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THE CHOWLA-SELBERG METHOD FOR FOURIER EXPANSION 
OF HIGHER RANK EISENSTEIN SERIES 

BY 

A U D R E Y T E R R A S 1 

Dedicated to the memory of Robert Arnold Smith 

ABSTRACT. The terms of maximal rank in Fourier expansions of 
Eisenstein series for GL(n, Z) are obtained by an analogue of a method of 
Chowla and Selberg. The coefficients involve matrix analogues of divisor 
functions as well as K-Bessel functions for GL(«). The discussion involves 
a few properties of Hecke operators. 

1. Introduction. Our goal is to give a simple discussion of Fourier expansions of 
Eisenstein series for the general linear group Tn — GL(n, Z) of n x n integral matrices 
of determinant ± 1 . We concentrate here on the terms of maximal rank in these 
expansions. When n = 2, the method is that of Chowla and Selberg [5]. 

There are many number-theoretic applications of these Fourier expansions and the 
analogues for Siegel modular forms (see Chowla and Selberg [loc. cit.], Bump and 
Goldfeld [4], Siegel ([27], Vol. II, pp. 97-137), Maass [18], [19], Terras [30]). 

These Eisenstein series are of interest because they form the continuous spectrum of 
the Laplacian on the fundamental domain for Tn in the symmetric space of GL(n, U). 
Thus these series are basic ingredients in analogues of the Poisson summation formula 
such as (5) below, or Selberg's trace formula (see Arthur [1], Langlands [17], Selberg 
[24], and Terras [30]). There are many number-theoretic and geometric applications of 
these noneuclidean Poisson summation formulas in studies of the statistical properties 
of r„ (see for example Hejhal [8], Mennicke [20], Terras [30], Wallace [34], [35]). 

Fourier expansions similar to those described here are obtained by Bump [3], Imai 
and Terras [12], Proskurin [23], and Takhtadzyan and Vinogradov [28] — all for 
GL(3, Z). A very special Eisenstein series for GL(rc, Z) was considered in [29] using 
very different methods (the Bruhat decomposition). 

In order to describe our results, we need some basic definitions. More details of the 
fundamental theory of symmetric spaces and discrete isometry groups can be found in 
Helgason [9], Maass [18], Selberg [24], and Terras [30]. 

Let 2̂ „ denote the space of positive definite symmetric n x n real matrices Y — 
(yij)\^ij^n- Here ' T positive definite" means that if 
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(x-\ 
x = • G U" - 0, then Y[x] = 'xYx = 2 x.y^j > 0. 

\xj 
We shall use 'JC to denote the transpose of x. The general linear group G = GL(n, U) 
of nonsingular n x n real matrices g acts on F E 2̂ ,, via Y[g] = '#yg. We can then 
identify 9\, with the symmetric space K\G, for G = GL(AI, R), AT = O(AZ), the maximal 
compact subgroup of orthogonal matrices. The identification comes from the mapping 
of K\G onto SP„ given by Kg i-> /[#]. 

The space 9 \ is turned into a Riemannian manifold by defining the G-invariant arc 
length element ds by: 

ds2 = Tr{(Y-]dY)2), dY^idy^j*,. 

The corresponding G-invariant measure on 2^ is: 

d\xn = d\x.n(Y) = |y|-( / ,+ 1)/2 Y\ dyih dyl} = Lebesgue measure, 

\Y\ = det(y). 

And the Laplace operator is: 

A - Tr((Fd/dF)2), a/ar - (i(i + ô^a / a^ ) , ^^ . 

There are also G-invariant differential operators L7 defined by: 

Lj = Tr((Yd/dYy), j= l , 2 , . . . , / i , 

forming an algebraically independent basis for the algebra D(2P„) of all G-invariant 
differential operators on 2P„. 

It will be useful to introduce the determinant one surfaces: 

/ SL(/i, D) = {gE GL(/t, D)\ \g\ = det (g) = 1}, 

(1) SO(/i) - {# G 0(/i)| |#| = det (£) - 1}, 

I V<3>n = {Y G SP„| |y| - det (F) = 1} = SO(/i)\SL(/i, R). 

We will use the notation: 

y = / I /wy°, for y G SP„, y0 G y a ^ , * = |y| = det (y), 

J|x„(y) = t~] dt dY°, where </y° is an SL(n. [R)-invariant measure on &&„. 

