ALGEBRAS OF ANALYTIC OPERATORS ASSOCIATED WITH A PERIODIC FLOW ON A VON NEUMANN ALGEBRA

BARUCH SOLEL

1. Introduction. Let M be a σ-finite von Neumann algebra and $\left\{\alpha_{t}\right\}_{t \in T}$ be a σ-weakly continuous representation of the unit circle, \mathbf{T}, as *-automorphisms of M. Let $H^{\infty}(\alpha)$ be the set of all $x \in M$ such that

$$
s p_{\alpha}(x) \subseteq\{n \in \mathbf{Z}: n \geqq 0\} .
$$

The structure of $H^{\infty}(\alpha)$ was studied by several authors (see [2-13]).
The main object of this paper is to study the σ-weakly closed subalgebras of M that contain $H^{\infty}(\alpha)$. In [12] this was done for the special case where $H^{\infty}(\alpha)$ is a nonselfadjoint crossed product.

Let M_{n}, for $n \in \mathbf{Z}$, be the set of all $x \in M$ such that

$$
s p_{\alpha}(x)=\{n\} .
$$

With a projection e in the centre of M_{0} (the fixed point algebra with respect to α) we associate projections $\{e(n)\}_{n=-\infty}^{\infty}$ by defining

$$
\begin{aligned}
& e(n)=I \text { for } n \geqq 0 \text { and } \\
& e(n)=\Lambda\left\{1-\beta_{m}(e): n \leqq m \leqq-1\right\} \text { for } n<0
\end{aligned}
$$

(see Section 2 for the definition of β_{m}). We prove (Theorem 3.6) that for each σ-weakly closed subalgebra B that contains $H^{\infty}(\alpha)$ there is a projection e in the centre of M_{0} such that B is generated by $\cup\left\{e(n) M_{n}\right.$: $n \in \mathbf{Z}$ \} (as a σ-weakly closed linear subspace of M). We also show (Theorem 3.9) that each such subalgebra is $H^{\infty}(\gamma)$ for some periodic flow γ on M. As a corollary we prove that if \mathscr{A} is a nest subalgebra associated with a nest $\left\{0, \ldots, P_{-1}, P_{0}, P_{1}, \ldots, I\right\} \subseteq M$ and B is a σ-weakly closed subalgebra of M that contains \mathscr{A} then B is a nest subalgebra.
2. Preliminaries. Let M be a σ-finite von Neumann algebra acting on a Hilbert space H and let $\left\{\alpha_{t}\right\}_{t \in \mathbf{R}}$ be a periodic σ-weakly continuous representation of \mathbf{R} as *-automorphisms of M. We assume that the period is 2π and write \mathbf{T} for the interval $[0,2 \pi]$ identified with the unit circle. For each $n \in \mathbf{Z}$ we define a σ-weakly continuous linear map ϵ_{n}, on M, by

[^0]$$
\epsilon_{n}(x)=\int_{0}^{2 \pi} e^{-i t n} \alpha_{t}(x) d \mu(t), \quad x \in M
$$
where $d \mu$ is the normalized Lebesgue measure on T. Let M_{n} be $\epsilon_{n}(M)$. Then it is clear that
$$
M_{n}=\left\{x \in M: \alpha_{t}(x)=e^{i n t} x, t \in \mathbf{T}\right\} .
$$

Whenever $\left\{\gamma_{t}\right\}_{t \in \mathbf{T}}$ is a σ-weakly continuous representation of \mathbf{T} as *-automorphisms of M we let $s p_{\gamma}(x)$ denote the Arveson's spectrum of $x \in M$ with respect to $\left\{\gamma_{t}\right\}$ (see [1]). For a subset $S \subseteq \mathbf{Z}, M^{\gamma}(S)$ will denote the spectral subspace associated with S; i.e.,

$$
M^{\gamma}(S)=\left\{x \in M: s p_{\gamma}(x) \subseteq S\right\}
$$

If $S=\{n \in \mathbf{Z}: n \geqq 0\}$ we write $H^{\infty}(\gamma)$ for $M^{\gamma}(S)$. It is known ([3]) that $H^{\infty}(\gamma)$ is a σ-weakly closed subalgebra of M which is a finite maximal subdiagonal algebra (with respect to the map

$$
\left.\epsilon_{0}=\int_{0}^{2 \pi} \alpha_{t} d \mu(t)\right)
$$

When $\gamma=\alpha$ we have $M_{n}=M^{\alpha}(\{n\}), n \in \mathbf{Z}$ and

$$
s p_{\alpha}(x)=\left\{n \in \mathbf{Z}: \epsilon_{n}(x) \neq 0\right\} \quad \text { for } x \in M .
$$

Since M is T-finite (i.e., there is a faithful expectation ϵ_{0} from M onto M_{0} such that $\epsilon_{0} \circ \alpha_{t}=\epsilon_{0}$ for all $t \in \mathbf{T}$) and σ-finite, there exists a faithful normal $\left\{\alpha_{t}\right\}$-invariant state ϕ on M. Considering the Gelfand-NaimarkSegal construction of ϕ, we may suppose that M has a separating and cyclic vector $\xi_{0} \in H$ such that $\phi(x)=\left\langle x \xi_{0}, \xi_{0}\right\rangle$ is an $\left\{\alpha_{t}\right\}$-invariant state on M.

Remark 2.1. Suppose $\left\{\gamma_{t}\right\}_{t \in \mathbf{T}}$ is a σ-weakly continuous representation as above and $a \in M$ such that, for each $t \in \mathbf{T}, \gamma_{t}(a)=e^{i t b} a$ for some self adjoint operator b in the centre of M_{0} with $\sigma(b) \subseteq \mathbf{Z}$ (where $\sigma(b)$ is the spectrum of b as an operator). Then

$$
s p_{\gamma}(a) \subseteq \sigma(b) .
$$

In fact, assume that there is some $n \in s p_{\gamma}(a), n \notin \sigma(b)$. Then

$$
\left.\int_{0}^{2 \pi} e^{-i t n} e^{i t b} d \mu(t)=0 \quad \text { as } n \notin \sigma(b)\right)
$$

but $n \in s p_{\gamma}(a)$ hence

$$
1=\int_{0}^{2 \pi} e^{-i t n} e^{i t n} d \mu(t)=0
$$

The contradiction shows that $s p_{\gamma}(a) \subseteq \sigma(b)$.
For each $n \in \mathbf{Z}$ define projections e_{n}, f_{n} by
$e_{n}=\sup \left\{u^{*} u: u\right.$ is a partial isometry in $\left.M_{n}\right\}$
$f_{n}=\sup \left\{u u^{*}: u\right.$ is a partial isometry in $\left.M_{n}\right\}$.

Then, by [11, Lemma 2.2], e_{n} and f_{n} lie in $Z\left(M_{0}\right)$ (the centre of M_{0}). The following lemma appears in [11].

Lemma 2.2. (1) For every $n, m \in \mathbf{Z}, M_{n} M_{m} \subseteq M_{n+m}$ and $M_{n}^{*}=M_{-n}$.
(2) Let $x \in M_{n}$ and let $x=v|x|$ be the polar decomposition of x. Then $v \in M_{n}$ and $|x| \in M_{0}$.

The following result can be found in [13, Proposition 2.3 and Theorem 2.4]. Although it was assumed there that the algebra M is finite, this assumption was not used in the proof of the following proposition.

Proposition 2.3. Fix $n \in \mathbf{Z}$. Then there is a sequence $\left\{v_{n, m}\right\}_{m=1}^{\infty}$ of partial isometries in M_{n} with the following properties:
(1) $v_{n, m}^{*} v_{n, j}=0$ if $m \neq j$.
(2) $\sum_{m=1}^{\infty} v_{n, m} v_{n, m}^{*}=f_{n}$.
(3) $M_{n}=\sum_{m=1}^{\infty} v_{n, m} M_{0}$;
i.e., each $x \in M_{n}$ can be written as

$$
\sum_{m=1}^{\infty} v_{n, m} x_{m} \text { for some } x_{m} \in M_{0}
$$

where the sum converges in the σ-weak operator topology.
For each $\rho \in M_{*}$ there are sequences $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{y_{n}\right\}_{n=1}^{\infty}$ in H satisfying

$$
\sum\left\|x_{n}\right\|^{2}<\infty \quad \text { and } \quad \sum\left\|y_{n}\right\|^{2}<\infty
$$

such that

$$
\rho(a)=\sum_{n=1}^{\infty}\left\langle a x_{n}, y_{n}\right\rangle .
$$

Let \widetilde{H} be the space $H \otimes K$ (for some separable infinite dimensional subspace K with an orthogonal basis $\left.\left\{g_{n}\right\}_{n=1}^{\infty}\right)$. Write \widetilde{a} for the operator $a \otimes I_{k}$ and then

$$
\rho(a)=\langle\widetilde{a} x, y\rangle
$$

where

$$
x=\sum_{n=1}^{\infty} x_{n} \otimes g_{n} \in \widetilde{H} \quad \text { and } \quad y=\sum_{n=1}^{\infty} y_{n} \otimes g_{n} \in \widetilde{H} .
$$

Let \widetilde{M} be $\{\widetilde{a}: a \in M\}$ and then \widetilde{M} is ${ }^{*}$-isomorphic to M and $\xi=\xi_{0} \otimes g_{1}$ is a separating vector for \widetilde{M}.

Replacing M by \widetilde{M} and H by \widetilde{H} we assume that M has a separating vector $\xi \in H$ and each $\xi \in M_{*}$ is of the form $w_{x, y}$ for some $x, y \in H$. Also $\phi(a)=\langle a \xi, \xi\rangle$ is a faithful normal $\left\{\alpha_{t}\right\}$-invariant state on M.

The following result appears in [11, Theorem 2.4].
Proposition 2.4. (1) $H^{\infty}(\alpha)=\left\{x \in M: \epsilon_{n}(x)=0\right.$ for each $\left.n<0\right\}$
(2) $H^{\infty}(\alpha)$ is the σ-weakly closed subalgebra of M which is generated by M_{0} and all partial isometries in $M_{n}(n \in \mathbf{Z}, n>0)$.

