ALGEBRAS OF ANALYTIC OPERATORS ASSOCIATED WITH A PERIODIC FLOW ON A VON NEUMANN ALGEBRA

BARUCH SOLEL

1. Introduction. Let M be a σ -finite von Neumann algebra and $\{\alpha_t\}_{t \in \mathbf{T}}$ be a σ -weakly continuous representation of the unit circle, \mathbf{T} , as *-automorphisms of M. Let $H^{\infty}(\alpha)$ be the set of all $x \in M$ such that

 $sp_{\alpha}(x) \subseteq \{n \in \mathbb{Z}: n \ge 0\}.$

The structure of $H^{\infty}(\alpha)$ was studied by several authors (see [2-13]).

The main object of this paper is to study the σ -weakly closed subalgebras of M that contain $H^{\infty}(\alpha)$. In [12] this was done for the special case where $H^{\infty}(\alpha)$ is a nonselfadjoint crossed product.

Let M_n , for $n \in \mathbb{Z}$, be the set of all $x \in M$ such that

 $sp_{\alpha}(x) = \{n\}.$

With a projection e in the centre of M_0 (the fixed point algebra with respect to α) we associate projections $\{e(n)\}_{n=-\infty}^{\infty}$ by defining

e(n) = I for $n \ge 0$ and

$$e(n) = \Lambda \{1 - \beta_m(e) : n \leq m \leq -1\} \text{ for } n < 0$$

(see Section 2 for the definition of β_m). We prove (Theorem 3.6) that for each σ -weakly closed subalgebra *B* that contains $H^{\infty}(\alpha)$ there is a projection *e* in the centre of M_0 such that *B* is generated by $\cup \{e(n)M_n: n \in \mathbb{Z}\}$ (as a σ -weakly closed linear subspace of *M*). We also show (Theorem 3.9) that each such subalgebra is $H^{\infty}(\gamma)$ for some periodic flow γ on *M*. As a corollary we prove that if \mathscr{A} is a nest subalgebra associated with a nest $\{0, \ldots, P_{-1}, P_0, P_1, \ldots, I\} \subseteq M$ and *B* is a σ -weakly closed subalgebra of *M* that contains \mathscr{A} then *B* is a nest subalgebra.

2. Preliminaries. Let M be a σ -finite von Neumann algebra acting on a Hilbert space H and let $\{\alpha_t\}_{t \in \mathbb{R}}$ be a periodic σ -weakly continuous representation of \mathbb{R} as *-automorphisms of M. We assume that the period is 2π and write \mathbb{T} for the interval $[0, 2\pi]$ identified with the unit circle. For each $n \in \mathbb{Z}$ we define a σ -weakly continuous linear map ϵ_n , on M, by

Received December 13, 1983 and in revised form June 5, 1984.

$$\epsilon_n(x) = \int_0^{2\pi} e^{-itn} \alpha_t(x) d\mu(t), \quad x \in M,$$

where $d\mu$ is the normalized Lebesgue measure on **T**. Let M_n be $\epsilon_n(M)$. Then it is clear that

$$M_n = \{ x \in M : \alpha_t(x) = e^{int}x, t \in \mathbf{T} \}.$$

Whenever $\{\gamma_t\}_{t \in \mathbf{T}}$ is a σ -weakly continuous representation of \mathbf{T} as *-automorphisms of M we let $sp_{\gamma}(x)$ denote the Arveson's spectrum of $x \in M$ with respect to $\{\gamma_t\}$ (see [1]). For a subset $S \subseteq \mathbf{Z}$, $M^{\gamma}(S)$ will denote the spectral subspace associated with S; i.e.,

 $M^{\gamma}(S) = \{ x \in M : sp_{\gamma}(x) \subseteq S \}.$

If $S = \{n \in \mathbb{Z} : n \ge 0\}$ we write $H^{\infty}(\gamma)$ for $M^{\gamma}(S)$. It is known ([3]) that $H^{\infty}(\gamma)$ is a σ -weakly closed subalgebra of M which is a finite maximal subdiagonal algebra (with respect to the map

$$\epsilon_0 = \int_0^{2\pi} \alpha_t d\mu(t) \,$$

When $\gamma = \alpha$ we have $M_n = M^{\alpha}(\{n\}), n \in \mathbb{Z}$ and

 $sp_{\alpha}(x) = \{n \in \mathbf{Z}: \epsilon_n(x) \neq 0\}$ for $x \in M$.

Since *M* is **T**-finite (i.e., there is a faithful expectation ϵ_0 from *M* onto M_0 such that $\epsilon_0 \circ \alpha_t = \epsilon_0$ for all $t \in \mathbf{T}$) and σ -finite, there exists a faithful normal $\{\alpha_t\}$ -invariant state ϕ on *M*. Considering the Gelfand-Naimark-Segal construction of ϕ , we may suppose that *M* has a separating and cyclic vector $\xi_0 \in H$ such that $\phi(x) = \langle x\xi_0, \xi_0 \rangle$ is an $\{\alpha_t\}$ -invariant state on *M*.

Remark 2.1. Suppose $\{\gamma_t\}_{t \in \mathbf{T}}$ is a σ -weakly continuous representation as above and $a \in M$ such that, for each $t \in \mathbf{T}$, $\gamma_t(a) = e^{itb}a$ for some self adjoint operator b in the centre of M_0 with $\sigma(b) \subseteq \mathbf{Z}$ (where $\sigma(b)$ is the spectrum of b as an operator). Then

 $sp_{\gamma}(a) \subseteq \sigma(b).$

In fact, assume that there is some $n \in sp_{\nu}(a), n \notin \sigma(b)$. Then

$$\int_{0}^{2\pi} e^{-itn} e^{itb} d\mu(t) = 0 \quad (\text{as } n \notin \sigma(b));$$

but $n \in sp_{\gamma}(a)$ hence

$$1 = \int_0^{2\pi} e^{-itn} e^{itn} d\mu(t) = 0.$$

The contradiction shows that $sp_{\gamma}(a) \subseteq \sigma(b)$. For each $n \in \mathbb{Z}$ define projections e_n, f_n by

- $e_n = \sup\{u^*u: u \text{ is a partial isometry in } M_n\}$
- $f_n = \sup\{uu^*: u \text{ is a partial isometry in } M_n\}.$

406

Then, by [11, Lemma 2.2], e_n and f_n lie in $Z(M_0)$ (the centre of M_0). The following lemma appears in [11].