Fourier analysis on 2P„ has been developed by many mathematicians, especially 
Harish-Chandra and Helgason (see Helgason [9] and Terras [30]). To describe it, one 
must define elementary eigenfunctions of the algebra Z)(9\,) which we call power 
functions, for Y G &„, s G C : 

(3) Ps(Y) = H\Yj\'J, if Y=(^ J , YJEVJ, |y,| = det(y,). 

(2) 

https://doi.org/10.4153/CMB-1985-034-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1985-034-1


282 A.TERRAS [September 

See Maass ([18], p. 69) for the proof that these power functions are indeed eigen-
functions of the G-invariant differential operators on 9\,. 

The Helgason-Fourier transform of A -̂invariant functions f:?Pn/K —» C has the 
form: 

(4) / ( J ) = f f(Y)ps(Y)d[in(Y)9 j E C " . 
•V, 

The transform has an inversion formula due to Harish-Chandra. It can also be identified 
with the Selberg transform appearing in the Selberg trace formula. 

For number theory, one needs to connect analysis on $*„ and analysis on S^/T,,, 
T„ = GL(n, Z). One such result is the Poisson summation formula, which is a pre­
liminary to Selberg's trace formula. Given a smooth compactly supported function 
f'.tyn/K-* C, the Poisson summation formula says (cf. Arthur [1], Langlands [17]): 

(5) 2 fdh]) = lc-J £ f / ( 5 ( 9 , r ) ) | £ ( 9 , r | / ) | 2 t / r . 
YEY„/±I IT <pG26w -TeC1 7 1 ' , Re /-^constant 

Here TT runs through all inequivalent partitions of n\ i.e., decompositions of n = nx + 
• • • + nq, nx E Z + , with |TT| = q, c\ = a positive constant, SŜ  is a complete 
orthonormal set of automorphic forms cp defined from <p, E L2(^2Pw./rn.), which are 
eigenfunctions of D(£^9\,.), as follows: 

«pdo = n 9/(û?). y = (fl| •• ) 
1=1 x 0 • aq' -0 

di — ai 1 a,-1 ', |<z,1 = 1. 

r E C*7, we can define the power function 

;i- -
1 n.. 

<3>„ 

MY) = n krr'. 
/ • = 1 

When Re r, is sufficiently large, we define the Eisenstein series by: 

E(v,r\Y)= S <p{Y[y])MY[y]), 

where / ^ is the parabolic subgroup of matrices with block form: 

(6) ^ C T ' - )> ^ r , . 
Finally / (s(<p, r)) is the Fourier transform (4) evaluated at 5(9, r) E C determined 
by a basic lemma of Selberg [24] which says that eigenfunctions of G-invariant differ­
ential operators are eigenfunctions of G-invariant integral operators (see Terras [31]). 
We do not use (5) here. It is stated to motivate our study of the special Eisenstein series 
associated to partitions with q = 2 or n. 

Minkowski [21] found that, up to boundary identifications, a fundamental domain 
for &n/rn, Tn = GL(n, Z), has the form: 

https://doi.org/10.4153/CMB-1985-034-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1985-034-1


1985] CHOWLA-SELBERG METHOD 283 

Mn = {Y E ®n\Y[a] ^ yu, Va G Z»-B-g.c.d.(ah . . .,aH) = 1, 

yu+l &0, 1 ̂ i ^ / i } . 

He also found that the Euclidean volume of {Y E M„\ \Y\ ̂  1} is: 
n 

2(/i + l)"1 EI A(*/2), where A(j) = I T " T ( J ) C ( 2 J ) . 

This fact can be proved from properties of Eisenstein series (8) (see Siegel [27], 
Vol. I, pp. 459-468; Vol. Ill, pp. 328-333; Maass [18], pp. 23Iff; and Terras [30]). 

2. Eisenstein Series. We consider the following space of automorphic forms for 
Tn = GL(n, Z) corresponding to a system X = \L E C of eigenvalues for the differ­
ential operators L E D(8P„): 

( d{TH,\) = {f:9jrH^> C\Lf= \f, L E D(9n), \f(Y)\ ** C\ps(Y)\}, 
(7) < 

( d0(Tn,X) = {f:^n/rn-^C\Lf=Xf, LED(^n), \f(Y)\^C\ps(Y)\}. 

