p − 1,

for some absolute constant ε0 > 0. It is an interesting question whether there is a

sequence of Littlewood polynomials
(

fn

)

with fn ∈ Ln such that, for an arbitrary

ε > 0 and n large enough, M0( fn) ≥ (1 − ε)
√

n.

The results are proved in the next section.
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736 T. Erdélyi and D. S. Lubinsky

2 Proofs

We assume the notation of Theorem 1.1. We let

(17) r = 1 +
α

κ
,

and define the Poisson kernel for the ball |z| ≤ r (cf. [15, p. 8]),

Pr(seiθ, reit ) =
r2 − s2

r2 − 2rs cos(t − θ) + s2
,

where 0 ≤ s < r and t, θ ∈ R.

Proof of Theorem 1.1

Step 1: The Basic Inequality Let P ∈ Pκ\ {0}, so that for some c > 0 and some

measure ν with total mass ≤ κ and compact support,

log P(z) = log c +

∫

log |z − t| dν(t).

As log P is subharmonic, and as ψ is convex and increasing, ψ(log P) is subhar-

monic [15, Theorem 2.6.3, p. 43]. Then we have, for |z| < r, the inequality [15,

Theorem 2.4.1, p. 35]

ψ(log P(z)) ≤ 1

2π

∫ 2π

0

ψ(log P(reit ))Pr(z, reit ) dt.

Choosing z = eiτ j , multiplying by w j , and summing over j gives

(18)

m
∑

j=1

w jψ(log P(eiτ j )) − 1

2π

∫ 2π

0

ψ(log P(reit )) dt

≤ 1

2π

∫ 2π

0

ψ(log P(reit ))H(t) dt,

where

H(t) :=

m
∑

j=1

w jPr(eiτ j , reit ) − 1 =

∫ 2π

0

Pr(eiτ , reit ) d
(

µm(τ ) − τ

2π

)

.

Here we have used the elementary property of the Poisson kernel, that it integrates to

1 over any circle with center 0 inside its ball of definition.

Step 2: Estimating H We integrate this relation by parts, and note that both

µm[0, 0] = 0 and µm[0, 2π] = 1.

https://doi.org/10.4153/CJM-2007-032-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-032-x


Large Sieve Inequalities 737

This gives

H(t) = −
∫ 2π

0

( ∂

∂τ
Pr(eiτ , reit )

)(

µm([0, τ ]) − τ

2π

)

dτ ,

and hence

(19) |H(t)| ≤ ∆

∫ 2π

0

∣

∣

∣

∂

∂τ
Pr(eiτ , reit )

∣

∣

∣
dτ .

Now
∂

∂τ
Pr(eiτ , reit ) =

(r2 − 1)2r sin(t − τ )

(r2 − 2r cos(t − τ ) + 1)2
,

so a substitution s = t − τ and 2π-periodicity give

∫ 2π

0

∣

∣

∣

∂

∂τ
Pr(eiτ , reit )

∣

∣

∣
dτ =

∫ π

−π

∣

∣

∣

∂

∂s
Pr(eis, r)

∣

∣

∣
ds

= −2

∫ π

0

∂

∂s
Pr(eis, r) ds

= −2[Pr(eiπ, r) − Pr(1, r)] =
8r

r2 − 1
.

(20)

Combining (18)–(20), gives

(21)

m
∑

j=1

w jψ(log P(eiτ j )) ≤
(

1 + ∆
8r

r2 − 1

) 1

2π

∫ 2π

0

ψ(log P(reit )) dt.

Step 3: Return to the Unit Circle Next, we estimate the integral on the right-hand

side in terms of an integral over the unit circle. Let us assume that ν has total mass

λ(≤ κ). Let S(z) = |z|λP( r
z
), so that log S(z) = log c +

∫

log |r − tz| dν(t), a function

subharmonic in C. Then the same is true of ψ(log S), so its integrals over circles with

centre 0 increase with the radius [15, Theorem 2.6.8, p. 46]. In particular, recalling

our choice (17) of r,

1

2π

∫ 2π

0

ψ(log S(eiθ)) dθ ≤ 1

2π

∫ 2π

0

ψ(log S(reiθ)) dθ,

and a substitution θ → −θ gives

1

2π

∫ 2π

0

ψ(log P(reiθ)) dθ ≤ 1

2π

∫ 2π

0

ψ(λ log r + log P(eiθ)) dθ

≤ 1

2π

∫ 2π

0

ψ(κ log r + log P(eiθ)) dθ

≤ 1

2π

∫ 2π

0

ψ(α + log P(eiθ)) dθ.