With the partial isometries $\left\{v_{n, m}: n \in \mathbf{Z}, m \geqq 1\right\}$ defined as in Proposition 2.3, we can define maps $\left\{\beta_{n}\right\}_{n \in \mathbf{Z}}$ on M_{0}^{\prime} by the formula

$$
\beta_{n}(T)=\sum_{m=1}^{\infty} v_{n, m} T v_{n, m}^{*}
$$

Let us denote the orthogonal projection onto the subspace $\left[M_{n} \xi\right]$ (the closure, in H, of $\left\{a \xi: a \in M_{n}\right\}$) by $E_{n}, n \in \mathbf{Z}$.

Lemma 2.4. (1) β_{n} is a well defined homomorphism from M_{0}^{\prime} onto $f_{n} M_{0}^{\prime}$.
(2) For a projection $Q \in M_{0}^{\prime}$,

$$
\beta_{n}(Q)=V\left\{u Q u^{*}: u \text { is a partial isometry in } M_{n}\right\}
$$

hence $\beta_{n}(Q)$ is a projection.
(3) For each $n, m \in \mathbf{Z}, T \in M_{0}^{\prime}$,

$$
\beta_{n+m}\left(f_{-m} T\right)=\beta_{n} \beta_{m}(T)=f_{n} \beta_{n+m}(T)
$$

(4) β_{n} is $a *$-isomorphism from $e_{n} M_{0}^{\prime}$ onto $f_{n} M_{0}^{\prime}$.
(5) For $T \in M_{0}^{\prime}, T \in M^{\prime}$ if and only if $\beta_{n}(T)=f_{n} T$ for each $n \in \mathbf{Z}$. If T is a projection then $T \in M^{\prime}$ if and only if $\beta_{n}(T) \leqq T$ for each $n \in \mathbf{Z}$.
(6) If $T \in M_{0}^{\prime}$ and $\sum_{m=-\infty}^{\infty} \beta_{m}(T)$ is a well defined bounded operator in M_{0}^{\prime} then $\sum_{m=-\infty}^{\infty} \beta_{m}(T) \in M^{\prime}$ (where the sum converges in the strong operator topology.)
(7) For each $n \in \mathbf{Z}, \beta_{n}\left(E_{0}\right)=E_{n}$.
(8) Suppose Q_{1} and Q_{2} are projections in M_{0}^{\prime} and $Q_{1} \sim Q_{2}$ (with respect to the equivalence relation in M_{0}^{\prime}), then

$$
\beta_{n}\left(Q_{1}\right) \sim \beta_{n}\left(Q_{2}\right) \text { for each } n \in \mathbf{Z}
$$

Proof. (1) Fix $T \in M_{0}^{\prime}$. Since the range projections of $\left\{v_{n, m}\right\}_{m=1}^{\infty}$ are mutually orthogonal, $\beta_{n}(T)$ is a linear bounded operator. Now fix a unitary operator $u \in M_{0}$ and $m \geqq 1$. Then

$$
u v_{n, m}=\sum_{j} v_{n, j} x_{j} \text { for some } x_{j} \in M_{0} \text { and }
$$

$$
\begin{aligned}
u v_{n, m} T v_{n, m}^{*} u^{*} & =\left(\sum_{j} v_{n, j} x_{j}\right) T\left(\sum_{i} x_{i}^{*} v_{n, i}^{*}\right) \\
& =\sum_{i, j} v_{n, j} T v_{n, j}^{*} v_{n, j} x_{j} x_{i}^{*} v_{n, i}^{*} \\
& =\sum_{i, j} v_{n, j} T v_{n, j}^{*}\left(\sum_{r} v_{n, r} x_{r}\right) x_{i}^{*} v_{n, i}^{*} \\
& =\sum_{j} v_{n, j} T v_{n, j} u v_{n, m} v_{n, m}^{*} u^{*} \\
& =\beta_{n}(T) u v_{n, m} v_{n, m}^{*} u^{*} .
\end{aligned}
$$

Summing over all $m \geqq 1$ we have

$$
u \beta_{n}(T) u^{*}=\beta_{n}(T) f_{n}
$$

Since, clearly $\beta_{n}(T)=\beta_{n}(T) f_{n}$,

$$
\beta_{n}(T) \in M_{0}^{\prime} f_{n}, \quad n \in \mathbf{Z}
$$

To show that β_{n} is multiplicative let S, T lie in M_{0}^{\prime}. Then

$$
\begin{aligned}
\beta_{n}(S) \beta_{n}(T) & =\left(\sum_{m} v_{n, m} S v_{n, m}^{*}\right)\left(\sum_{j} v_{n, j} T v_{n, j}^{*}\right) \\
& =\sum_{m, j} v_{n, m} S v_{n, m}^{*} v_{n, j} T v_{n, j}^{*} \\
& =\sum_{m} v_{n, m} S T v_{n, m}^{*}=\beta_{n}(S T) .
\end{aligned}
$$

Linearity of β_{n} is obvious. The fact that $\beta_{n}\left(M_{0}^{\prime}\right)=f_{n} M_{0}^{\prime}$ will follow from (3), since

$$
\beta_{n} \beta_{-n}(T)=f_{n} \beta_{0}(T)=f_{n} T=T \text { for each } T \in f_{n} M_{0}^{\prime}
$$

This, in fact, shows that

$$
\beta_{n}\left(f_{-n} M_{0}^{\prime}\right)=M_{0}^{\prime} .
$$

(2) This is proved in [13, Lemma 3.1(1)].
(3) This is proved in [13, Lemma 3.1(2)] for the case where $T \in M_{0}^{\prime}$ is a projection. The linearity and continuity, in the strong operator topology, of β_{n} proves it for any $T \in M_{0}^{\prime}$.
(4) Since $\beta_{-n} \beta_{n}\left(e_{n} T\right)=f_{-n} e_{n} T=e_{n} T$ (note that $e_{n}=f_{-n}, n \in \mathbf{Z}$), β_{n} is one-to-one on $e_{n} M_{0}^{\prime}$. The rest follows from (1) (with the observation that

$$
\beta_{n}\left(e_{n} M_{0}^{\prime}\right)=\beta_{n}\left(f_{-n} M_{0}^{\prime}\right)=f_{n} M_{0}^{\prime}
$$

as noted above).
(5) If $T \in M^{\prime}$ then obviously $\beta_{n}(T)=f_{n} T$. Conversely, if $\beta_{n}(T)=f_{n} T$ for each $n \in \mathbf{Z}$, then, for each $m \geqq 1$,

$$
\begin{aligned}
v_{n, m} T-T v_{n, m} & =v_{n, m} v_{n, m}^{*} v_{n, m} T-T v_{n, m} v_{n, m}^{*} v_{n, m} \\
& =\left(v_{n, m} T-T v_{n, m}\right) v_{n, m}^{*} v_{n, m} \\
& =\left(v_{n, m} T v_{n, m}^{*}-T v_{n, m} v_{n, m}^{*}\right) v_{n, m} \\
& =\beta_{n}(T) v_{n, m}-T f_{n} v_{n, m}=0 .
\end{aligned}
$$

Since M_{0} together with $\left\{v_{n, m}\right\}_{m \geqq 1, n \in \mathbf{Z}}$ span $M, T \in M^{\prime}$.
(6) Let S be $\sum_{m=-\infty}^{\infty} \beta_{n}(T)$ then

$$
\beta_{n}(S)=\sum_{m=-\infty}^{\infty} \beta_{n} \beta_{m}(T)=\sum_{m=-\infty}^{\infty} f_{n} \beta_{n+m}(T)=f_{n} S
$$

Hence, by (5), $S \in M^{\prime}$.
(7) Recall that E_{n} is the projection onto $\left[M_{n} \xi\right]$. Hence, for $m \geqq 1, n \in \mathbf{Z}$, $v_{n, m} E_{0} v_{n, m}^{*}$ is the projection onto $\left[v_{n, m} M_{0} \xi\right]$ and $\beta_{n}\left(E_{0}\right)$ is the projection onto

$$
\sum_{m}\left[v_{n, m} M_{0} \xi\right]=\left[M_{n} \xi\right] .
$$

Hence $\beta_{n}\left(E_{0}\right)=E_{n}$.
(8) Suppose W is a partial isometry in M_{0}^{\prime} such that $W W^{*}=Q_{1}$ and $W^{*} W=Q_{2}$. Then

$$
\beta_{n}(W) \beta_{n}\left(W^{*}\right)=\beta_{n}\left(Q_{1}\right) \text { and } \beta_{n}\left(W^{*}\right) \beta_{n}(W)=\beta_{n}\left(Q_{2}\right)
$$

Since $\beta_{n}(W) \in M_{0}^{\prime}$ and $\beta_{n}\left(W^{*}\right)=\beta_{n}(W)^{*}$,

$$
\beta_{n}\left(Q_{1}\right) \sim \beta_{n}\left(Q_{2}\right)
$$

The following notations and definitions will be used later:

1. A projection $Q \in M_{0}^{\prime}$ is said to be a wandering projection if, for each $n \in \mathbf{Z}, Q \beta_{n}(Q)=0$ (note that this implies that, for $n \neq m$, $\left.\beta_{n}(Q) \beta_{m}(Q)=0\right)$. The set of all the wandering projections in M_{0}^{\prime} will be denoted by \mathscr{P}_{1}.
2. For $Q \in \mathscr{P}_{1}$ we let $\sigma(Q)$ be $\sum_{n=0}^{\infty} \beta_{n}(Q)$.
3. A closed subspace \mathscr{M} of H is called invariant if for each $a \in H^{\infty}(\alpha)$ and $x \in \mathscr{M}, a x \in \mathscr{M}$. Let us denote by \mathscr{P}_{2} the set of all orthogonal projections whose range is an invariant subspace. Note that

$$
\mathscr{P}_{2}=\left\{P \in M_{0}^{\prime}: \beta_{n}(P) \leqq P \text { for each } n \geqq 0\right\} .
$$

(Since $\left[M_{n} P(H)\right]=\beta_{n}(P)(H)$ for each $n \in \mathbf{Z}$ and $\bigcup_{n \geqq 0} M_{n}$ span $\left.H^{\infty}(\alpha)\right)$.
4. For $P \in \mathscr{P}_{2}$ let $\delta(P)$ be $P-V\left\{\beta_{n}(P): n>0\right\}$.