These forms generalize the Maass wave forms when n - 2 (see Terras [30] for the 
history of these matters). There are, in fact, many parallels with the classical theory of 
holomorphic modular forms on the Poincaré upper half plane (cf. Hecke [7]) and 
Siegel modular forms (cf. Siegel [27], Vol. II, pp. 97-137). 

There are examples of cusp forms belonging to congruence subgroups of GL(3, Z) 
corresponding via generalizations of Hecke theory to Hecke L-functions of cubic 
number fields (see Jacquet, Piatetskii-Shapiro and Shalika [14]). There are also cus­
pidal examples corresponding via Hecke theory to Rankin-Selberg L-functions (see 
Gelbart and Jacquet [6] and Moreno and Shahidi [22]). 

We do not consider such examples here for our subject is Eisenstein series. The main 
result (Theorem 1) gives an explicit Fourier expansion for such Eisenstein series in a 
special case. 

For (p E 5Î0(rm, X), 5 G C, with Re s > n/2, m < n, define the Eisenstein series 
by: 

(8) E(<t,s\Y) = Em,,,-m(<p,s\Y)= I « p d l ^ i D l r U i ] ! " ' . 
A = (A]*)er„/P(m,n-m) 
A]eimxn 

We are using the notation (2), (6) above. The series (8) converges by an integral test 
coming out of integral formulas of Siegel ([27], Vol. Ill, pp. 39—96) and Wishart [36]. 
These integral formulas combine to give (cf. Terras [32]): 

I 1 f(W[N]) dW=c\ f(Y)\Y\n/2 diim(Y). 

for a positive constant c. It is rather easy to get a convergence argument out of this 
integral formula, assuming that 9 E L\y(3>

m/Tm). 
When n = 2, the Eisenstein series (8) is quite well understood (see Chowla and 

Selberg [5] or Terras [30]). When cp = 1, the series (8) is closely related to a zeta 
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function (first considered by Koecher [16]) which generalizes the Epstein zeta function. 
We will soon discuss this (see formulas (12) and (16)). When <p is itself an Eisenstein 
series built up only out of Eisenstein series (i.e., all the cp's are identically one at each 
level), then (8) is easily seen to be an Eisenstein series first considered by Selberg [24] 
for s E C", YE g>„: 

(9) Ein)(s\Y) = 2 P-s(Yh])9 Re sf > 1, j = 1,. . . ,n. 
r„/P,„, 

Here P{n) denotes the minimal parabolic subgroup associated to the partition with 
| IT | = n. An integral formula similar to that stated above gives the convergence region 
indicated (see Terras [32]). Selberg obtained the analytic continuation of (9) to a 
meromorphic function of s E C with n ! functional equations (see Maass [18], §17; and 
Terras [30]). 

It is fairly easy to see that the Eisenstein series £(<p, s\Y) defined by (8) are indeed 
automorphic forms in $£(r„, |x) for some eigenvalue system |x, since cp(W°)|W|-5 is 
clearly an eigenfunction of the G-invariant integral operators on W E 9>

m. 
To see that |£(<p, s\Y)\ ^ C|/?,(F)|, one can argue as follows. Suppose that Y E 2P„ 

has partial Iwasawa decomposition: 

'V 0 \ 17* X 
(10) Y = 

and 

0 W/ L 0 
v E g> w E s> , x E nmx{"-m). 

A, - ( ) , B E Zmxm, C E Zmx{n~m). 

Then y[A,] = V[fl + XC] + W[C]. If W approaches infinity in the sense that the 
geodesic distance between W and / blows up, then the eigenvalues of W must approach 
infinity. We shall assume that all these eigenvalues blow up. If so, the only way that 
|y[A,]| can avoid approaching infinity is if C = 0. So as W approaches infinity, 

(11) EU, s 
V 0 

0 W 

I X 

0 / 
<P(V°) |V | -

This gives the first term in the Fourier expansion of the Eisenstein series with respect 
to the X-variable in (10) and shows that the series (8) does not represent a cusp form. 
Our operation of sending W to infinity gives an analogue of the Siegel <É>-operator in 
the theory of Siegel modular forms (cf. Maass [18]). 