LEMMA 2.2. (1) For every $n, m \in \mathbb{Z}$, $M_n M_m \subseteq M_{n+m}$ and $M_n^* = M_{-n}$. (2) Let $x \in M_n$ and let x = v|x| be the polar decomposition of x. Then

 $v \in M_n \text{ and } |x| \in M_0.$

The following result can be found in [13, Proposition 2.3 and Theorem 2.4]. Although it was assumed there that the algebra M is finite, this assumption was not used in the proof of the following proposition.

PROPOSITION 2.3. Fix $n \in \mathbb{Z}$. Then there is a sequence $\{v_{n,m}\}_{m=1}^{\infty}$ of partial isometries in M_n with the following properties:

(1)
$$v_{n,m}^* v_{n,j} = 0$$
 if $m \neq j$.

(2)
$$\sum_{m=1}^{\infty} v_{n,m} v_{n,m}^* = f_n.$$

(3)
$$M_n = \sum_{m=1}^{\infty} v_{n,m} M_0;$$

i.e., each $x \in M_n$ can be written as

$$\sum_{m=1}^{\infty} v_{n,m} x_m \text{ for some } x_m \in M_0$$

where the sum converges in the σ -weak operator topology.

For each $\rho \in M_*$ there are sequences $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$ in H satisfying

$$\sum ||x_n||^2 < \infty$$
 and $\sum ||y_n||^2 < \infty$,

such that

$$\rho(a) = \sum_{n=1}^{\infty} \langle ax_n, y_n \rangle.$$

Let \tilde{H} be the space $H \otimes K$ (for some separable infinite dimensional subspace K with an orthogonal basis $\{g_n\}_{n=1}^{\infty}$). Write \tilde{a} for the operator $a \otimes I_k$ and then

$$\rho(a) = \langle \tilde{a}x, y \rangle$$

where

$$x = \sum_{n=1}^{\infty} x_n \otimes g_n \in \widetilde{H}$$
 and $y = \sum_{n=1}^{\infty} y_n \otimes g_n \in \widetilde{H}$.

Let \widetilde{M} be { $\widetilde{a}: a \in M$ } and then \widetilde{M} is *-isomorphic to M and $\xi = \xi_0 \otimes g_1$ is a separating vector for \widetilde{M} .

Replacing M by \widetilde{M} and H by \widetilde{H} we assume that M has a separating vector $\xi \in H$ and each $\xi \in M_*$ is of the form $w_{x,y}$ for some $x, y \in H$. Also $\phi(a) = \langle a\xi, \xi \rangle$ is a faithful normal $\{\alpha_t\}$ -invariant state on M.

The following result appears in [11, Theorem 2.4].

PROPOSITION 2.4. (1) $H^{\infty}(\alpha) = \{x \in M : \epsilon_n(x) = 0 \text{ for each } n < 0\}$ (2) $H^{\infty}(\alpha)$ is the σ -weakly closed subalgebra of M which is generated by M_0 and all partial isometries in M_n ($n \in \mathbb{Z}$, n > 0).

With the partial isometries $\{v_{n,m}:n \in \mathbb{Z}, m \ge 1\}$ defined as in Proposition 2.3, we can define maps $\{\beta_n\}_{n \in \mathbb{Z}}$ on M'_0 by the formula

$$\beta_n(T) = \sum_{m=1}^{\infty} v_{n,m} T v_{n,m}^*$$

Let us denote the orthogonal projection onto the subspace $[M_n\xi]$ (the closure, in H, of $\{a\xi:a \in M_n\}$) by $E_n, n \in \mathbb{Z}$.

LEMMA 2.4. (1) β_n is a well defined homomorphism from M'_0 onto $f_n M'_0$. (2) For a projection $Q \in M'_0$,

 $\beta_n(Q) = V\{uQu^*: u \text{ is a partial isometry in } M_n\},\$

hence $\beta_n(Q)$ is a projection.

(3) For each $n, m \in \mathbb{Z}, T \in M'_0$,

$$\beta_{n+m}(f_{-m}T) = \beta_n\beta_m(T) = f_n\beta_{n+m}(T).$$

(4) β_n is a *-isomorphism from $e_n M'_0$ onto $f_n M'_0$.

(5) For $T \in M'_0$, $T \in M'$ if and only if $\beta_n(T) = f_n T$ for each $n \in \mathbb{Z}$. If T

is a projection then $T \in M'$ if and only if $\beta_n(T) \leq T$ for each $n \in \mathbb{Z}$. (6) If $T \in M'_0$ and $\sum_{m=-\infty}^{\infty} \beta_m(T)$ is a well defined bounded operator in M'_0 then $\sum_{m=-\infty}^{\infty} \beta_m(T) \in M'$ (where the sum converges in the strong operator topology.)

(7) For each $n \in \mathbb{Z}$, $\beta_n(E_0) = E_n$.

(8) Suppose Q_1 and Q_2 are projections in M'_0 and $Q_1 \sim Q_2$ (with respect to the equivalence relation in M'_0), then

$$\beta_n(Q_1) \sim \beta_n(Q_2)$$
 for each $n \in \mathbb{Z}$.

Proof. (1) Fix $T \in M'_0$. Since the range projections of $\{v_{n,m}\}_{m=1}^{\infty}$ are mutually orthogonal, $\beta_n(T)$ is a linear bounded operator. Now fix a unitary operator $u \in M_0$ and $m \ge 1$. Then

$$uv_{n,m} = \sum_{j} v_{n,j} x_j$$
 for some $x_j \in M_0$ and,

408

$$uv_{n,m}Tv_{n,m}^{*}u^{*} = \left(\sum_{j} v_{n,j}x_{j}\right)T\left(\sum_{i} x_{i}^{*}v_{n,i}^{*}\right)$$
$$= \sum_{i,j} v_{n,j}Tv_{n,j}^{*}v_{n,j}x_{j}x_{i}^{*}v_{n,i}^{*}$$
$$= \sum_{i,j} v_{n,j}Tv_{n,j}^{*}\left(\sum_{r} v_{n,r}x_{r}\right)x_{i}^{*}v_{n,i}^{*}$$
$$= \sum_{j} v_{n,j}Tv_{n,j}uv_{n,m}v_{n,m}^{*}u^{*}$$
$$= \beta_{n}(T)uv_{n,m}v_{n,m}^{*}u^{*}.$$

Summing over all $m \ge 1$ we have

$$u\beta_n(T)u^* = \beta_n(T)f_n.$$

Since, clearly $\beta_n(T) = \beta_n(T) f_n$,

$$\beta_n(T) \in M'_0 f_n, \quad n \in \mathbb{Z}.$$

To show that β_n is multiplicative let S, T lie in M'_0 . Then

$$\beta_n(S)\beta_n(T) = \left(\sum_m v_{n,m} S v_{n,m}^*\right) \left(\sum_j v_{n,j} T v_{n,j}^*\right)$$
$$= \sum_{m,j} v_{n,m} S v_{n,m}^* v_{n,j} T v_{n,j}^*$$
$$= \sum_m v_{n,m} S T v_{n,m}^* = \beta_n(ST).$$

Linearity of β_n is obvious. The fact that $\beta_n(M'_0) = f_n M'_0$ will follow from (3), since

$$\beta_n \beta_{-n}(T) = f_n \beta_0(T) = f_n T = T$$
 for each $T \in f_n M'_0$

This, in fact, shows that

$$\beta_n(f_{-n}M_0') = M_0'.$$

(2) This is proved in [13, Lemma 3.1(1)].