https://doi.org/10.4153/CJM-2007-032-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-032-x


738 T. Erdélyi and D. S. Lubinsky

Then (21) becomes

m
∑

j=1

w jψ(log P(eiτ j )) ≤
(

1 + ∆
8r

r2 − 1

) 1

2π

∫ 2π

0

ψ(log[eαP(eiθ)]) dθ

≤
(

1 + 8∆
κ

α

) 1

2π

∫ 2π

0

ψ(log[eαP(eiθ)]) dθ.

Proof of Theorem 1.2 Write log P(z) = log c +
∫

log |z − t| dν(t), so (recall (11)),

m
∑

j=1

w j log P(eiτ j ) = log c +

∫

(

m
∑

j=1

w j log |eiτ j − t|
)

dν(t)

= log c +

∫

log Q(t) dν(t).

(22)

Now as all zeros of Q are on the unit circle,

g(u) := log Q(u) − log ‖Q‖L∞(|z|=1) − log |u|

is harmonic in the exterior {u : |u| > 1} of the unit ball, with finite limit at ∞, and

with g(u) ≤ 0 for |u| = 1. By the maximum principle for subharmonic functions,

g(u) ≤ 0, |u| > 1.

We deduce that for |u| > 1, log Q(u) ≤ log ‖Q‖L∞(|z|=1) + log+ |u|. Moreover, inside

the unit ball, we can regard Q as the absolute value of a function analytic there (with

any choice of branches). So the last inequality holds for all u ∈ C. Then, assuming

(as above) that ν has total mass λ ≤ κ,

∫

log Q(t)dν(t) ≤ λ log ‖Q‖L∞(|z|=1) +

∫

log+ |t| dν(t)

= λ log ‖Q‖L∞(|z|=1) +

∫

( 1

2π

∫ 2π

0

log |eiθ − t|dθ
)

dν(t)

≤ κ log ‖Q‖L∞(|z|=1) +
1

2π

∫ 2π

0

(

∫

log |eiθ − t| dν(t)
)

dθ.

(23)

In the second line we used a well-known identity [15, Exercise 2.2, p. 29], and in the

last line we used the fact that the sup norm of Q on the unit circle is larger than 1.

This is true because

1

2π

∫ 2π

0

log Q(eiθ) dθ =

m
∑

j=1

w j
1

2π

∫ 2π

0

log |eiτ j − eiθ| dθ = 0,
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while log Q < 0 in a neighborhood of each τ j , so that log Q(eiθ) > 0 on a set of θ of

positive measure. Substituting (23) into (22) gives

m
∑

j=1

w j log P(eiτ j ) ≤ κ log ‖Q‖L∞(|z|=1) +
1

2π

∫ 2π

0

log |P(eiθ)| dθ.

Proof of Theorem 1.3 Note first that our choice of τ0, τm+1 gives

m
∑

j=1

τ j+1 − τ j−1

2
= 2π.

It suffices to prove that for every a ∈ C,

m
∑

j=1

τ j+1 − τ j−1

2
log |eiτ j − a| ≤

∫ 2π

0

log |eit − a|dt + Bκ−1

= 2π log+ |a| + Bκ−1,

(24)

for we can integrate this against the measure dν(a) that appears in the representation

of P ∈ Pκ. Since

log |eiτ − a| = log |eiτ − a−1| + log |a|
for τ ∈ R and |a| < 1, we can assume that |a| ≥ 1. Moreover, it is sufficient to

prove (24) in the case |a| ≥ 1 + κ−1. Indeed the case |a| ∈ [1, 1 + κ−1] follows easily

from the case |a| = 1 + κ−1 and the fact that the left-hand and right-hand sides in

(24) increase as we increase |a|, while keeping arg(a) fixed. We may also assume that

a ∈ [1 + κ−1,∞) (simply rotate the unit circle). To prove (24), we use the integral

form of the error for the trapezoidal rule [6, p. 288, (4.3.16)]: if f ′ ′ exists and is

integrable in [α, β],

∫ β

α

f (t) dt − β − α

2
( f (α) + f (β)) =

1

2

∫ β

α

f ′ ′(t)(α− t)(β − t) dt.