Why do the Eisenstein series require analytic continuation in the ^-variable? Con­
sider, for example, the series (9). The negativity of the Laplacian on L2(^2^„/r„) 
implies that s in E(n) (s\Y) corresponds to an element of the spectrum of A if Re st — 
1/2, i = 1 , . . . , / ! - 1 (see Terras [30]). 

How many ways can the Eisenstein series be continued? There are at least three 
methods (cf. Hejhal [8], Vol. II, Appendix F; Langlands [17]; Maass [19]; Selberg 
[24]; and Terras [30]). Our aim here is to make use of a method that is somewhat special 
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to arithmetic groups. We shall see that this method has interesting implications for the 
Fourier coefficients. The idea goes back to Riemann when n = 1 and was developed 
by Siegel, Selberg, Maass, etc. for n > 1. We call the technique "Riemann s method 
of theta functions". To use it, one must connect the Eisenstein series (8), which is a sum 
over r„, with a zeta function, which is a sum over as big a subset of Z"Xm as possible. 
We define this zeta function as: 

(12) z(<p,*|y) = z,„,„-m(<p,*|y)= 2 V(Y[A]°)\Y[A]\-S , 
AEl"xmrk m/Vm 

for cp E s&°(rm, X), s E C, Re s > n/2, m ^ n. The sum is over a complete set of 
representatives for the n x m integral matrices A of rank m, modulo GL(ra, Z). The 
special case <p = 1 is Koecher's generalization of Epstein's zeta function (see [16]). 
When cp = 1 and n — m, this zeta function is the analogue of the Dedekind zeta function 
for the simple algebra QnXm; i.e. 

Z„,0(l,s|/) = 2 \A\'2s= J! {(25-y), 
AE.Znxnrkn/Y„ j = 0 

a result which follows from (14) below. Such zeta functions were studied by Kate Hey 
[11]. But the analytic continuation problem was not resolved until Siegel ([27], 
Vol. 1, pp. 459-468, Vol. Ill, pp. 328-333) and Selberg (see Maass [18], pp. 231 
ff.) and Terras [30]). 

In order to relate (8) and (12), we need a few facts about Hecke operators for Tn. 

3. Hecke Operators. If k E Z+ and/: ^9 \ , / r „ -> C, we define the Hecke operator 
T[n) - Tk by: 

(13) Tkf(Y)= S f(Y[A]°), 
AEM„(k)/r„ 

where Mn(k) = {A E Z"xn\ \A\ = k} and we use the notation (2). A complete set of 
representatives for Mn(k)/Tn is easily seen to be given by: 

(14) ( ' \ u), fi dj = k, dj>0, O^d^di. 

These Hecke operators are quite analogous to those considered by Hecke [7] and Maass 
[19]. A detailed discussion can be found in Terras [30, 33]. More general operators of 
this sort have been studied by Satake, Tamagawa and others (see Shimura [26] and 
Bump [3]). 

It is shown in [33] that the linear maps Tk:sA°(Tn, \) —> $&°(rn, X) are self-adjoint 
operators with respect to the usual inner product on L 2 ( ^ 9 \ / r „ , dW), normalizing 
measures as in (2). Moreover, the Tk form a commutative ring of operators and are 
simultaneously diagonalizable. One can give explicit formulas for Euler factors: 

ZJ TprXr, p = prime, X = indeterminate. 

https://doi.org/10.4153/CMB-1985-034-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1985-034-1


286 A. TERRAS [September 

In fact, there is an analogue of Hecke's theory of L-functions corresponding to eigen-
functions of Hecke operators. Suppose cp E <s40(T„, X) is such an eigenfunction with 
Tk<p = uk<p, uk E C. Then define the L-function associated to cp by: 

(15) L^s) = E w**'5, Re s > n/4. 

It is shown in [33] that Ly(s) has analytic continuation as a meromorphic function of 
s E C with a functional equation (the method being the same as that sketched below 
for Eisenstein series). 

We have introduced the Hecke operators because we have the following relation 
between the Eisenstein series (8) and the zeta function (12) when cp E s&°(Tm, X) is an 
eigenfunction for all the Hecke operators T[m) with Tk

m\ = u[m\, 

(16) Z{v,s\Y)=L^2s)E{^s\Y). 

See [33] for the simple proof. Note, however, that one must understand the zeros of 
Ly(2s) in order to divide by it (see Shahidi [25]). 