The following lemma can be found in [13].

Lemma 2.5. If $P \in \mathscr{P}_{2}$ then $\delta(P) \in \mathscr{P}_{1}$,

$$
\begin{aligned}
& P=\sigma(\delta(P))+\wedge_{n>0}^{\wedge} \underset{m \geqq n}{\bigvee} \beta_{m}(P) \text { and } \\
& \wedge_{n>0} \bigvee_{m \geqq n}^{\bigvee} \beta_{m}(P) \in M^{\prime} .
\end{aligned}
$$

3. Subalgebras of M. Let \mathscr{C} be the collection of all σ-weakly closed subalgebras of M that contain I. For each $y \in H$ and $B \in \mathscr{C}$ we define

$$
B_{y}=\{a \in M: a[B y] \subseteq[B y]\} .
$$

Then B_{y} is a σ-weakly closed subalgebra of M that contains B. In particular $B_{y} \in \mathscr{C}$.

Lemma 3.1. For each $B \in \mathscr{C}$ and $y \in H$,

$$
[B y]=\left[B_{y} y\right] .
$$

Proof. Since $B \subseteq B_{y},[B y] \subseteq\left[B_{y} y\right]$. For the other inclusion, suppose a is in B_{y}. Then, since $y \in[B y]$, ay $\in[B y]$; hence $\left[B_{y} y\right] \subseteq[B y]$.

Lemma 3.2. Suppose B, C lie in \mathscr{C} and $B \neq C$. Then there is some $y \in H$ such that $B_{y} \neq C_{y}$.

Proof. Since $B \neq C$ we can assume that there is some $a \in B, a \notin C$. (The case $B \subset C$ can be handled similarly.) Since C is σ-weakly closed there is some $\rho \in M_{*}$ such that $\rho(c)=0$ for each $c \in C$ and $\rho(a) \neq 0$. Since M has a separating vector, there are vectors $x, y \in H$ such that $\rho(b)=\langle b y, x\rangle$ for all $b \in M$. Hence x is orthogonal to [Cy] but not to [By]. Since

$$
\left[C_{y} y\right]=[C y] \neq[B y]=\left[B_{y} y\right]
$$

$B_{y} \neq C_{y}$.
Lemma 3.3. For each $B \in \mathscr{C}, B=\cap\left\{B_{y}: y \in H\right\}$.
Proof. Clearly B is contained in the algebra on the right (which we now denote by \widetilde{B}). For each $z \in H, B \subseteq \widetilde{B} \subseteq B_{z}$ and, by Lemma 3.1, $[B z]=\left[B_{z} z\right]$. Hence, for each $z \in H,[B z]=[\widetilde{B} z]$ and, therefore,

$$
B_{z}=\{a \in M: a[B z] \subseteq[B z]\}=\{a \in M: a[\widetilde{B} z] \subseteq[\widetilde{B} z]\}=\widetilde{B}_{z} .
$$

By the previous lemma $B=\widetilde{B}$.
Suppose \mathscr{M} is an invariant subspace of H and P is the orthogonal projection onto \mathscr{M}. Then we let $B(\mathscr{M})$ be the algebra

$$
\{a \in M: a \mathscr{M} \subseteq \mathscr{M}\}=\{a \in M: a P=P a P\}
$$

Clearly $H^{\infty}(\alpha) \subseteq B(\mathscr{M})$ for each invariant subspace \mathscr{M}.
For a projection $Q \in M_{0}^{\prime}$ we let $c(Q)$ be the central support of Q.

Lemma 3.4. Let $\mathscr{M}_{i}, i=1,2$, be an invariant subspace in H with corresponding projection $P_{i} \in \mathscr{P}_{2}$ such that

$$
c\left(\delta\left(P_{1}\right)\right)=c\left(\delta\left(P_{2}\right)\right)
$$

Then $B\left(\mathscr{M}_{1}\right)=B\left(\mathscr{M}_{2}\right)$.
Proof. By symmetry it suffices to show that each $a \in B\left(\mathscr{M}_{1}\right)$ lies in $B\left(\mathscr{M}_{2}\right)$. Let Q_{i} denote $\delta\left(P_{i}\right), i=1$, 2. Let $\left\{q_{\gamma}\right\}_{\gamma \in \Gamma}$ be a maximal orthogonal family of subprojections of Q_{2} in M_{0}^{\prime} with the property that q_{γ} is equivalent to a subprojection of Q_{1} (to be denoted p_{γ}) for each $\gamma \in \Gamma$. Let q be $\sum_{\gamma \in \Gamma} q_{\gamma}$. Then, by the maximality of $\left\{q_{\gamma}\right\}_{\gamma \in \Gamma}$, no subprojection of $Q_{2}-q\left(\right.$ in $\left.M_{0}^{\prime}\right)$ is equivalent to a subprojection of Q_{1}. This implies that

$$
c\left(Q_{2}-q\right) c\left(Q_{1}\right)=0
$$

But

$$
c\left(Q_{2}-q\right) \leqq c\left(Q_{2}\right)=c\left(Q_{1}\right)
$$

thus

$$
Q_{2}=q=\sum q_{\gamma} .
$$

By Lemma 2.5, $P_{2}=\sigma\left(Q_{2}\right)+R$ where R is some projection in M^{\prime}. Hence

$$
P_{2}=\sum_{\gamma \in \Gamma} \sigma\left(q_{\gamma}\right)+R .
$$

In order to show that $a \in B\left(\mathscr{M}_{2}\right)$ it will suffice to show that, for each $\gamma \in \Gamma, a$ maps $\sigma\left(q_{\gamma}\right)(H)$ into itself.

Now fix $\gamma \in \Gamma$ and let $v \in M_{0}^{\prime}$ be a partial isometry in M_{0}^{\prime} such that $\nu v^{*}=q_{\gamma}$ and $v^{*} v=p_{\gamma} \leqq Q_{1}$. Let $R(v)$ be the partial isometry $\sum_{m=-\infty}^{\infty} \beta_{n}(v) \in M^{\prime}$ (see Lemma 2.4(6)). The initial projection of $R(v)$ is $\sum_{m=-\infty}^{\infty} \beta_{m}\left(p_{\gamma}\right)$ and its final projection is $\sum_{m=-\infty}^{\infty} \beta_{m}\left(q_{\gamma}\right)$.

Now fix $n \geqq 0$, and then

$$
\begin{aligned}
a \beta_{n}\left(q_{\gamma}\right) & =a R(v) R(v)^{*} \beta_{n}\left(q_{\gamma}\right) \\
& =R(v) a R(v)^{*} \beta_{n}\left(q_{\gamma}\right)=R(v) a \beta_{n}\left(p_{\gamma}\right) R(v)^{*}
\end{aligned}
$$

Since a maps $\sigma\left(p_{\gamma}\right)$ into P_{1},

$$
\begin{aligned}
a \sigma\left(p_{\gamma}\right) & =P_{1} a \sigma\left(p_{\gamma}\right) \\
& =P_{1} a R(v)^{*} R(v) \sigma\left(p_{\gamma}\right) \\
& =P_{1}\left(\sum_{m=-\infty}^{\infty} \beta_{m}\left(p_{\gamma}\right)\right) a \sigma\left(p_{\gamma}\right) .
\end{aligned}
$$

But

$$
p_{\gamma} \leqq \delta\left(P_{1}\right)=P_{1}-V\left\{\beta_{m}\left(P_{1}\right): m>0\right\}
$$

thus $\beta_{m}\left(p_{\gamma}\right) P_{1}=0$ for each $m<0$ and we have

$$
a \sigma\left(p_{\gamma}\right)=\sigma\left(p_{\gamma}\right) a \sigma\left(p_{\gamma}\right) .
$$

Therefore,

$$
\begin{aligned}
a \beta_{n}\left(q_{\gamma}\right) & =R(v) \sigma\left(p_{\gamma}\right) a \beta_{n}\left(p_{\gamma}\right) R\left(v^{*}\right) \\
& =R(v) \sigma\left(p_{\gamma}\right) a R(v)^{*} R(v) \beta_{n}\left(p_{\gamma}\right) R(v)^{*} \\
& =R(v) \sigma\left(p_{\gamma}\right) R(v)^{*} a R(v) \beta_{n}\left(p_{\gamma}\right) R(v)^{*} \\
& =\sigma\left(q_{\gamma}\right) a \beta_{n}\left(q_{\gamma}\right) .
\end{aligned}
$$

Thus

$$
\sigma\left(q_{\gamma}\right) a \sigma\left(q_{\gamma}\right)=a \sigma\left(q_{\gamma}\right)
$$

and this implies that a lies in $B\left(\mathscr{M}_{2}\right)$.
For a projection e in $Z\left(M_{0}\right)$ and $n>0$ we write $e(-n)$ for the projection $\Lambda\left\{1-\beta_{-m}(e): 1 \leqq m \leqq n\right\}$.