(3) This is proved in [13, Lemma 3.1(2)] for the case where $T \in M'_0$ is a projection. The linearity and continuity, in the strong operator topology, of β_n proves it for any $T \in M'_0$.

(4) Since $\beta_{-n}\beta_n(e_nT) = f_{-n}e_nT = e_nT$ (note that $e_n = f_{-n}, n \in \mathbb{Z}$), β_n is one-to-one on $e_nM'_0$. The rest follows from (1) (with the observation that

$$\beta_n(e_n M'_0) = \beta_n(f_{-n} M'_0) = f_n M'_0,$$

as noted above).

(5) If $T \in M'$ then obviously $\beta_n(T) = f_n T$. Conversely, if $\beta_n(T) = f_n T$ for each $n \in \mathbb{Z}$, then, for each $m \ge 1$,

$$v_{n,m}T - Tv_{n,m} = v_{n,m}v_{n,m}^*v_{n,m}T - Tv_{n,m}v_{n,m}^*v_{n,m}$$

= $(v_{n,m}T - Tv_{n,m})v_{n,m}^*v_{n,m}$
= $(v_{n,m}Tv_{n,m}^* - Tv_{n,m}v_{n,m}^*)v_{n,m}$
= $\beta_n(T)v_{n,m} - Tf_nv_{n,m} = 0.$

Since M_0 together with $\{v_{n,m}\}_{m \ge 1, n \in \mathbb{Z}}$ span $M, T \in M'$. (6) Let S be $\sum_{m=-\infty}^{\infty} \beta_n(T)$ then

$$\beta_n(S) = \sum_{m=-\infty}^{\infty} \beta_n \beta_m(T) = \sum_{m=-\infty}^{\infty} f_n \beta_{n+m}(T) = f_n S.$$

Hence, by (5), $S \in M'$.

(7) Recall that E_n is the projection onto $[M_n\xi]$. Hence, for $m \ge 1$, $n \in \mathbb{Z}$, $v_{n,m}E_0v_{n,m}^*$ is the projection onto $[v_{n,m}M_0\xi]$ and $\beta_n(E_0)$ is the projection onto

 $\sum_{m} [v_{n,m} M_0 \xi] = [M_n \xi].$

Hence $\beta_n(E_0) = E_n$.

(8) Suppose W is a partial isometry in M'_0 such that $WW^* = Q_1$ and $W^*W = Q_2$. Then

$$\beta_n(W)\beta_n(W^*) = \beta_n(Q_1)$$
 and $\beta_n(W^*)\beta_n(W) = \beta_n(Q_2)$.

Since $\beta_n(W) \in M'_0$ and $\beta_n(W^*) = \beta_n(W)^*$,

 $\beta_n(Q_1) \sim \beta_n(Q_2).$

The following notations and definitions will be used later:

1. A projection $Q \in M'_0$ is said to be a wandering projection if, for each $n \in \mathbb{Z}$, $Q\beta_n(Q) = 0$ (note that this implies that, for $n \neq m$, $\beta_n(Q)\beta_m(Q) = 0$). The set of all the wandering projections in M'_0 will be denoted by \mathscr{P}_1 .

2. For $Q \in \mathscr{P}_1$ we let $\sigma(Q)$ be $\sum_{n=0}^{\infty} \beta_n(Q)$.

3. A closed subspace \mathcal{M} of H is called *invariant* if for each $a \in H^{\infty}(\alpha)$ and $x \in \mathcal{M}$, $ax \in \mathcal{M}$. Let us denote by \mathscr{P}_2 the set of all orthogonal projections whose range is an invariant subspace. Note that

 $\mathscr{P}_2 = \{ P \in M'_0 : \beta_n(P) \leq P \text{ for each } n \geq 0 \}.$

(Since $[M_n P(H)] = \beta_n(P)(H)$ for each $n \in \mathbb{Z}$ and $\bigcup_{n \ge 0} M_n$ span $H^{\infty}(\alpha)$).

4. For
$$P \in \mathscr{P}_2$$
 let $\delta(P)$ be $P - V\{\beta_n(P): n > 0\}$.

The following lemma can be found in [13].

LEMMA 2.5. If $P \in \mathscr{P}_2$ then $\delta(P) \in \mathscr{P}_1$, $P = \sigma(\delta(P)) + \bigwedge_{n>0} \bigvee_{m \ge n} \beta_m(P)$ and $\bigwedge_{n>0} \bigvee_{m \ge n} \beta_m(P) \in M'.$

3. Subalgebras of *M*. Let \mathscr{C} be the collection of all σ -weakly closed subalgebras of *M* that contain *I*. For each $y \in H$ and $B \in \mathscr{C}$ we define

$$B_{y} = \{a \in M : a[By] \subseteq [By]\}.$$

Then B_y is a σ -weakly closed subalgebra of M that contains B. In particular $B_y \in \mathscr{C}$.

LEMMA 3.1. For each $B \in C$ and $y \in H$,

 $[By] = [B_v y].$

Proof. Since $B \subseteq B_y$, $[By] \subseteq [B_yy]$. For the other inclusion, suppose *a* is in B_y . Then, since $y \in [By]$, $ay \in [By]$; hence $[B_yy] \subseteq [By]$.

LEMMA 3.2. Suppose B, C lie in C and $B \neq C$. Then there is some $y \in H$ such that $B_y \neq C_y$.

Proof. Since $B \neq C$ we can assume that there is some $a \in B$, $a \notin C$. (The case $B \subset C$ can be handled similarly.) Since C is σ -weakly closed there is some $\rho \in M_*$ such that $\rho(c) = 0$ for each $c \in C$ and $\rho(a) \neq 0$. Since M has a separating vector, there are vectors $x, y \in H$ such that $\rho(b) = \langle by, x \rangle$ for all $b \in M$. Hence x is orthogonal to [Cy] but not to [By]. Since

$$[C_v y] = [Cy] \neq [By] = [B_v y],$$

 $B_{y} \neq C_{y}$.