From this we deduce that if f ′ ′ does not change sign on [α, β], then

(25)
∣

∣

∣

∫ β

α

f (t) dt − β − α

2
( f (α) + f (β))

∣

∣

∣
≤ (β − α)2

2
| f ′(β) − f ′(α)|.

Moreover, if f ′ ′ changes sign at most twice, then

(26)
∣

∣

∣

∫ β

α

f (t) dt − β − α

2
( f (α) + f (β))

∣

∣

∣
≤ 3(β − α)2 max

t∈[α,β]
| f ′(t)|.

Now let f (t) := log |eit − a|. Then

f ′(t) =
a sin t

1 + a2 − 2a cos t
and f ′ ′(t) =

−2a2 + (1 + a2)a cos t

(1 + a2 − 2a cos t)2
.
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Elementary calculus shows that | f ′| achieves its maximum on [0, 2π] when cos t =

2a
1+a2 . Then | sin t| =

a2−1
a2+1

. Hence, as a ≥ 1 + κ−1, and κ ≥ 1,

(27) | f ′(t)| ≤ (a − a−1)−1 ≤ κ, t ∈ R.

Also, since f ′ ′ has at most two zeros in the period, the total variation V 2π
0 f ′ on [0, 2π]

satisfies

(28) V 2π
0 f ′ ≤ 6 max

[0,2π]
| f ′| ≤ 6κ.

Now we apply (25)–(28) to the interval [α, β] = [τ j−1, τ j] and sum over j. We also

use our conventions on τm+1 and τm. Then

∣

∣

∣

∫ 2π

0

f (t) dt −
m

∑

j=1

τ j+1 − τ j−1

2
f (τ j)

∣

∣

∣

=

∣

∣

∣

m
∑

j=1

(

∫ τ j

τ j−1

f (t) dt − τ j − τ j−1

2
[ f (τ j−1) + f (τ j)]

)
∣

∣

∣

≤ 1

2
δ2V 2π

0 f ′ + 6δ2κ ≤ 9A2κ−1,

so we have (24) with B = 9A2.

Proof of Theorem 1.4 We begin by recalling two facts about zeros of Littlewood

and unimodular polynomials:

(I) There exists c > 0 such that every unimodular polynomial of degree ≤ n has

at most c
√

n real zeros [4].

(II) There exists c > 0 such that every Littlewood polynomial of degree ≤ n has at

most c log2 n/ log log n zeros at 1 [5].

Now suppose that 1 is a zero of fp with multiplicity m = m(p). By (I) or (II), m =

O(p1/2). Let hm(z) = (z − 1)m and Fp(z) = fp(z)/hm(z). Note that all coefficients of

Fp are integers (as 1/hm(z) has Maclaurin series with integer coefficients), so Fp(1) is

a non-zero integer. Also hm is monic and has all zeros on the unit circle, so its Mahler

measure is 1. Then as Mahler measure is multiplicative,

M0( fp) = M0(Fp)M0(hm) = M0(Fp).

Let zp = exp
(

2πi
p

)

. The special case (3) of Theorem 1.2 gives

M0( fp) ≥ 1

2

(

|Fp(1)|
p−1
∏

k=1

|Fp(zk
p)|

) 1/p

≥ 1

2

(

1 ·
p−1
∏

k=1

∣

∣

∣

fp(zk
p)

(zk
p − 1)m

∣

∣

∣

) 1/p

.
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It is known [2, § 5] that for 1 ≤ k ≤ p − 1,

fp(zk
p) =

√

( −1

p

)

p.

Then

M0( fp) ≥ 1

2

(

√
pp−1

pm

) 1/p

=
1

2

√
pp−

(

1

2
+m

)

/p.

Since m = O(p1/2), the bound (16) follows for large p.
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