Proposition 3.5. Let \mathscr{M} be an invariant subspace with P the orthogonal projection onto it. Let e be $c(\delta(P))$. Then

$$
B(\mathscr{M})=\left\{a \in M: \epsilon_{-n}(a) \in e(-n) M_{-n} \text { for each } n>0\right\} .
$$

Proof. Let \mathscr{M}_{0} be the invariant subspace $\sum_{n=0}^{\infty} \beta_{n}(e) E_{n}(H)$. Then the projection P_{0} onto \mathscr{M}_{0} is

$$
\sum_{n=0}^{\infty} \beta_{n}(e) E_{n}=\sum_{n=0}^{\infty} \beta_{n}\left(e E_{0}\right)
$$

and

$$
\delta\left(P_{0}\right)=e E_{0} .
$$

If z is a nonzero projection in $Z\left(M_{0}\right)$ then $z^{2} \xi=z \xi \neq 0$ and $z \xi \in E_{0}$ (as $\left.z \in M_{0}\right)$. Hence $z E_{0} \neq 0$ for each nonzero projection $z \in Z\left(M_{0}\right)$. This implies that $c\left(E_{0}\right)=I$ and that

$$
c\left(e E_{0}\right)=e c\left(E_{0}\right)=e .
$$

Therefore

$$
c\left(\delta\left(P_{0}\right)\right)=c(\delta(P))
$$

and, by the previous lemma, $B(\mathscr{M})=B\left(\mathscr{M}_{0}\right)$.
For $t \in \mathbf{T}$ let W_{t} be the linear operator that maps $x \xi(x \in M)$ into $\alpha_{t}(x) \xi$. Since

$$
\begin{aligned}
\left\langle\alpha_{t}(x) \xi, \alpha_{t}(x) \xi\right\rangle & =\left\langle\alpha_{t}\left(x^{*} x\right) \xi, \xi\right\rangle \\
& =\phi\left(\alpha_{t}\left(x^{*} x\right)\right)=\phi\left(x^{*} x\right)=\langle x \xi, x \xi\rangle,
\end{aligned}
$$

W_{t} can be extended to a unitary operator on H. For $n \in \mathbf{Z}, x \in M_{n}$ and $a \in M$,

$$
\begin{aligned}
\alpha_{t}(a) \beta_{n}(e) x \xi & =\alpha_{t}\left(a \beta_{n}(e) \alpha_{-t}(x)\right) \xi \\
& =W_{t} a \beta_{n}(e) \alpha_{-t}(x) \xi \in W_{t} a\left[\beta_{n}(e) M_{n} \xi\right] \\
& =W_{t} a \beta_{n}(e) E_{n}(H) .
\end{aligned}
$$

If $a \in B\left(\mathscr{M}_{0}\right)$ then

$$
\alpha_{t}(a) \beta_{n}(e) x \xi \in W_{t} P_{0}(H) \text { for all } n \in \mathbf{Z}, x \in M_{n}, t \in \mathbf{T} .
$$

Hence

$$
\alpha_{t}(a) P_{0}(H) \subseteq W_{t} P_{0}(H), t \in \mathbf{T} .
$$

But

$$
\begin{aligned}
W_{t} \beta_{n}(e) x \xi & =\alpha_{t}\left(\beta_{n}(e) x\right) \xi \\
& =\beta_{n}(e) \alpha_{t}(x) \xi \in P_{0}(H) \text { for } n \geqq 0, x \in M_{n}, t \in \mathbf{T} .
\end{aligned}
$$

Hence

$$
\alpha_{t}(a) P_{0}(H) \subseteq W_{t} P_{0}(H) \subseteq P_{0}(H)
$$

Therefore $\alpha_{t}\left(B\left(\mathscr{M}_{0}\right)\right)=B\left(\mathscr{M}_{0}\right)$. Since

$$
\epsilon_{n}=\int_{0}^{2 \pi} e^{-i n t} \alpha_{t} d \mu(t)
$$

$\epsilon_{n}\left(B\left(\mathscr{M}_{0}\right)\right) \subseteq B\left(\mathscr{M}_{0}\right)$, for all $n \in \mathbf{Z}$. Using [7, Theorem 1] we have
$B\left(\mathscr{M}_{0}\right)=\left\{a \in M: \epsilon_{n}(a) \in B\left(\mathscr{M}_{0}\right)\right.$ for each $\left.n \in \mathbf{Z}\right\}$.
For each $n \in \mathbf{Z}$ we denote the set $\left\{a \in M_{n}: a \in B\left(\mathscr{M}_{0}\right)\right\}$ by L_{n}. Then

$$
B\left(\mathscr{M}_{0}\right)=\left\{a \in M: \epsilon_{n}(a) \in L_{n} \text { for each } n \in \mathbf{Z}\right\} .
$$

Since $H^{\infty}(\alpha) \subseteq B\left(\mathscr{M}_{0}\right), L_{n}=M_{n}$ for $n \geqq 0$.
Now fix $n>0$. We claim that $L_{-n}=e(-n) M_{-n}$. Suppose $x \in e(-n) M_{-n}$, then

$$
x=\sum_{j=1}^{\infty} v_{-n, j} x_{j} \quad \text { for some } x_{j} \in M_{0} .
$$

Then, for $m \geqq 0$,

$$
\begin{aligned}
\beta_{-n}\left(\beta_{m}(e)\right) x & =\sum_{i, j=1}^{\infty} v_{-n, j} \beta_{m}(e) v_{-n, j}^{*} v_{-n, i} x_{i} \\
& =\sum_{j=1}^{\infty} v_{-n j} \beta_{m}(e) v_{-n, j}^{*} v_{-n j} x_{j}
\end{aligned}
$$

$$
\begin{equation*}
=\sum_{j=1}^{\infty} v_{-n, j} v_{-n, j}^{*} \beta_{m}(e) x_{j}=x \beta_{m}(e) . \tag{*}
\end{equation*}
$$

Hence, for each $y \in M_{m}$,

$$
\begin{aligned}
x \beta_{m}(e) y \xi & =\beta_{-n}\left(\beta_{m}(e)\right) x y \xi \in \beta_{-n} \beta_{m}(e) E_{m-n}(H) \\
& \subseteq \beta_{m-n}(e) E_{m-n}(H)
\end{aligned}
$$

Thus x maps $\sum_{m=n}^{\infty} \beta_{m}(e) E_{m}(H)$ into \mathscr{M}_{0}. For $0 \leqq m<n$ and $y \in M_{m}$,

$$
\begin{aligned}
x \beta_{m}(e) y \xi & =\left(1-\beta_{m-n}(e)\right) x \beta_{m}(e) y \xi \\
& =\left(1-\beta_{m-n}(e)\right) \beta_{m-n}(e) x \beta_{m}(e) y \xi=0 .
\end{aligned}
$$

(The first equality holds because $x \in e(-n) M_{-n}$.) Hence

$$
x \mathscr{M}_{0} \subseteq \mathscr{M}_{0} .
$$

This proves that $e(-n) M_{-n} \subseteq L_{-n}$.
Now suppose $x \in L_{-n}$. Since $x \in M_{-n}$,

$$
x \beta_{m}(e) y \xi \in \beta_{m-n}(e) E_{m-n}(H)
$$

for each $m \geqq 0$ and $y \in M_{m}$. Hence, for $0 \leqq m<n$,

$$
x \beta_{m}(e)=x \beta_{m}(e) f_{m}=0
$$

(since for each $j \geqq 1$,

$$
\left.x \beta_{m}(e) v_{m, j} v_{m, j}^{*}=\left(x \beta_{m}(e) v_{m, j}\right) v_{m, j}^{*}=0\right) .
$$

But (*) implies that

$$
\beta_{-n} \beta_{m}(e) x=x \beta_{m}(e)=0
$$

Thus

$$
\begin{aligned}
x \in\left(1-\beta_{-n}\left(\beta_{m}(e)\right)\right) M_{-n} & =\left(1-f_{-n} \beta_{m-n}(e)\right) M_{-n} \\
& =\left(1-\beta_{m-n}(e)\right) M_{-n} .
\end{aligned}
$$

Since this holds for each $0 \leqq m<n, x \in e(-n) M_{-n}$.
For a projection $e \in Z\left(M_{0}\right)$ let us denote by $B(e)$ the set

$$
\left\{a \in M: \epsilon_{-n}(a) \in e(-n) M_{-n} \text { for each } n>0\right\}
$$

Theorem 3.6. For each σ-weakly closed subalgebra B of M that contains $H^{\infty}(\alpha)$ there is a projection $e \in Z\left(M_{0}\right)$ such that $B=B(e)$. Conversely, for each projection $e \in Z\left(M_{0}\right), B(e)$ is a σ-weakly closed subalgebra of M that contains $H^{\infty}(\alpha)$.

Proof. Suppose B is a σ-weakly closed subalgebra of M that contains $H^{\infty}(\alpha)$. By Lemma 3.3 we can write B as $\cap\left\{B_{y}: y \in H\right\}$. Hence

$$
B=\{a \in M: a[B y] \subseteq[B y] \text { for each } y \in H\}
$$

Since [By] is an invariant subspace of H (as $\left.H^{\infty}(\alpha) \subseteq B\right)$, it follows from Proposition 3.5 that

$$
B_{y}=B(e(y)) \text { for some projection } e(y) \in Z\left(M_{0}\right)
$$

Thus, clearly, $B=B(e)$ where $e=V\{e(y): y \in H\}$.
For the converse just note that the set $B(e)$ was shown, in the proof of Proposition 3.5 , to be $B\left(\mathscr{M}_{0}\right)$ for some invariant subspace \mathscr{M}_{0}. Therefore $B(e)$ is a σ-weakly closed subalgebra of M that contains $H^{\infty}(\alpha)$.

Recall that $W_{t}, t \in \mathbf{T}$ is the unitary operator defined by

$$
W_{t} a \xi=\alpha_{t}(a) \xi, a \in M
$$

and E_{n} is the orthogonal projection onto [$\left.M_{n} \xi\right]$. It is easy to check that the spectral decomposition of W_{t} is given by:

$$
W_{t}=\sum_{n=-\infty}^{\infty} e^{i n t} E_{n}, \quad t \in \mathbf{T}
$$

Let us now fix a projection $e \in Z\left(M_{0}\right)$ and define, for each $n \in \mathbf{Z}$,

$$
c_{n}= \begin{cases}f_{n} \sum_{k=0}^{n-1} \beta_{k}(e) & n>0 \\ 0 & n=0 \\ -f_{n} \sum_{k=n}^{-1} \beta_{k}(e)\left(=-\beta_{n}\left(c_{-n}\right)\right) & n<0\end{cases}
$$

For $t \in \mathbf{T}$ let the operator U_{t} be $\sum_{n=-\infty}^{\infty} \exp \left(i t c_{n}\right) E_{n}$. Then U_{t} is a unitary operator and the map $t \rightarrow U_{t}$ is continuous in the strong operator topology. We now let γ_{t} be the *-automorphism of M implemented by U_{t} (i.e., $\gamma_{t}(a)=U_{t} a U_{t}^{*}, a \in M$). The map

$$
t \rightarrow \gamma_{t}(a)
$$

is continuous in the σ-weak operator topology and

$$
\gamma_{t+s}=\gamma_{t} \gamma_{s} \quad \text { for } t, s \in \mathbf{T}
$$

Our next object is to show that the algebra $B(e)$ is $H^{\infty}(\gamma)$. This will prove that every σ-weakly closed subalgebra of M that contains $H^{\infty}(\alpha)$ is $H^{\infty}(\gamma)$ for some flow γ as described above.