LEMMA 3.3. For each $B \in \mathcal{C}, B = \cap \{B_y : y \in H\}$.

Proof. Clearly *B* is contained in the algebra on the right (which we now denote by \tilde{B}). For each $z \in H$, $B \subseteq \tilde{B} \subseteq B_z$ and, by Lemma 3.1, $[Bz] = [B_z z]$. Hence, for each $z \in H$, $[Bz] = [\tilde{B}z]$ and, therefore,

$$B_z = \{a \in M : a[Bz] \subseteq [Bz]\} = \{a \in M : a[Bz] \subseteq [Bz]\} = B_z$$

By the previous lemma $B = \tilde{B}$.

Suppose \mathcal{M} is an invariant subspace of H and P is the orthogonal projection onto \mathcal{M} . Then we let $B(\mathcal{M})$ be the algebra

$$\{a \in M: a\mathcal{M} \subseteq \mathcal{M}\} = \{a \in M: aP = PaP\}.$$

Clearly $H^{\infty}(\alpha) \subseteq B(\mathcal{M})$ for each invariant subspace \mathcal{M} .

For a projection $Q \in M'_0$ we let c(Q) be the central support of Q.

LEMMA 3.4. Let \mathcal{M}_i , i = 1, 2, be an invariant subspace in H with corresponding projection $P_i \in \mathcal{P}_2$ such that

 $c(\delta(P_1)) = c(\delta(P_2)).$

Then $B(\mathcal{M}_1) = B(\mathcal{M}_2)$.

Proof. By symmetry it suffices to show that each $a \in B(\mathcal{M}_1)$ lies in $B(\mathcal{M}_2)$. Let Q_i denote $\delta(P_i)$, i = 1, 2. Let $\{q_\gamma\}_{\gamma \in \Gamma}$ be a maximal orthogonal family of subprojections of Q_2 in \mathcal{M}'_0 with the property that q_γ is equivalent to a subprojection of Q_1 (to be denoted p_γ) for each $\gamma \in \Gamma$. Let q be $\sum_{\gamma \in \Gamma} q_\gamma$. Then, by the maximality of $\{q_\gamma\}_{\gamma \in \Gamma}$, no subprojection of $Q_2 - q$ (in \mathcal{M}'_0) is equivalent to a subprojection of Q_1 . This implies that

$$c(Q_2 - q)c(Q_1) = 0.$$

But

$$c(Q_2 - q) \leq c(Q_2) = c(Q_1);$$

thus

$$Q_2 = q = \sum q_{\gamma}.$$

By Lemma 2.5, $P_2 = \sigma(Q_2) + R$ where R is some projection in M'. Hence

$$P_2 = \sum_{\gamma \in \Gamma} \sigma(q_{\gamma}) + R.$$

In order to show that $a \in B(\mathcal{M}_2)$ it will suffice to show that, for each $\gamma \in \Gamma$, a maps $\sigma(q_{\gamma})(H)$ into itself.

Now fix $\gamma \in \Gamma$ and let $v \in M'_0$ be a partial isometry in M'_0 such that $vv^* = q_\gamma$ and $v^*v = p_\gamma \leq Q_1$. Let R(v) be the partial isometry $\sum_{m=-\infty}^{\infty} \beta_n(v) \in M'$ (see Lemma 2.4(6)). The initial projection of R(v) is $\sum_{m=-\infty}^{\infty} \beta_m(p_\gamma)$ and its final projection is $\sum_{m=-\infty}^{\infty} \beta_m(q_\gamma)$. Now fix $n \geq 0$, and then

$$a\beta_n(q_{\gamma}) = aR(v)R(v)^*\beta_n(q_{\gamma})$$

= $R(v)aR(v)^*\beta_n(q_{\gamma}) = R(v)a\beta_n(p_{\gamma})R(v)^*.$

Since a maps $\sigma(p_{\gamma})$ into P_1 ,

$$a\sigma(p_{\gamma}) = P_{1}a\sigma(p_{\gamma})$$

= $P_{1}aR(v)^{*}R(v)\sigma(p_{\gamma})$
= $P_{1}\left(\sum_{m=-\infty}^{\infty}\beta_{m}(p_{\gamma})\right)a\sigma(p_{\gamma}).$

But

$$p_{\gamma} \leq \delta(P_1) = P_1 - V\{\beta_m(P_1): m > 0\};$$

thus $\beta_m(p_{\gamma})P_1 = 0$ for each m < 0 and we have

 $a\sigma(p_{\gamma}) = \sigma(p_{\gamma})a\sigma(p_{\gamma}).$

Therefore,

$$\begin{aligned} a\beta_n(q_{\gamma}) &= R(v)\sigma(p_{\gamma})a\beta_n(p_{\gamma})R(v^*) \\ &= R(v)\sigma(p_{\gamma})aR(v)^*R(v)\beta_n(p_{\gamma})R(v)^* \\ &= R(v)\sigma(p_{\gamma})R(v)^*aR(v)\beta_n(p_{\gamma})R(v)^* \\ &= \sigma(q_{\gamma})a\beta_n(q_{\gamma}). \end{aligned}$$

Thus

 $\sigma(q_{\gamma})a\sigma(q_{\gamma}) = a\sigma(q_{\gamma})$

and this implies that a lies in $B(\mathcal{M}_2)$.

For a projection e in $Z(M_0)$ and n > 0 we write e(-n) for the projection $\Lambda\{1 - \beta_{-m}(e): 1 \le m \le n\}$.

PROPOSITION 3.5. Let \mathcal{M} be an invariant subspace with P the orthogonal projection onto it. Let e be $c(\delta(P))$. Then

 $B(\mathcal{M}) = \{a \in M : \epsilon_{-n}(a) \in e(-n)M_{-n} \text{ for each } n > 0\}.$

Proof. Let \mathcal{M}_0 be the invariant subspace $\sum_{n=0}^{\infty} \beta_n(e) E_n(H)$. Then the projection P_0 onto \mathcal{M}_0 is

$$\sum_{n=0}^{\infty} \beta_n(e) E_n = \sum_{n=0}^{\infty} \beta_n(eE_0)$$

and

$$\delta(P_0) = eE_0$$

If z is a nonzero projection in $Z(M_0)$ then $z^2\xi = z\xi \neq 0$ and $z\xi \in E_0$ (as $z \in M_0$). Hence $zE_0 \neq 0$ for each nonzero projection $z \in Z(M_0)$. This implies that $c(E_0) = I$ and that

$$c(eE_0) = ec(E_0) = e.$$

Therefore

$$c(\delta(P_0)) = c(\delta(P))$$

and, by the previous lemma, $B(\mathcal{M}) = B(\mathcal{M}_0)$.