The analytic continuation needed here requires a theta function defined for F 6 ? N , 
X E 2Pm, m ^ n, by: 

m 

(17) e r(K,X)= X cxp{--nTr(Y[A]X)}, 6 = S 6 r . 

We will also require the gamma function for 2Pm, defined for suitably restricted s E Cm 

by: 

(18) r „ ( 5 ) = f p,(X)exp{-Tr(X)}rfM* 

' " I /' — 1\ 
= i r - ( " - , , / 4 n r ( s j+ ...+sm-J—~ . 

7 = 1 Z 

Hopefully the use of the same letter for a special function and a discrete group will not 
cause too big a disaster. Formula (18) was first proved by Ingham and Siegel in a 
special case (see Terras [30]). 

The analytic continuation of the Eisenstein series E(q>,s\Y) can now be based on the 
formula: 

(19) 27T-"Tm(r(9 ,5))Z(9,s|F) = f %m(Y9X)ip((X0yl)\X\'d[im(X). 

Here the variables r = r(<p, s) E Cm are determined by: 

Ly((X°yl)\X\s
 = LPr(X) 

<P((X0)-W Pr(X) 

This is derived from Selberg's basic principle, mentioned earlier, that eigenfunctions 
of G-invariant differential operators are eigenfunctions of G-invariant integral operators 
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(see [30, 31, 33] or Maass [18], §16). 
Riemann's method of theta functions produces an analytic continuation of (19) by 

splitting the fundamental domain into the regions with | Y\ ^ 1 and | Y| ^ 1, then sending 
y to Y~] in the first region and making use of the transformation formula: 

d(Y-\x~l) = |y|M / 2 |x| '7 / 2e(y,x). 

The lower rank terms of theta in (17) produce divergent integrals. Selberg found 
G-invariant differential operators which annihilate the 0r for r < m. This allows one to 
obtain the analytic continuation. The details are in the references mentioned at the end 
of the preceding paragraph. 

The Eisenstein series (8) are eigenfunctions of the Hecke operators (13). The fol­
lowing proposition gives an explicit formula for the eigenvalue. 

PROPOSITION 1. Eigenvalues for the action of Hecke operators on Eisenstein series. 
Using the definitions (8) ofE(y, s\Y) and (13) ofT(£\ we have 

T[n)E(<p,s\Y) = u^E(<p,s\Y), 

where 

u? = k2ms/n 2 dn-m{k/t)tn-m-2su\m). 
t\k 

Here rjm)cp = u\m\ and 

dr(v) = S d\~] dr
2~

2 . . . dr-i . 
\\r

Jmldrv.djEZ + 

PROOF. Clearly we need representatives of Mn(k)/P(m, n - m). One can write A E 
Mn(k) as A = BC, with 

(F H\ 
B = (5,*) E TJP(m9 n-m),C = [ )E Mn(k), 

It follows that the sum A E Mn(k)/P(m,n - m) is equivalent to summing over B = 
(B, *) E TJP(m, n - m), and F E Mm(t)/Tm, G E M„_m(fc/0/IVm, H mod F, for 
all divisors t of k. The notation "H mod F" means that we want a complete set of 
representatives for the equivalence relation H ~ H' if and only if//' = FU + H, for 
some U E ZmX{n'm\ The number of G E Mn-m(k/t)/Yn-m is found from (14) and we 
count dn-m(k/t) such G's. The number of H mod F is easily seen to be |F |n _ m = t"~m. 

Thus, setting P = P(m,n - m), we have: 

T[n)Em^m(ip,s\Y) = 2 £ viYlBAtftlYik-V'BAiT' 
BEM„(k)/Vn A = (A]*)Srn/P,AleI"Xm 

= * w ' I <P(nA,P)|y[A,]|-' 
(Al*) = AEM„(k)/P,A]El"Xm 
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= klmsln 2 ( S d„-m(k/t)f-
(B^EVJP t\k 

= u{
k
n) Em,n-m(<p, s\Y). 

[September 

-"'-2i«,)cp(y[fi,]0)infi,]|"s 

• 

y,s C °) I X~ 

-0 / -

One would expect the eigenvalues computed in Proposition 1 to be related to the 
Fourier coefficients computed in Theorem 1, but we will not pursue that question here. 