Lemma 3.7. For each $n, k \in \mathbf{Z}$,

$$
f_{n+k} f_{n} c_{n+k}=f_{n+k} c_{n}+f_{n+k} \beta_{n}\left(c_{k}\right)
$$

Proof. If $n=0$ or $k=0$ the equality above follows trivially. If $n>0$ and $k>0$,

$$
\begin{aligned}
f_{n+k} f_{n} c_{n+k} & =f_{n+k} f_{n} \sum_{i=0}^{n+k-1} \beta_{i}(e) \\
& =f_{n+k} f_{n} \sum_{i=0}^{n-1} \beta_{i}(e)+f_{n+k} f_{n} \sum_{i=0}^{k-1} \beta_{n+i}(e) \\
& =f_{n+k} f_{n} c_{n}+f_{n+k} \sum_{i=0}^{k-1} \beta_{n}\left(\beta_{i}(e)\right) \\
& =f_{n+k} c_{n}+f_{n+k} \beta_{n}\left(c_{k}\right)
\end{aligned}
$$

If $n>0, k<0$ and $n+k>0$,

$$
\begin{aligned}
f_{n+k} f_{n} c_{n+k} & =f_{n+k} f_{n} \sum_{i=0}^{n+k-1} \beta_{i}(e) \\
& =f_{n+k} f_{n} \sum_{i=0}^{n-1} \beta_{i}(e)-f_{n+k} f_{n} \sum_{i=k}^{-1} \beta_{n+i}(e) \\
& =f_{n+k} c_{n}-f_{n+k} \beta_{n}\left(\sum_{i=k}^{-1} \beta_{i}(e)\right) \\
& =f_{n+k} c_{n}-f_{n+k} \beta_{n}\left(f_{k}\right) \beta_{n}\left(\sum_{i=k}^{-1} \beta_{i}(e)\right) \\
& =f_{n+k} c_{n}-f_{n+k} \beta_{n}\left(\sum_{i=k}^{-1} f_{k} \beta_{i}(e)\right) \\
& =f_{n+k} c_{n}-f_{n+k} \beta_{n}\left(\beta_{k}\left(\sum_{i=0}^{-k-1} \beta_{i}(e)\right)\right) \\
& =f_{n+k} c_{n}+f_{n+k} \beta_{n}\left(c_{k}\right) .
\end{aligned}
$$

The other possible choices for n and k can be handled similarly.
Lemma 3.8. For each $t \in \mathbf{T}$ and $n \in \mathbf{Z}$,

$$
\gamma_{t}(a)=\exp \left(i t c_{n}\right) a .
$$

Proof. Fix $t \in \mathbf{T}, n \in \mathbf{Z}, a \in M_{n}$ and $k \in \mathbf{Z}$. Then

$$
\gamma_{t}(a) E_{k}=U_{t} a U_{t}^{*} E_{k}=U_{t} a \exp \left(-i t c_{k}\right) E_{k} .
$$

Since a lies in M_{n},

$$
a=\sum_{j=1}^{\infty} v_{n, j} a_{j} \quad\left(\text { for some } a_{j} \in M_{0}\right) \quad \text { and }
$$

$$
a \exp \left(-i t c_{k}\right) E_{k} \subseteq E_{k+n}
$$

Thus

$$
\begin{aligned}
\gamma_{t}(a) E_{k} & =\exp \left(i t c_{n+k}\right)\left(\sum_{j=1}^{\infty} v_{n, j} a_{j}\right) \exp \left(-i t c_{k}\right) E_{k} \\
& =\exp \left(i t c_{n+k}\right) \sum_{j} v_{n, j} \exp \left(-i t c_{k}\right) v_{n, j} v_{n, j} a_{j} E_{k} \\
& =\exp \left(i t c_{n+k}\right) \beta_{n}\left(\exp \left(-i t c_{k}\right)\right) a E_{k} \\
& =\exp \left(i t c_{n+k} f_{n}\right) \beta_{n}\left(\exp \left(-i t c_{k}\right)\right) f_{n+k} a E_{k}
\end{aligned}
$$

By the previous lemma we now have

$$
\begin{aligned}
\gamma_{t}(a) E_{k} & =\exp \left(i t f_{n+k} c_{n}\right) \exp \left(i t f_{n+k} \beta_{n}\left(c_{k}\right)\right) \exp \left(-i t \beta_{n}\left(c_{k}\right) f_{n+k}\right) a E_{k} \\
& =\exp \left(i t f_{n+k} c_{n}\right) a E_{k}=\exp \left(i t c_{n}\right) a E_{k}
\end{aligned}
$$

Since this holds for each $k \in \mathbf{Z}$ and $\sum_{k=-\infty}^{\infty} E_{k}=I$, we are done.
Theorem 3.9. Let e be a projection in $Z\left(M_{0}\right)$ and γ_{t} be the flow associated with e, as defined in the discussion preceding Lemma 3.7. Then $H^{\infty}(\gamma)=B(e)$, where $B(e)$ is the algebra

$$
\left\{a \in M: \epsilon_{-n}(a) \in e(-n) M_{-n} \text { for each } n>0\right\}
$$

(Recall that

$$
\left.e(-n)=\Lambda\left\{1-\beta_{-k}(e): 1 \leqq k \leqq n\right\} .\right)
$$

Hence every σ-weakly closed subalgebra of M that contains $H^{\infty}(\alpha)$ is $H^{\infty}(\gamma)$ for some flow γ associated with a projection $e \in Z\left(M_{0}\right)$.

Proof. Since for $n \geqq 0, c_{n} \geqq 0$ it follows from Remark 2.1 that

$$
H^{\infty}(\alpha) \subseteq H^{\infty}(\gamma)
$$

As $H^{\infty}(\gamma)$ is a σ-weakly closed subalgebra of $M, H^{\infty}(\gamma)=B(f)$ for some projection $f \in Z\left(M_{0}\right)$. We can also conclude from the proof of Theorem 3.6 (the fact that $B(e)$ is determined by $\epsilon_{n}(B(e)), n<0$) that in order to prove that $B(e)=B(f)$ it suffices to show that for each $n>0$, $\epsilon_{-n}(B(e))\left(=B(e) \cap M_{-n}\right)$ equals $\epsilon_{-n}(B(f))\left(=H^{\infty}(\gamma) \cap M_{-n}\right)$.

For $a \in M_{-n} \cap B(e), a \beta_{k}(e)=0$ for each $0<k \leqq n$; hence

$$
\begin{aligned}
& c_{-n} a=\sum_{k=0}^{n-1} f_{-n} \beta_{k-n}(e) a=0 \quad \text { and } \\
& \gamma_{t}(a)=\exp \left(i t c_{-n}\right) a=a
\end{aligned}
$$

Thus

$$
s p_{\gamma}(a)=\{0\} \text { and } a \in M_{-n} \cap H^{\infty}(\gamma) .
$$

Suppose that $B(e) \cap M_{-n}$ is strictly smaller than

$$
H^{\infty}(\gamma) \cap M_{-n}=B(f) \cap M_{-n} .
$$

Then, if we let $f(-n)$ be

$$
\Lambda\left\{1-\beta_{-k}(f): 1 \leqq k \leqq n\right\}
$$

(and, hence, $M_{-n} \cap B(f)=f(-n) M_{-n}$), we have

$$
f(-n) \geqq e(-n) \text { and } f(-n) \neq e(-n) \text {. }
$$

Therefore there is some $a \in(f(-n)-e(-n)) M_{-n}$ and it satisfies: $e(-n) a=0$ and $a \in B(f)$ (i.e., $\left.s p_{\gamma}(a) \subseteq \mathbf{Z}_{+}\right)$. Since $e(-n) a=0$ we have, for $t \in \mathbf{T}$,

$$
\begin{aligned}
\gamma_{t}(a) & =\exp \left(i t c_{-n}\right) a=\exp \left(i t c_{n}-i t e(-n)\right) a \\
& =\exp \left(i t\left(-f_{n} \sum_{k=1}^{n} \beta_{-k}(e)-e(-n)\right)\right) a \\
& =\exp \left(i t\left(-\sum_{k=1}^{n} \beta_{-k}(e)-e(-n)\right)\right) a .
\end{aligned}
$$

But clearly

$$
-\sum_{k=1}^{n} \beta_{-k}(e)-e(-n) \leqq-I .
$$

Hence it follows from Remark 2.1 that

$$
s p_{\gamma}(a) \subseteq\{n \in \mathbf{Z}: n \leqq-1\}
$$

contradicting our assumption that $a \in B(f)=H^{\infty}(\gamma)$. This contradiction completes the proof that

$$
B(e) \cap M_{-n}=H^{\infty}(\gamma) \cap M_{-n} .
$$

Since this holds for each $n \in \mathbf{Z}, B(e)=H^{\infty}(\gamma)$.
Corollary 3.10. Suppose M is a o-finite von Neumann algebra and $\mathcal{N}=\left\{0, \ldots, P_{-1}<P_{0}<P_{1}<P_{2}, \ldots, I\right\}$ is a nest of projections in M with

$$
\wedge\left\{P_{n}: n \in \mathbf{Z}\right\}=0 \text { and } \vee\left\{P_{n}: n \in \mathbf{Z}\right\}=I .
$$

Let \mathscr{A} be the associated nest subalgebra of M (i.e., $\mathscr{A}=M \cap \operatorname{Alg} \mathscr{N}$). Then every σ-weakly closed subalgebra of M that contains \mathscr{A} is also a nest subalgebra of M.