For $t \in \mathbf{T}$ let W_t be the linear operator that maps $x\xi(x \in M)$ into $\alpha_t(x)\xi$. Since

$$\langle \alpha_t(x)\xi, \, \alpha_t(x)\xi \rangle = \langle \alpha_t(x^*x)\xi, \, \xi \rangle$$

= $\phi(\alpha_t(x^*x)) = \phi(x^*x) = \langle x\xi, \, x\xi \rangle,$

 W_t can be extended to a unitary operator on H. For $n \in \mathbb{Z}$, $x \in M_n$ and $a \in M$,

$$\alpha_t(a)\beta_n(e)x\xi = \alpha_t(a\beta_n(e)\alpha_{-t}(x))\xi$$

= $W_t a\beta_n(e)\alpha_{-t}(x)\xi \in W_t a[\beta_n(e)M_n\xi]$
= $W_t a\beta_n(e)E_n(H).$

If $a \in B(\mathcal{M}_0)$ then

$$\alpha_t(a)\beta_n(e)x\xi \in W_tP_0(H)$$
 for all $n \in \mathbb{Z}, x \in M_n, t \in \mathbb{T}$.

Hence

$$\alpha_t(a)P_0(H) \subseteq W_tP_0(H), t \in \mathbf{T}.$$

But

$$W_t \beta_n(e) x \xi = \alpha_t(\beta_n(e) x) \xi$$

= $\beta_n(e) \alpha_t(x) \xi \in P_0(H)$ for $n \ge 0, x \in M_n, t \in \mathbf{T}$.

Hence

$$\alpha_t(a)P_0(H) \subseteq W_tP_0(H) \subseteq P_0(H).$$

Therefore $\alpha_t(B(\mathcal{M}_0)) = B(\mathcal{M}_0)$. Since

$$\epsilon_n = \int_0^{2\pi} e^{-int} \alpha_t d\mu(t),$$

$$\epsilon_n(B(\mathcal{M}_0)) \subseteq B(\mathcal{M}_0), \text{ for all } n \in \mathbb{Z}. \text{ Using [7, Theorem 1] we have}$$

$$B(\mathcal{M}_0) = \{a \in M: \epsilon_n(a) \in B(\mathcal{M}_0) \text{ for each } n \in \mathbb{Z}\}.$$

For each $n \in \mathbb{Z}$ we denote the set $\{a \in M_n : a \in B(\mathcal{M}_0)\}$ by L_n . Then

$$B(\mathcal{M}_0) = \{ a \in M : \epsilon_n(a) \in L_n \text{ for each } n \in \mathbb{Z} \}.$$

Since $H^{\infty}(\alpha) \subseteq B(\mathcal{M}_0), L_n = M_n$ for $n \ge 0$. Now fix n > 0. We claim that $L_{-n} = e(-n)M_{-n}$. Suppose $x \in e(-n)M_{-n}$, then

$$x = \sum_{j=1}^{\infty} v_{-n,j} x_j$$
 for some $x_j \in M_0$.

Then, for $m \ge 0$,

$$\beta_{-n}(\beta_m(e))x = \sum_{i,j=1}^{\infty} v_{-n,j}\beta_m(e)v_{-n,j}^*v_{-n,i}x_i$$
$$= \sum_{j=1}^{\infty} v_{-nj}\beta_m(e)v_{-n,j}^*v_{-nj}x_j$$

(*)
$$= \sum_{j=1}^{\infty} v_{-n,j} v_{-n,j}^* \beta_m(e) x_j = x \beta_m(e).$$

Hence, for each $y \in M_m$,

$$x\beta_m(e)y\xi = \beta_{-n}(\beta_m(e))xy\xi \in \beta_{-n}\beta_m(e)E_{m-n}(H)$$
$$\subseteq \beta_{m-n}(e)E_{m-n}(H).$$

Thus x maps $\sum_{m=n}^{\infty} \beta_m(e) E_m(H)$ into \mathcal{M}_0 . For $0 \leq m < n$ and $y \in M_m$,

$$x\beta_m(e)y\xi = (1 - \beta_{m-n}(e))x\beta_m(e)y\xi$$

= $(1 - \beta_{m-n}(e))\beta_{m-n}(e)x\beta_m(e)y\xi = 0.$

(The first equality holds because $x \in e(-n)M_{-n}$) Hence

$$x\mathcal{M}_0 \subseteq \mathcal{M}_0$$

This proves that $e(-n)M_{-n} \subseteq L_{-n}$. Now suppose $x \in L_{-n}$. Since $x \in M_{-n}$,

 $x\beta_m(e)y\xi \in \beta_{m-n}(e)E_{m-n}(H)$

for each $m \ge 0$ and $y \in M_m$. Hence, for $0 \le m < n$,

$$x\beta_m(e) = x\beta_m(e)f_m = 0$$

(since for each $j \ge 1$,

$$x\beta_m(e)v_{m,j}v_{m,j}^* = (x\beta_m(e)v_{m,j})v_{m,j}^* = 0).$$

But (*) implies that

$$\beta_{-n}\beta_m(e)x = x\beta_m(e) = 0.$$

Thus

$$x \in (1 - \beta_{-n}(\beta_m(e)))M_{-n} = (1 - f_{-n}\beta_{m-n}(e))M_{-n}$$
$$= (1 - \beta_{m-n}(e))M_{-n}.$$

Since this holds for each $0 \leq m < n, x \in e(-n)M_{-n}$.

For a projection $e \in Z(M_0)$ let us denote by B(e) the set

$$\{a \in M: \epsilon_{-n}(a) \in e(-n)M_{-n} \text{ for each } n > 0\}.$$

THEOREM 3.6. For each σ -weakly closed subalgebra B of M that contains $H^{\infty}(\alpha)$ there is a projection $e \in Z(M_0)$ such that B = B(e). Conversely, for each projection $e \in Z(M_0)$, B(e) is a σ -weakly closed subalgebra of M that contains $H^{\infty}(\alpha)$.

Proof. Suppose B is a σ -weakly closed subalgebra of M that contains $H^{\infty}(\alpha)$. By Lemma 3.3 we can write B as $\cap \{B_y: y \in H\}$. Hence

$$B = \{a \in M : a[By] \subseteq [By] \text{ for each } y \in H\}.$$

Since [By] is an invariant subspace of H (as $H^{\infty}(\alpha) \subseteq B$), it follows from Proposition 3.5 that

$$B_y = B(e(y))$$
 for some projection $e(y) \in Z(M_0)$.