4. Fourier Expansions. We know that Z(<p,s\Y) defined in (12) is a periodic 
function of each entry of the matrix X when Y has the partial Iwasawa decomposition 
(10) and thus it has a Fourier expansion: 

X cN(V, W) exp {2ir/Tr(WX)}. 
NSZ"Xm 

There is quite a long history of the derivation of such expansions. Here we are mainly 
motivated by the work of Siegel and Maass for Sp(ft, Z) (see [18] and [27], Vol. II, 
pp. 97-137). 

Terms in such Fourier expansions always have two parts. One part is arithmetic-
either a singular series (for functions defined as in (8)) or a divisor function (for 
functions defined as in (12)). When n = 2, the arithmetic part of the &th Fourier 
coefficient for k ^ 1 is essentially the eigenvalue in Proposition 1; i.e., 
ks 2o<,|* tx~2s = ks cT\-2s(k). The singular series version of this is: 

2 c~2s exp(2nikd/c) = o-,_2,(/0A(2.s). 
c>0,dmodc 

(d,c)=\ 

When <p = 1 and n = 2m, we found in [29] that the arithmetic part of the term 
corresponding to TV E ZmXm of rank m in the Fourier expansion of £(1 , s\ Y) is essen­
tially the singular series: 

S v(Ry2s exp{2inTr(7?A0}. 
R(E(Q/Z)mXm 

Here v(R) is the product of the reduced denominators of the elementary divisors of R. 
Siegel [loc. cit.] obtains an analogous result for holomorphic Eisenstein series for 
Sp(n, Z). Lower rank terms are more complicated to describe. We will find here that 
the arithmetic part of our Fourier expansions cannot so easily be separated out. 

The terms of the Fourier expansion have a second part which is analytic-^ matrix 
argument confluent hypergeometric function. For GL(n,Z) one obtains analogues 
either of AT-Bessel or Whittaker functions. We mostly work with AT-Bessel type func­
tions, as we are attempting to stay close to the Siegel-type Fourier expansions. The 
Whittaker-type functions appear in the expansions discussed by Bump [3] (see also [13] 
and [14], for examples of the Whittaker model theory). 

We define two kinds of A -̂Bessel functions, using the upper case letter for the first 
type of function and the lower case letter for the second. Formula (23) of Bengtson [2] 
relates the two functions. The AT-Bessel function is useful because it has good con-
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vergence properties and the &-Bessel function is useful because the differential equa­
tions it satisfies are quite obvious. The theory of these functions is described in detail 
by Bengtson [2] and Terras [30]. Special cases were considered by Herz [10]. 

The K-Bessel function for &„ is defined for s E C \ A, B E <3>n by: 

(20) K„(s\A,B) = K(s\A,B) = J ps(Y) exp {-Tr (AY + BY1)}d[xn(Y). 
J YEW,, 

Note that when n = 1, this is essentially the classical K-Bessel function for a > 0: 

(2i) *'(fl) = H > ? ' " , e x p { - § ( ? + x/y)}dy-

We find easily that K\(s\a, b) = 2(b/a)s/2 Ks{2vab). For our purposes it is useful 
to separate the arguments A and B, though one can change variables and reduce one 
argument to the identity. If A or B is singular, one must restrict s to a suitable half plane 
for convergence. For example, K„(s\A,0) = ps(A~l)T„(s), with the notation (18). 

The k-Bessel function for 9>„ is defined for s E C", Y E $>„, A E RnXm by: 

(22) km,a-a(s\Y*A) = k(s\Y,A) 

exp{2inTr('AX)}rfX. 

Here s must be suitably restricted for convergence. 
As a function of Y, k(s\Y,A) is an eigenfunction of all the G-invariant differential 

operators on 2P„, and it has the transformation property: 

hn X l \ 
,A) = exp {2TH Tr(7U0}fc(s|r,A). 

u i n _ ,M 
* U 

Moreover, |fc(,s|y,A)| ^ C|/?r(y)| as F approaches infinity. 
Bengtson [2] proves the following formula relating the two BesseI functions: 

) , A ) = TTm{"-m)/2\W\m/4Km(s^\W[irtA]9V-1), 
0 WJ ' 

(23) rm(-j*)*MiW-muo 

where V E 0>w, W E ^_ /M ,^ E C", s # = (0,. . ,0,(/i - m)/2) - s, and 5* = 
( ^ m - l >• • • >-Sl > — 2 j 5,-). 