Proof. We will use the characterization of nest subalgebras as algebras of the form $H^{\infty}(\gamma)$ for an inner flow γ. (For details see [3].) We define a spectral measure P on \mathbf{R} by $P(t, \infty)=P_{[t]}$ (where $[t]$ denotes the integral part of t), and, for $t \in \mathbf{T}$ let V_{t} be the unitary operator $\int_{\mathbf{R}} e^{i t s} d P(s)$. We now let α_{t} be the ${ }^{*}$-automorphism on M that is implemented by V_{t}; i.e.,

$$
\alpha_{t}(x)=V_{t} x V_{t}^{*}, \quad x \in M, t \in \mathbf{T}
$$

The map $t \rightarrow \alpha_{t}$ is a homomorphism of \mathbf{T} into the group of inner *-automorphisms on M. By [3, Corollary 2.14 and Theorem 4.2.3] $\mathscr{A}=H^{\infty}(\alpha)$. As in the discussion preceding Lemma 3.7 we associate with α unitary operators $\left\{W_{t}: t \in \mathbf{T}\right\}$ and projections $\left\{E_{n}: n \in \mathbf{Z}\right\}$ such that the spectral decomposition of W_{t} is given by

$$
W_{t}=\sum_{n=-\infty}^{\infty} e^{i n t} E_{n}, \quad t \in \mathbf{T}
$$

We have

$$
\alpha_{t}(x)=W_{t} x W_{t}^{*}, x \in M, t \in \mathbf{T}
$$

hence, for $t \in \mathbf{T}, W_{t} L_{t}^{*} \in M^{\prime}$.
Now let B be a σ-weakly closed subalgebra of M that contains \mathscr{A}. We know that $B=H^{\infty}(\gamma)$ and $\gamma_{t}(x)=U_{t} x U_{t}^{*}, x \in M, t \in \mathbf{T}$ is a flow associated with some projection $e \in Z\left(M_{0}\right)$ as in the discussion preceding Lemma 3.7. Hence

$$
U_{t}=\sum_{n=-\infty}^{\infty} e^{i t c_{n}} E_{n}
$$

where c_{n} are the elements of $Z\left(M_{0}\right)$ associated with the projection e.
Now let Q_{j} be $P_{j}-P_{j-1}$ for all $j \in \mathbf{Z}$ and then

$$
\begin{aligned}
V_{t} & =\sum_{m=-\infty}^{\infty} e^{i t m} Q_{m} \text { and } \\
V_{t} W_{t}^{*} & =\sum_{m, j=-\infty}^{\infty} e^{i t m} Q_{m} e^{-i t j} E_{j} \\
& =\sum_{n=-\infty}^{\infty} e^{i t n}\left(\sum_{m=-\infty}^{\infty} Q_{n+m} E_{m}\right) .
\end{aligned}
$$

Since, for each $t \in \mathbf{T}, V_{t} W_{t}^{*} \in M^{\prime}$, the projection $\sum_{m=-\infty}^{\infty} Q_{n+m} E_{m}$ (to be denoted by G_{n}) also lies in M^{\prime} for each $n \in \mathbf{Z}$. We have, for each $n, m \in \mathbf{Z}$,

$$
\begin{aligned}
G_{n} E_{m} & =Q_{n+m} E_{m}=Q_{n+m} G_{n}=G_{n} Q_{n+m} \\
& =\left(Q_{n+m} G_{n}\right)^{*}=E_{m} G_{n}=E_{m} Q_{n+m} .
\end{aligned}
$$

Fix now $n \in \mathbf{Z}$ and let $T_{t}^{(n)}$ be $\sum_{j=-\infty}^{\infty} e^{i t c_{j}} f_{j} Q_{j+n}, t \in \mathbf{T}$.

$$
\begin{aligned}
T_{t}^{(n)} U_{t}^{*} & =\sum_{j, m=-\infty}^{\infty} e^{i t c_{j+m}} f_{j+m} Q_{j+m+n} E_{m} e^{-i t c_{m}} \\
& =\sum_{j, m=-\infty}^{\infty} e^{i t f_{j+m} c_{m}} e^{i t_{j+m} \beta_{m}\left(c_{j}\right)} Q_{m+j+n} f_{m} E_{m} f_{m+j} e^{-i t f_{m+j} c_{m}}
\end{aligned}
$$

Since $M_{0}=\mathscr{A} \cap \mathscr{A}^{*}=\left\{P_{j}: j \in \mathbf{Z}\right\}^{\prime}, Q_{j} \in M_{0}^{\prime}$ for each $j \in \mathbf{Z}$. We have, therefore,

$$
\begin{aligned}
T_{t}^{(n)} U_{t}^{*} & =\sum_{j, m=-\infty}^{\infty} e^{i t f_{j+m} \beta_{m}\left(c_{j}\right)} Q_{m+j+n} E_{n} f_{m+j} \\
& =\sum_{m, j=-\infty}^{\infty} \beta_{m}\left(e^{i t c_{n}}\right) Q_{m+j+n} E_{m} f_{m+j} \\
& =\sum_{m, j=-\infty}^{\infty} G_{j+n} \beta_{m}\left(e^{i t c_{j}}\right) E_{m} \beta_{m}\left(f_{j}\right) \\
& =\sum_{j=-\infty}^{\infty} G_{j+n}\left(\sum_{m=-\infty}^{\infty} \beta_{m}\left(e^{i t c_{j}} f_{j} E_{0}\right)\right) .
\end{aligned}
$$

But $\sum_{m=-\infty}^{\infty} \beta_{m}\left(e^{i t c_{j}} f_{j} E_{0}\right)$ lies in M^{\prime} (see Lemma 2.4 (6)). Hence

$$
T_{t}^{(n)} U_{t}^{*} \in M^{\prime} \text { for each } n \in \mathbf{Z} \text { and } t \in \mathbf{T} .
$$

Let us denote by F_{n} the projection $\sum_{j=-\infty}^{\infty} f_{j} Q_{j+n}$. Then it is easy to check that

$$
T_{t}^{(n)^{*}} T_{t}^{(n)}=T_{t}^{(n)} T_{t}^{(n)^{*}}=F_{n} \text { for } n \in \mathbf{Z}, t \in \mathbf{T} .
$$

Hence

$$
F_{n}=T_{t}^{(n)} T_{t}^{(n)^{*}}=\left(T_{t}^{(n)} U_{t}^{*}\right)\left(T_{t}^{(n)} U_{t}^{*}\right)^{*} \in M^{\prime}
$$

Since, for $j, n \in \mathbf{Z}, f_{j}$ and Q_{j+n} lie in $M, F_{n} \in M \cap M^{\prime}$. For each $n \in \mathbf{Z}$,

$$
F_{n} \geqq Q_{n} \quad \text { and } \quad \sum_{n=-\infty}^{\infty} Q_{n}=I
$$

Thus $V\left\{F_{n}: n \in \mathbf{Z}\right\}=I$ and we can find a sequence $\left\{\widetilde{F}_{n}: n \in \mathbf{Z}\right\}$ of projections in $M \cap M^{\prime}$ such that $\widetilde{F}_{n} \widetilde{F}_{m}=0$ for $n \neq m, \Sigma \widetilde{F}_{n}=I$ and
$\widetilde{F}_{n} \leqq F_{n}$.
We now set

$$
T_{t}=\sum_{n=-\infty}^{\infty} T_{t}^{(n)} \widetilde{F}_{n}
$$

Then

$$
T_{t} U_{t}^{*}=\sum_{n=-\infty}^{\infty} T_{t}^{(n)} \widetilde{F}_{n} U_{t}^{*}=\sum_{n=-\infty}^{\infty} \widetilde{F}_{n} T_{t}^{(n)} U_{t}^{*} \in M^{\prime}, \text { for each } t \in \mathbf{T}
$$

Also, for $t \in \mathbf{T}$,

$$
\begin{aligned}
T_{t} T_{t}^{*} & =\sum_{n, m=-\infty}^{\infty} T_{t}^{(n)} \widetilde{F}_{n} \widetilde{F}_{m} T_{t}^{(m)^{*}} \\
& =\sum_{n=-\infty}^{\infty} T_{t}^{(n)} \widetilde{F}_{n} T_{t}^{(n)^{*}}=\sum_{n=-\infty}^{\infty} \widetilde{F}_{n} T_{t}^{(n)} T_{t}^{(n)^{*}} \\
& =\sum_{n=-\infty}^{\infty} \widetilde{F}_{n} F_{n}=\sum_{n=-\infty}^{\infty} \widetilde{F}_{n}=I .
\end{aligned}
$$

Similarly $T_{t}^{*} T_{t}=I$ for each $t \in \mathbf{T}$. Hence $\left\{T_{t}: t \in \mathbf{T}\right\}$ is a unitary group of operators $\left(T_{t} T_{s}=T_{t+s}\right.$ for each $t, s \in \mathbf{T}$ since it holds for $\left\{T_{t}^{(n)}\right\}$ for each $n \in \mathbf{Z}$). Also, for $t \in \mathbf{T}, x \in M$,

$$
\gamma_{t}(x)=U_{t} \times U_{t}^{*}=T_{t} \times T_{t}^{*}
$$

(as $T_{t} U_{t}^{*} \in M^{\prime}$).
Since $\left\{T_{t}: t \in \mathbf{T}\right\} \subseteq M$ this implies that $H^{\infty}(\gamma)$ is a nest subalgebra of M. In fact, let $\sum_{m=-\infty}^{\infty} e^{i t m} \widetilde{Q}_{m}$ be the spectral decomposition of T_{t} and let \widetilde{P}_{n} be the projection $\sum_{m \leqq n} \widetilde{Q}_{m}(\in M)$. Then $B=M \cap$ alg $\widetilde{\mathcal{N}}$ where $\widetilde{\mathcal{N}}$ is the nest $\{0, I\} \cup\left\{\widetilde{Q}_{n}: n \in \mathbf{Z}\right\}$.