Thus, clearly, B = B(e) where $e = V\{e(y): y \in H\}$.

For the converse just note that the set B(e) was shown, in the proof of Proposition 3.5, to be $B(\mathcal{M}_0)$ for some invariant subspace \mathcal{M}_0 . Therefore B(e) is a σ -weakly closed subalgebra of M that contains $H^{\infty}(\alpha)$.

Recall that W_t , $t \in \mathbf{T}$ is the unitary operator defined by

 $W_t a \xi = \alpha_t(a) \xi, a \in M$

and E_n is the orthogonal projection onto $[M_n\xi]$. It is easy to check that the spectral decomposition of W_t is given by:

$$W_t = \sum_{n=-\infty}^{\infty} e^{int} E_n, \quad t \in \mathbf{T}.$$

Let us now fix a projection $e \in Z(M_0)$ and define, for each $n \in \mathbb{Z}$,

$$c_n = \begin{cases} f_n \sum_{k=0}^{n-1} \beta_k(e) & n > 0 \\ 0 & n = 0 \\ -f_n \sum_{k=n}^{-1} \beta_k(e)(= -\beta_n(c_{-n})) & n < 0. \end{cases}$$

For $t \in \mathbf{T}$ let the operator U_t be $\sum_{n=-\infty}^{\infty} \exp(itc_n)E_n$. Then U_t is a unitary operator and the map $t \to U_t$ is continuous in the strong operator topology. We now let γ_t be the *-automorphism of M implemented by U_t (i.e., $\gamma_t(a) = U_t a U_t^*, a \in M$). The map

$$t \rightarrow \gamma_t(a)$$

is continuous in the σ -weak operator topology and

 $\gamma_{t+s} = \gamma_t \gamma_s$ for $t, s \in \mathbf{T}$.

Our next object is to show that the algebra B(e) is $H^{\infty}(\gamma)$. This will prove that every σ -weakly closed subalgebra of M that contains $H^{\infty}(\alpha)$ is $H^{\infty}(\gamma)$ for some flow γ as described above.

LEMMA 3.7. For each $n, k \in \mathbb{Z}$,

$$f_{n+k}f_nc_{n+k} = f_{n+k}c_n + f_{n+k}\beta_n(c_k).$$

Proof. If n = 0 or k = 0 the equality above follows trivially. If n > 0 and k > 0,

$$\begin{split} f_{n+k} f_n c_{n+k} &= f_{n+k} f_n \sum_{i=0}^{n+k-1} \beta_i(e) \\ &= f_{n+k} f_n \sum_{i=0}^{n-1} \beta_i(e) + f_{n+k} f_n \sum_{i=0}^{k-1} \beta_{n+i}(e) \\ &= f_{n+k} f_n c_n + f_{n+k} \sum_{i=0}^{k-1} \beta_n(\beta_i(e)) \\ &= f_{n+k} c_n + f_{n+k} \beta_n(c_k). \end{split}$$

If $n > 0, \ k < 0$ and $n + k > 0$,

$$\begin{split} f_{n+k}f_{n}c_{n+k} &= f_{n+k}f_{n}\sum_{i=0}^{n+k-1}\beta_{i}(e) \\ &= f_{n+k}f_{n}\sum_{i=0}^{n-1}\beta_{i}(e) - f_{n+k}f_{n}\sum_{i=k}^{-1}\beta_{n+i}(e) \\ &= f_{n+k}c_{n} - f_{n+k}\beta_{n}\Big(\sum_{i=k}^{-1}\beta_{i}(e)\Big) \\ &= f_{n+k}c_{n} - f_{n+k}\beta_{n}(f_{k})\beta_{n}\Big(\sum_{i=k}^{-1}\beta_{i}(e)\Big) \\ &= f_{n+k}c_{n} - f_{n+k}\beta_{n}\Big(\sum_{i=k}^{-1}f_{k}\beta_{i}(e)\Big) \\ &= f_{n+k}c_{n} - f_{n+k}\beta_{n}\Big(\beta_{k}\Big(\sum_{i=0}^{-k-1}\beta_{i}(e)\Big)\Big) \\ &= f_{n+k}c_{n} + f_{n+k}\beta_{n}(c_{k}). \end{split}$$

The other possible choices for n and k can be handled similarly. LEMMA 3.8. For each $t \in \mathbf{T}$ and $n \in \mathbf{Z}$,

$$\gamma_t(a) = \exp(itc_n)a.$$

Proof. Fix $t \in \mathbf{T}$, $n \in \mathbf{Z}$, $a \in M_n$ and $k \in \mathbf{Z}$. Then

$$\gamma_t(a)E_k = U_t a U_t^* E_k = U_t a \exp(-itc_k)E_k.$$

Since a lies in M_n ,

$$a = \sum_{j=1}^{\infty} v_{n,j} a_j$$
 (for some $a_j \in M_0$) and

$$a \exp(-itc_k)E_k \subseteq E_{k+n}$$

Thus

$$\begin{aligned} \gamma_t(a)E_k &= \exp(itc_{n+k}) \left(\sum_{j=1}^{\infty} v_{n,j}a_j \right) \exp(-itc_k)E_k \\ &= \exp(itc_{n+k}) \sum_j v_{n,j} \exp(-itc_k)v_{n,j}^* v_{n,j}a_jE_k \\ &= \exp(itc_{n+k})\beta_n(\exp(-itc_k))aE_k \\ &= \exp(itc_{n+k}f_n)\beta_n(\exp(-itc_k))f_{n+k}aE_k. \end{aligned}$$

By the previous lemma we now have

$$\gamma_t(a)E_k = \exp(itf_{n+k}c_n)\exp(itf_{n+k}\beta_n(c_k))\exp(-it\beta_n(c_k)f_{n+k})aE_k$$
$$= \exp(itf_{n+k}c_n)aE_k = \exp(itc_n)aE_k.$$

Since this holds for each $k \in \mathbb{Z}$ and $\sum_{k=-\infty}^{\infty} E_k = I$, we are done.

THEOREM 3.9. Let e be a projection in $Z(M_0)$ and γ_t be the flow associated with e, as defined in the discussion preceding Lemma 3.7. Then $H^{\infty}(\gamma) = B(e)$, where B(e) is the algebra

$$\{a \in M: \epsilon_{-n}(a) \in e(-n)M_{-n} \text{ for each } n > 0\}.$$

(Recall that

$$e(-n) = \Lambda\{1 - \beta_{-k}(e): 1 \leq k \leq n\}.$$

Hence every σ -weakly closed subalgebra of M that contains $H^{\infty}(\alpha)$ is $H^{\infty}(\gamma)$ for some flow γ associated with a projection $e \in Z(M_0)$.