The preceding formulas say that our Bessel functions come from characters \A of the 
abelian group: 

N(m, n — m) 
UL X 

^ 0 /„_„ 
X E 

defined by 

(24) X* 
^ 0 L 

= exp {2in Tr('AX)} for fixed A 
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(25) yv = ) Uv e U}-

All of these functions are connected with the representation theory of the nilpotent 
group 

1 . Xu 

0 '" 1 

Kirillov [15] describes the irreducible unitary representations of N as being of two types 
— one dimensional or infinite dimensional. The one dimensional representations Xa of 
N are parameterized by vectors a E (R'?~' and defined by: 

Xa\ '• ") = exp 2TT/ E atxu+ v0 " 1 l i 

These representations lead to the Whittaker functions of Jacquet [13] and Bump [3]. The 
infinite dimensional irreducible unitary representations of N are induced from a charac­
ter XA a s m (24) with m — [(n + l)/2]. These latter representations lead to our k-Bessel 
functions (and they also contribute to the Plancherel formula for N). 

The following result connects our AT-Bessel functions with those in [28] for n — 3. 

PROPOSITION 2. Inductive formula for K-Bessel functions. For s E C , there are 
parameters r, E Cm, r2 E C"~m such that 

[A 0 
P 

for every A 

v0 B 

<3>m, B E 9 >
n _ m . Then 

= pri(A)\A\{'"-")/2pr2(B)\B l / n / 2 

•̂W C 
Jxew 

PROOF. Write 

'V 0 

0 W 

In, 

rQ 

0 
, / 

Km(rx\A + B['X + 'QlI)K„-m(r2\BJ + I[X])dX. 

Y = 
0 /„ 

In formula (20). Note that 

Tr 
h 

d[L„(Y) 

Y + Y' 

•\{m-n)/2 dy,m(V)\W\-m/2d^m(W)dX 

Tr(AV + BV[X + Q] + BW + V'1 + W"*[rX] + W']). D 

Now we can consider the Fourier expansions of Eisenstein series E(<p,s\Y) defined 
in (8). // will be convenient to assume that n^ 2m. Our method is analogous to that 
of Chowla and Selberg [5] for the case n = 2, m = 1. We consider only Fourier 
expansions with respect to the parabolic subgroup involved in the definition of the 
Eisenstein series. And we shall restrict ourselves to consideration of the terms of 
maximal rank. 
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We begin with formula (19). From the partial Iwasawa decomposition (10) 

'V 0 \ \Im Q 

0 /„_„ 

we find that the partial theta function of maximal rank given by (17) is: 

9„(Y,X)= 2 exp{-TTTr(Vr]x)} 

X exp {-TTTT(V[B + QC]X + W[C]X)}. 

BElmXm 

(p)eZ rt' (?) 
sezwxm 

The terms of maximal rank in the Fourier expansion correspond to the matrices C of 
rank m in Zin~m)Xm. We shall consider the other terms elsewhere. It follows that, for 
such terms, B is summed over the full lattice ZmXm. The classical Poisson summation 
formula can then be applied to the sum over B and leads to the following formula for 
the terms with C of rank m in 8,W(F,X): 

|X|-«/2|V|-m/2 £ e x p {2™ Tr ('# g C) - 7TTr(V'[B]X~l)}. 
BEZ f f l X m 

Substitution of this result in (19) shows that the terms of rank m come from B G Zmxm, 
C G Z(n~m)xm with £ and C both of rank m. These terms are: 

(26) |V|-m/2 2 exp{2Tr/Tr(C'fle)}/(<p,,s - / w ^ l i r ^ t C L i r V " ' ^ ] ) , 
BeImXmrk m/Ym 

CeZlm~m)X,nrk m 

where 

(27) /(<p,s|A,£) - I IXlXX0 - 1) exp {-Tr(AX + flX"1)}^^), 

forA,£ G 3\n,s G C. 
Thus it is useful to relate /(<p, s\A,B) with Km(r\A,B). We do this in a special case. 

Of course, it is clear that 7(1,5-1A,B) = K(l,s\A,B). 