Let us denote by $f(\alpha)$ the projection $V\left\{f_{n}: n>0\right\}$ and by $e(\alpha)$ the projection $V\left\{e_{n}: n>0\right\}=V\left\{f_{n}: n<0\right\}$ (cf. [11, Proposition 2.7]). Note that

$$
\begin{aligned}
& (1-f(\alpha)) H^{\infty}(\alpha)=(1-f(\alpha)) M_{0} \quad \text { and } \\
& H^{\infty}(\alpha)(1-e(\alpha))=M_{0}(1-e(\alpha))
\end{aligned}
$$

Lemma 3.11. For projections e, f in $Z\left(M_{0}\right), B(e)=B(f)$ if and only if

$$
(e-e f) \vee(f-e f) \leqq 1-f(\alpha)
$$

In particular, $B(e)=H^{\infty}(\alpha)$ if and only if $e \geqq f(\alpha)$ and $B(e)=M$ if and only if $e \leqq 1-f(\alpha)$.

Proof. Since

$$
B(e \vee f)=B(e) \cap B(f) \text { and }(e-e f) \vee(f-e f) \leqq 1-f(\alpha)
$$

if and only if $e \vee f-e \leqq 1-f(\alpha)$ and $e \vee f-f \leqq 1-f(\alpha)$, we can replace e by $e \vee f$, hence assume that $e \leqq f$. We now have to show $B(e)=$ $B(f)$ if and only if $e-f \leqq 1-f(\alpha)$ (where $e \geqq f$).

From the definition of $B(e)$ (and $B(f))$ it follows that $B(e)=B(f)$ if and only if, for each $n>0$,

$$
\begin{align*}
& f_{-n}\left(\Lambda\left\{1-\beta_{-m}(e): 1 \leqq m \leqq n\right\}\right) \tag{1}\\
& =f_{-n}\left(\Lambda\left\{1-\beta_{-m}(f): 1 \leqq m \leqq n\right\}\right) .
\end{align*}
$$

Suppose now that $e-f \leqq 1-f(\alpha)$, then for each $m>0$,

$$
e-f \leqq 1-f_{m}=1-e_{-m} .
$$

Hence, for $m>0, \beta_{-m}(e-f)=0$ and (1) follows for each $n>0$.
For the other direction, suppose that (1) holds for each $n>0$ and that $e-f \not \ddagger 1-f(\alpha)$. Then there is a positive integer j such that $(e-f) f_{j} \neq$ 0 and $(e-f) f_{m}=0$ for each $0<m<j$. Since $(e-f) f_{m}=0$,

$$
\beta_{-m}(e-f)=0 \quad \text { for } 0<m<j .
$$

Hence

$$
\begin{aligned}
& \Lambda\left\{1-\beta_{-m}(f): 1 \leqq m<j\right\} \\
& =f_{-j}\left(1-\beta_{-j}((f))\left(\Lambda\left\{1-\beta_{-m}(e): 1 \leqq m<j\right\}\right)\right.
\end{aligned}
$$

and (1) implies that

$$
\begin{aligned}
& f_{-j}\left(1-\beta_{-j}(e)\right)\left(\Lambda\left\{1-\beta_{-m}(e): 1 \leqq m<j\right\}\right) \\
& =f_{-j}\left(1-\beta_{-j}(f)\right)\left(\Lambda\left\{1-\beta_{-m}(e): 1 \leqq m<j\right\}\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\beta_{-j}(e-f) & =\beta_{-j}(1-f)-\beta_{-j}(1-e) \\
& \leqq 1-\Lambda\left\{1-\beta_{-m}(e): 1 \leqq m<j\right\} \\
& =V\left\{\beta_{-m}(e): 1 \leqq m<j\right\} .
\end{aligned}
$$

But

$$
\begin{gathered}
\quad \beta_{-j}(e-f) \beta_{-m}(e)=\beta_{-j}\left[(e-f) \beta_{j-m}(e)\right] \\
\leqq \beta_{-j}\left[(e-f) f_{j-m}\right]=0 \\
\text { (as } \left.(e-f) f_{m}=0 \text { for } 0<m<j\right) \text { for } 0<m<j . \text { Thus }
\end{gathered}
$$

$$
\beta_{-j}(e-f)=0 \quad \text { and } \quad f_{j}(e-f)=\beta_{j}\left(\beta_{-j}(e-f)\right)=0
$$

contradicting our assumption. Hence it follows from (1) that

$$
e-f \leqq 1-f(\alpha)
$$

The last assertion of the lemma follows from the fact that $H^{\infty}(\alpha)=$ $B(I)$ and $M=B(0)$.
Corollary 3.12. Let e be a projection in $Z\left(M_{0}\right)$. Then $B(e)$ is a maximal σ-weakly closed subalgebra of M if and only if ef $(\alpha) M_{0}$ is a factor (or $\left.e f(\alpha) M_{0}=\{0\}\right)$.

In particular, $H^{\infty}(\alpha)$ is a maximal σ-weakly closed subalgebra of M if and only if $f(\alpha) M_{0}$ is a factor.

Proof. Suppose $e f(\alpha) M_{0}$ is a factor or $e f(\alpha)=0$. Then each projection $z \in Z\left(M_{0}\right)$ that satisfies $z \leqq e f(\alpha)$ is either 0 or $e f(\alpha)$. Hence, for each such $z, B(z)=M$ (if $z=0$) or $B(z)=B(e)$ (if $z=e f(\alpha)$, as

$$
e-z=e(1-f(\alpha)) \leqq 1-f(\alpha))
$$

If there is some projection $f \in Z\left(M_{0}\right)$ such that $B(f) \supseteq B(e)$ then $B(f)=B(f f(\alpha))$ (by the previous lemma) and

$$
B(f e f(\alpha))=B(f) \cup B(e)=B(f) \supseteq B(e)
$$

But $f e f(\alpha) \leqq e f(\alpha)$; hence $B(f)=B(e)$ or $B(f)=M$.
Now suppose that $B(e)$ is a maximal σ-weakly closed subalgebra of M. If $e f(\alpha) M_{0}$ is not a factor and $e f(\alpha) \neq 0$ then there is some projection $q \leqq e f(\alpha)$ in $Z\left(M_{0}\right)$ such that $q \neq 0$ and $q \neq e f(\alpha)$. It follows that

$$
q \neq 1-f(\alpha) \text { and } e-q \neq 1-f(\alpha) .
$$

Hence (by the previous lemma) $B(q) \neq M$ and $B(q) \neq B(e)$. Since $B(e)$ is a maximal σ-weakly closed subalgebra this cannot occur and, hence, $e f(\alpha) M_{0}$ is a factor or $e f(\alpha)=0$.

The last assertion follows immediately.
For analytic crossed products it was proved in [4] that the maximality of H^{∞} is equivalent to M_{0} being a factor. The next corollary also extends a result that was known for analytic crossed products (see [5]).

Corollary 3.13. The following conditions are equivalent:
(1) For each σ-weakly closed subalgebra B of M that contains $H^{\infty}(\alpha)$ there is a projection $q \in Z\left(M_{0}\right)$ such that

$$
B=q M+(1-q) H^{\infty}(\alpha)
$$

(2) $f(\alpha) e(\alpha) Z\left(M_{0}\right) \subseteq Z(M)$.

Proof. (1) implies (2): Let e be a projection in $f(\alpha) e(\alpha) Z\left(M_{0}\right)$ and suppose that $j>0$ is such that

$$
\beta_{-m}(e) \leqq e \text { for each } 0 \leqq m<j
$$

Let p be the projection $e \beta_{j}(1-e)$. Then p satisfies the following properties:
(i) For each $m \in \mathbf{Z}$,

$$
\beta_{j+m}(p) \beta_{m}(p)=0
$$

(ii) For each $0<m<j$ and $n \in \mathbf{Z}$,

$$
f_{n} \beta_{n-m}(p)=0
$$

In particular $\beta_{-m}(p)=0$.
(iii) For each $m \in \mathbf{Z}$,

$$
\beta_{m}(p) \leqq f_{m+j}
$$

Indeed, to prove (i) note that

$$
\begin{aligned}
& \beta_{j+m}(p) \leqq \beta_{j+m}(e) \text { and } \\
& \beta_{m}(p) \leqq \beta_{m}\left(\beta_{j}(1-e)\right) \leqq \beta_{m+j}(1-e)
\end{aligned}
$$

We assumed that $\beta_{-m}(e) \leqq e$ for $0<m<j$. Hence

$$
f_{m-j} \beta_{-j}(e)=\beta_{m-j}\left(\beta_{-m}(e)\right) \leqq \beta_{m-j}(e) \leqq e \quad \text { for } 0<m<j
$$

and it follows that

$$
f_{m-j} \beta_{-j}(p)=f_{m-j} \beta_{-j}(e)(1-e)=0
$$

Thus

$$
f_{m} p=f_{m} f_{j} p=\beta_{j}\left(f_{m-j} \beta_{-j}(p)\right)=0
$$

and consequently

$$
\beta_{-m}(p) \leqq \beta_{-m}\left(1-f_{m}\right)=0
$$

Property (ii) follows by applying β_{n} to $\beta_{-m}(p)=0$. Property (iii) is an immediate consequence of the fact that $p \leqq f_{j}$.