Proof. Since for $n \ge 0$, $c_n \ge 0$ it follows from Remark 2.1 that

 $H^{\infty}(\alpha) \subseteq H^{\infty}(\gamma).$

As $H^{\infty}(\gamma)$ is a σ -weakly closed subalgebra of M, $H^{\infty}(\gamma) = B(f)$ for some projection $f \in Z(M_0)$. We can also conclude from the proof of Theorem 3.6 (the fact that B(e) is determined by $\epsilon_n(B(e))$, n < 0) that in order to prove that B(e) = B(f) it suffices to show that for each n > 0, $\epsilon_{-n}(B(e))(= B(e) \cap M_{-n})$ equals $\epsilon_{-n}(B(f))(= H^{\infty}(\gamma) \cap M_{-n})$. For $a \in M_{-n} \cap B(e)$, $a\beta_k(e) = 0$ for each $0 < k \leq n$; hence

$$c_{-n}a = \sum_{k=0}^{n-1} f_{-n}\beta_{k-n}(e)a = 0$$
 and

$$\gamma_t(a) = \exp(itc_{-n})a = a.$$

Thus

 $sp_{\gamma}(a) = \{0\}$ and $a \in M_{-n} \cap H^{\infty}(\gamma)$.

Suppose that $B(e) \cap M_{-n}$ is strictly smaller than

$$H^{\infty}(\gamma) \cap M_{-n} = B(f) \cap M_{-n}.$$

Then, if we let f(-n) be

$$\Lambda\{1 - \beta_{-k}(f): 1 \le k \le n\}$$

(and, hence, $M_{-n} \cap B(f) = f(-n)M_{-n}$), we have

$$f(-n) \ge e(-n)$$
 and $f(-n) \neq e(-n)$.

Therefore there is some $a \in (f(-n) - e(-n))M_{-n}$ and it satisfies: e(-n)a = 0 and $a \in B(f)$ (i.e., $sp_{\gamma}(a) \subseteq \mathbb{Z}_+$). Since e(-n)a = 0 we have, for $t \in \mathbb{T}$,

$$\gamma_t(a) = \exp(itc_{-n})a = \exp(itc_n - ite(-n))a$$
$$= \exp(it(-f_n \sum_{k=1}^n \beta_{-k}(e) - e(-n)))a$$
$$= \exp\left(it\left(-\sum_{k=1}^n \beta_{-k}(e) - e(-n)\right)\right)a.$$

But clearly

$$-\sum_{k=1}^{n} \beta_{-k}(e) - e(-n) \leq -I$$

Hence it follows from Remark 2.1 that

$$sp_{\gamma}(a) \subseteq \{n \in \mathbb{Z}: n \leq -1\}$$

contradicting our assumption that $a \in B(f) = H^{\infty}(\gamma)$. This contradiction completes the proof that

$$B(e) \cap M_{-n} = H^{\infty}(\gamma) \cap M_{-n}.$$

Since this holds for each $n \in \mathbb{Z}$, $B(e) = H^{\infty}(\gamma)$.

COROLLARY 3.10. Suppose M is a σ -finite von Neumann algebra and $\mathcal{N} = \{0, \ldots, P_{-1} < P_0 < P_1 < P_2, \ldots, I\}$ is a nest of projections in M with

$$\wedge \{P_n : n \in \mathbf{Z}\} = 0 \text{ and } \forall \{P_n : n \in \mathbf{Z}\} = I.$$

Let \mathscr{A} be the associated nest subalgebra of M (i.e., $\mathscr{A} = M \cap \operatorname{Alg} \mathscr{N}$). Then every σ -weakly closed subalgebra of M that contains \mathscr{A} is also a nest subalgebra of M. *Proof.* We will use the characterization of nest subalgebras as algebras of the form $H^{\infty}(\gamma)$ for an inner flow γ . (For details see [3].) We define a spectral measure P on **R** by $P(t, \infty) = P_{[t]}$ (where [t] denotes the integral part of t), and, for $t \in \mathbf{T}$ let V_t be the unitary operator $\int_{\mathbf{R}} e^{its} dP(s)$. We now let α_t be the *-automorphism on M that is implemented by V_t ; i.e.,

$$\alpha_t(x) = V_t x V_t^*, \quad x \in M, t \in \mathbf{T}.$$

The map $t \to \alpha_t$ is a homomorphism of **T** into the group of inner *-automorphisms on *M*. By [3, Corollary 2.14 and Theorem 4.2.3] $\mathscr{A} = H^{\infty}(\alpha)$. As in the discussion preceding Lemma 3.7 we associate with α unitary operators $\{W_t: t \in \mathbf{T}\}$ and projections $\{E_n: n \in \mathbf{Z}\}$ such that the spectral decomposition of W_t is given by

$$W_t = \sum_{n=-\infty}^{\infty} e^{int} E_n, \quad t \in \mathbf{T}.$$

We have

$$\alpha_t(x) = W_t x W_t^*, x \in M, t \in \mathbf{T};$$

hence, for $t \in \mathbf{T}$, $W_t V_t^* \in M'$.

Now let B be a σ -weakly closed subalgebra of M that contains \mathscr{A} . We know that $B = H^{\infty}(\gamma)$ and $\gamma_t(x) = U_t x U_t^*$, $x \in M$, $t \in T$ is a flow associated with some projection $e \in Z(M_0)$ as in the discussion preceding Lemma 3.7. Hence

$$U_t = \sum_{n=-\infty}^{\infty} e^{itc_n} E_n$$

where c_n are the elements of $Z(M_0)$ associated with the projection *e*. Now let Q_j be $P_j - P_{j-1}$ for all $j \in \mathbb{Z}$ and then

$$V_t = \sum_{m=-\infty}^{\infty} e^{itm} Q_m \text{ and}$$
$$V_t W_t^* = \sum_{m,j=-\infty}^{\infty} e^{itm} Q_m e^{-itj} E_j$$
$$= \sum_{n=-\infty}^{\infty} e^{itn} \left(\sum_{m=-\infty}^{\infty} Q_{n+m} E_m\right)$$

Since, for each $t \in \mathbf{T}$, $V_t W_t^* \in M'$, the projection $\sum_{m=-\infty}^{\infty} Q_{n+m} E_m$ (to be denoted by G_n) also lies in M' for each $n \in \mathbf{Z}$. We have, for each $n, m \in \mathbf{Z}$,

$$G_{n}E_{m} = Q_{n+m}E_{m} = Q_{n+m}G_{n} = G_{n}Q_{n+m}$$

= $(Q_{n+m}G_{n})^{*} = E_{m}G_{n} = E_{m}Q_{n+m}$.