PROPOSITION 3. Suppose A,B E <3>m,r E Cm with Re r,> 1. If E{m)(r\Y) is the 
Eisenstein series (9), we have the following expression for the integral (27) in terms of 
K-Bessel functions: 

l(E(m){r\*)) = I Eim)(r\Y) exp {-Tr(AY + BY^)}d[Lm(Y) 

= 2 £ Km(-r\A['u],B[u-1]). 
uEP{m)\rm 

Here Pim) stands for the minimal parabolic subgroup ofTm, as in (9). 
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PROOF. Suppose that the nilpotent group TV C GL(m, U) is as defined in (25). It 
follows that 

2 f E(m)(r\y)^p{-^(AY +BY-])}d^m(Y) 

= f 2 P-r(Y[j]) 2 exp{-Tr(AY[y] + B(Y[y]rl)}diim{Y) 

= f P-XY) \ E txp{-Tr(AY[ny] + B(Y[ny]yl)}dnd\Lm(Y). 
J9?m/N JN/NDVm yerm 

Here the "2" comes from the order of the center of T,„. On the other hand, 

Km(-r\A,B) = f p.r(Y) \ exp{-Tr(Ar[/i] + £ ( n " ] ) _ 1 ) } ^ M n . 

Thus, it suffices to show the following easily verified equality: 

I 2 exp {-Tr(AY[ny] + B(Y[ny])~l}dn 

= E J exp {-Tr(A[lu]Y[n] + B[u-]](Y[n]yl)}dn. • 

We collect our results in the following theorem. 

THEOREM 1. The nonsingular terms in Fourier expansions of Eisenstein series. 
Suppose that <p(Y°~l) = E{m)(r\Y) as in (9) and n ^ 2m. Set A(<p,s\Y) = 
2iT~ms Tm(r(cp, jc))Z(tp, s\Y) which is the left-hand side of formula (19). Then A(q>,s\Y) 
is a periodic function ofX in the partial Iwasawa decomposition: 

(V 0 \ \lm X l 
Y = ( , X G W»*i»-m\ y e SPm, W G ^,_m . v0 W7 

77ie corresponding Fourier series for A(q>,s\Y) is given by: 

A(<p,s\Y) = S cN(V, W) exp {2inTr(WX)}. 
/ v e Z m x , „ - m ) 

The terms with N of maximal rank m have the form: 

\\V\-ml2CN(V,W) = 

2 2 Km((-r,s - m/2)\<nW[C'alTtV-l[Ba-1]). 
BEimXm/rm a^p{m)\rm 

N = B'C, some CEl("~m)Xm 

Questions: 
(1) (a) Are there similar results when q>(Y) is a cusp form? 
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(b) What are the lower rank Fourier coefficients? 
We will publish the answers to these questions elsewhere. 

(2) Can one make use of Hecke-type operators to move the B around in 
7((p,s|'TrW[C],'TTV~1[Z?])? These operators would be associated to a matrix TV E 
Zm,(*-m) a n d d e f i n e d fory. g>w _> c b y : 

TNf(Y) = X f(Y[B]) 
BezmXm/rm 

N = B'C, some CEl{n~m)Xm 

For example, we find that TNE{m)(r\Y) = aN(r)E{m)(r\Y), where 

(28) aN(r) = l P-rU[D]), D = ( ' \ / ) ,du mod di9dk > 0 
D\N

 x 0 • dm ' 

where "D|AT means there is a C G Z{n~m)Xm such that N = DlC. This means that each 
elementary divisor of D divides the corresponding one in N. Thus, if E{m)(r\W) = 
<p(W0_1) |W|\ the coefficient cN in the Fourier series of A(cp, s\Y) from Theorem 1 is: 

(29) cN(V,W) = 

2\V\-m/2aN(r) I tfw((-r,j - m/2)\*nW['N'al>nV-l[a-1]). 
aEP[m)\rm 

Finally, we state an integral formula. Normalizing integrals over ^2Pm as in (3), we 
have for <p G s!0(rm,X), s G C, A,5 G ^ , and /(<p,s|A,£) as in (27): 

(30) /(<p,j|A,B) = 

2 f , y r- /Tr (£W _ 1 )W2 
cp(W-1)^m5(2VTr(AW)Tr(5W-1)) <W, 

™ Jwewm
 v Tr(AW) ; 

where Ks(y) is the classical AT-Bessel function (21). There is a similar formula for 
K(r\A,B). 
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