Consider now the algebra $B(1-p)$. By (1) there is a projection $q \in Z\left(M_{0}\right)$ such that

$$
B(1-p)=q M+(1-q) H^{\infty}(\alpha)
$$

This implies that for each $n>0$,

$$
q f_{-n}=f_{-n}\left(\wedge\left\{1-\beta_{-m}(1-p): 0<m \leqq n\right\}\right) .
$$

But then

$$
q f_{-n}=\beta_{-n}(p)\left(\wedge\left\{1-f_{-m}+\beta_{-m}(p): 0<m<n\right\}\right)
$$

By (ii) $f_{-m} \beta_{-n}(p)=0$ for $0<m<n \leqq j$. Hence

$$
q f_{-n}=\beta_{-n}(p) \quad \text { for } n \leqq j
$$

(in fact, for $0 \leqq n<j, q f_{-n}=\beta_{-n}(p)=0$ by (ii)).
If $n>j$ then

$$
q f_{-n} \leqq \beta_{-n}(p)\left(1-f_{-n+j}+\beta_{-n+j}(p)\right)=0
$$

(applying (i) and (iii)). It follows that, for $n>j$,

$$
f_{-n} \beta_{-j}(p)=f_{-n} f_{-j} q=0
$$

and consequently

$$
\begin{aligned}
& \beta_{-j}(p) \leqq 1-f_{-n} \text { and } \\
& p=f_{j} p=\beta_{j}\left(\beta_{-j}(p)\right) \leqq \beta_{-j}\left(1-f_{-n}\right) \leqq 1-f_{j-n}
\end{aligned}
$$

for each $n>j$.
Hence $p \leqq 1-e(\alpha)$. But $p \leqq e \leqq e(\alpha)$ and thus

$$
0=p=e \beta_{j}(1-e)
$$

and, by applying β_{-j},

$$
\beta_{-j}(e)(1-e)=0
$$

Hence $\beta_{-j}(e) \leqq e$. By induction we find that for each projection $e \in e(\alpha) f(\alpha) Z\left(M_{0}\right)$ and each $j>0, \beta_{-j}(e) \leqq e$.

Fix now a projection $e \in e(\alpha) f(\alpha) Z\left(M_{0}\right)$ and suppose that $j>0$ is such that for each $0 \leqq m<j, \beta_{m}(e) \leqq e$. We will show that $\beta_{j}(e) \leqq e$ and this induction argument will imply that $\beta_{n}(e) \leqq e$ for each $n \in \mathbf{Z}$ and, hence, that e lies in $Z(M)$ (by Lemma 2.4(5)).

Let p be the projection $e \beta_{-j}(1-e)$. Then for $n>0$,

$$
\beta_{-n}(p) \leqq p \leqq f_{-j}
$$

(since $p \leqq e \leqq e(\alpha) f(\alpha)$). Also

$$
\begin{aligned}
& \beta_{j}(p)=\beta_{j}(e)(1-e) \leqq 1-e \leqq 1-p \quad \text { and } \\
& f_{j} p=\beta_{j}\left(\beta_{-j}(p)\right) \leqq \beta_{j}(p) \leqq 1-p
\end{aligned}
$$

Hence $f_{j} p=0$ and consequently $\beta_{-j}(p)=0$. Consider now the algebra $B(1-p)$. Then there is a projection $q \in Z\left(M_{0}\right)$ such that

$$
B(1-p)=q M+(1-q) H^{\infty}(\alpha) .
$$

Hence, for $n>0$.

$$
q f_{-n}=\beta_{-n}(p)\left(\Lambda\left\{1-f_{-m}+\beta_{-m}(p): 0<m<n\right\}\right)
$$

For $n=j$,

$$
\beta_{-n}(p)=\beta_{-j}(p)=0
$$

hence $q f_{-j}=0$. For $n \neq j$

$$
q f_{-n} \leqq \beta_{-n}(p) \leqq f_{-j}
$$

Thus

$$
q f_{-n}=q f_{-n} f_{-j} \leqq q f_{-j}=0
$$

This implies that

$$
B(1-p)=q M+(1-q) H^{\infty}(\alpha)=H^{\infty}(\alpha)
$$

and, by Lemma 3.11,

$$
p \leqq 1-f(\alpha)
$$

But $p \leqq e \leqq f(\alpha)$ and consequently $p=0$. Since $p=e \beta_{-j}(1-e)$,

$$
0=\beta_{j}(e)(1-e) \quad \text { and } \quad \beta_{j}(e) \leqq e
$$

This completes the proof that

$$
e(\alpha) f(\alpha) Z\left(M_{0}\right) \subseteq Z(M)
$$

(2) implies (1): Suppose that

$$
e(\alpha) f(\alpha) Z\left(M_{0}\right) \subseteq Z(M)
$$

Let e be a projection in $Z\left(M_{0}\right)$ and write $e=p_{1}+p_{2}+p_{3}$ where

$$
p_{1}=e e(\alpha) f(\alpha), p_{2}=e e(\alpha)(1-f(\alpha)) \quad \text { and } \quad p_{3}=e(1-e(\alpha)) .
$$

Then $B\left(1-p_{2}\right)$ is $H^{\infty}(\alpha)$ (by Lemma 3.11). We now show that $B\left(1-p_{1}\right)$ and $B\left(1-p_{3}\right)$ have the property described in (1).
For each $n>0, f_{-n} p_{3}=0$ hence $\beta_{n}\left(p_{3}\right)=0$. But then, for $m \in \mathbf{Z}$ and $n>0$,

$$
f_{m} \beta_{m+n}\left(p_{3}\right)=\beta_{m}\left(\beta_{n}\left(p_{3}\right)\right)=0
$$

Hence

$$
\beta_{m}\left(p_{3}\right) \beta_{n}\left(p_{3}\right)=0 \quad \text { for } n \neq m \text { in } \mathbf{Z} .
$$

For each $n>0$ let $z(-n)$ be the projection in $Z\left(M_{0}\right)$ that satisfies

$$
B\left(1-p_{3}\right) \cap M_{-n}=z(-n) M_{-n} .
$$

Then

$$
z(-n)=\beta_{-n}\left(p_{3}\right)\left(\Lambda\left\{1-f_{-m}+\beta_{-m}\left(p_{3}\right): 0<m<n\right\}\right) .
$$

Since $\beta_{-n}\left(p_{3}\right) \beta_{-m}\left(p_{3}\right)$ whenever $n \neq m$,

$$
\begin{aligned}
& z(-n)=\beta_{-n}\left(p_{3}\right)\left(\Lambda\left\{1-f_{-m}: 0<m<n\right\}\right) \text { and } \\
& z(-n) z(-j)=0 \quad \text { if } n \neq j
\end{aligned}
$$

Let q_{3} be $\sum_{n=1}^{\infty} z(-n)$. If $0<m<n$ then

$$
z(-n) \leqq 1-f_{-m}
$$

If $m>n>0$ then

$$
f_{-m} \beta_{-n}\left(p_{3}\right)=0
$$

(because $f_{m} \beta_{m+n}\left(p_{3}\right)=0$ for $m \in \mathbf{Z}, n>0$) and consequently $f_{-m} z(-n)$ $=0$. We see, therefore, that

$$
z(-n) f_{-m}=0 \quad \text { for all } n \neq m, n, m>0
$$

It follows from this that

$$
q_{3} f_{-m}=z(-m) \text { for each } m>0 .
$$

Hence

$$
B\left(1-p_{3}\right)=q_{3} M+\left(1-q_{3}\right) H^{\infty}(\alpha)
$$

Now consider the algebra $B\left(1-p_{1}\right)$ and write $z(-n)$ for

$$
\beta_{-n}\left(p_{1}\right)\left(\Lambda\left\{1-f_{-m}+\beta_{-m}\left(p_{1}\right): 0<m<n\right\}\right)
$$

(such that $B\left(1-p_{1}\right) \cap M_{-n}=z(-n) M_{-n}$) for each $n>0$. But

$$
p_{1} \in e(\alpha) f(\alpha) Z\left(M_{0}\right) \subseteq Z(M)
$$

Hence

$$
\begin{aligned}
& 1-p_{1} \in Z(M) \text { and } \\
& \beta_{-m}\left(1-p_{1}\right)=f_{-m}\left(1-p_{1}\right), m \in \mathbf{Z}
\end{aligned}
$$

Consequently

$$
z(-n)=f_{-n} p_{1}\left(\Lambda\left\{1-f_{-m}\left(1-p_{1}\right): 0<m<n\right\}=f_{-n} p_{1}\right.
$$

Therefore

$$
\begin{aligned}
B(1-e) & =V\left\{B\left(1-p_{i}\right): i=1,2,3\right\} \\
& =\left(q_{3}+p_{1}\right) M+\left(1-q_{3}-p_{1}\right) H^{\infty}(\alpha) .
\end{aligned}
$$

Since any σ-weakly closed subalgebra of M that contains $H^{\infty}(\alpha)$ is $B(1-e)$ for some projection $e \in Z\left(M_{0}\right)$, (1) follows.

References

1. W. B. Arveson, On groups of automorphisms of operator algebras, J. Funct. Anal. 15 (1974), 217-243.
2. S. Kawamura and J. Tomijama, On subdiagonal algebras associated with flows in operator algebra, J. Math. Soc. Japan 29 (1977), 73-90
3. R. I. Loebl and P. S. Muhly, Analyticity and flows in von Neumann algebras, J. Funct. Anal. 29 (1978), 214-252.
4. M. McAsey, P. S. Muhly and K.-S. Saito, Nonselfadjoint crossed products (Invariant subspaces and maximality), Trans. Amer. Math. Soc. 248 (1979), 381-409.
5. —— Nonselfadjoint crossed products II, J. Math. Soc. Japan 33 (1981), 485-495.
6. - Nonselfadjoint crossed products III (Infinite algebras), Preprint.
7. K.-S. Saito, The Hardy spaces associated with a periodic flow on a von Neumann algebra, Tohoku Math. J. 29 (1977), 69-75.
8. -Invariant subspaces for finite maximal subdiagonal algebras, Pacific J. of Math. 93 (1981), 431-434.
9. -Invariant subspaces and cocycles in nonselfadjoint crossed products, J. Funct. Anal. 45 (1982), 177-193.
10. Nonselfadjoint subalgebras by compact abelian actions on finite von Neumann algebras, Tohoku Math. J. 34 (1982), 485-494.
11. -Spectral resolutions of invariant subspaces by compact abelian group actions on von Neumann algebras, Preprint.
12. B. Solel, The invariant subspace structure of nonselfadjoint crossed products, Trans. Amer. Math. Soc. 279 (1983), 825-840.
13. -Invariant subspaces for algebras of analytic operators associated with a periodic flow on a finite von Neumann algebra, J. Funct. Anal. 58 (1984), 1-19.

Dalhousie University, Halifax, Nova Scotia

[^0]: Received December 13, 1983 and in revised form June 5, 1984.