Fix now $n \in \mathbb{Z}$ and let $T_t^{(n)}$ be $\sum_{j=-\infty}^{\infty} e^{itc_j} f_j Q_{j+n}$, $t \in \mathbb{T}$.

$$T_{t}^{(n)}U_{t}^{*} = \sum_{j,m=-\infty}^{\infty} e^{itc_{j+m}}f_{j+m}Q_{j+m+n}E_{m}e^{-itc_{m}}$$
$$= \sum_{j,m=-\infty}^{\infty} e^{itf_{j+m}c_{m}}e^{itf_{j+m}\beta_{m}(c_{j})}Q_{m+j+n}f_{m}E_{m}f_{m+j}e^{-itf_{m+j}c_{m}}.$$

Since $M_0 = \mathscr{A} \cap \mathscr{A}^* = \{P_j : j \in \mathbb{Z}\}', Q_j \in M'_0$ for each $j \in \mathbb{Z}$. We have, therefore,

$$T_{t}^{(n)}U_{t}^{*} = \sum_{j,m=-\infty}^{\infty} e^{itf_{j+m}\beta_{m}(c_{j})}Q_{m+j+n}E_{n}f_{m+j}$$
$$= \sum_{m,j=-\infty}^{\infty} \beta_{m}(e^{itc_{n}})Q_{m+j+n}E_{m}f_{m+j}$$
$$= \sum_{m,j=-\infty}^{\infty} G_{j+n}\beta_{m}(e^{itc_{j}})E_{m}\beta_{m}(f_{j})$$
$$= \sum_{j=-\infty}^{\infty} G_{j+n}\left(\sum_{m=-\infty}^{\infty} \beta_{m}(e^{itc_{j}}f_{j}E_{0})\right).$$

But $\sum_{m=-\infty}^{\infty} \beta_m(e^{itc_j}f_jE_0)$ lies in M' (see Lemma 2.4 (6)). Hence $T_t^{(n)}U_t^* \in M'$ for each $n \in \mathbb{Z}$ and $t \in \mathbb{T}$.

Let us denote by F_n the projection $\sum_{j=-\infty}^{\infty} f_j Q_{j+n}$. Then it is easy to check that

$$T_t^{(n)*}T_t^{(n)} = T_t^{(n)}T_t^{(n)*} = F_n \text{ for } n \in \mathbb{Z}, t \in \mathbb{T}.$$

Hence

$$F_n = T_t^{(n)} T_t^{(n)^*} = (T_t^{(n)} U_t^*) (T_t^{(n)} U_t^*)^* \in M'.$$

Since, for $j, n \in \mathbb{Z}$, f_j and Q_{j+n} lie in $M, F_n \in M \cap M'$. For each $n \in \mathbb{Z}$,

$$F_n \ge Q_n$$
 and $\sum_{n=-\infty}^{\infty} Q_n = I.$

Thus $V{F_n:n \in \mathbb{Z}} = I$ and we can find a sequence $\{\tilde{F}_n:n \in \mathbb{Z}\}$ of projections in $M \cap M'$ such that $\tilde{F}_n \tilde{F}_m = 0$ for $n \neq m$, $\sum \tilde{F}_n = I$ and

 $\widetilde{F}_n \leq F_n.$ We now set

$$T_t = \sum_{n=-\infty}^{\infty} T_t^{(n)} \widetilde{F}_n.$$

Then

$$T_t U_t^* = \sum_{n=-\infty}^{\infty} T_t^{(n)} \widetilde{F}_n U_t^* = \sum_{n=-\infty}^{\infty} \widetilde{F}_n T_t^{(n)} U_t^* \in M', \text{ for each } t \in \mathbf{T}.$$

Also, for $t \in \mathbf{T}$,

$$T_{t}T_{t}^{*} = \sum_{n,m=-\infty}^{\infty} T_{t}^{(n)}\widetilde{F}_{n}\widetilde{F}_{m}T_{t}^{(m)*}$$
$$= \sum_{n=-\infty}^{\infty} T_{t}^{(n)}\widetilde{F}_{n}T_{t}^{(n)*} = \sum_{n=-\infty}^{\infty} \widetilde{F}_{n}T_{t}^{(n)}T_{t}^{(n)*}$$
$$= \sum_{n=-\infty}^{\infty} \widetilde{F}_{n}F_{n} = \sum_{n=-\infty}^{\infty} \widetilde{F}_{n} = I.$$

Similarly $T_t^*T_t = I$ for each $t \in \mathbf{T}$. Hence $\{T_t: t \in \mathbf{T}\}$ is a unitary group of operators $(T_tT_s = T_{t+s} \text{ for each } t, s \in \mathbf{T} \text{ since it holds for } \{T_t^{(n)}\}$ for each $n \in \mathbf{Z}$). Also, for $t \in \mathbf{T}, x \in M$,

$$\gamma_t(x) = U_t \times U_t^* = T_t \times T_t^*$$

(as $T_t U_t^* \in M'$).

Since $\{T_t: t \in \mathbf{T}\} \subseteq M$ this implies that $H^{\infty}(\gamma)$ is a nest subalgebra of M. In fact, let $\sum_{m=-\infty}^{\infty} e^{itm} \widetilde{Q}_m$ be the spectral decomposition of T_t and let \widetilde{P}_n be the projection $\sum_{m \leq n} \widetilde{Q}_m (\in M)$. Then $B = M \cap \operatorname{alg} \widetilde{\mathcal{N}}$ where $\widetilde{\mathcal{N}}$ is the nest $\{0, I\} \cup \{\widetilde{Q}_n: n \in \mathbf{Z}\}$.

Let us denote by $f(\alpha)$ the projection $V\{f_n: n > 0\}$ and by $e(\alpha)$ the projection $V\{e_n: n > 0\} = V\{f_n: n < 0\}$ (cf. [11, Proposition 2.7]). Note that

 $(1 - f(\alpha))H^{\infty}(\alpha) = (1 - f(\alpha))M_0$ and $H^{\infty}(\alpha)(1 - e(\alpha)) = M_0(1 - e(\alpha)).$

LEMMA 3.11. For projections e, f in $Z(M_0), B(e) = B(f)$ if and only if

$$(e - ef) \vee (f - ef) \leq 1 - f(\alpha).$$

In particular, $B(e) = H^{\infty}(\alpha)$ if and only if $e \ge f(\alpha)$ and B(e) = M if and only if $e \le 1 - f(\alpha)$.

Proof. Since

$$B(e \lor f) = B(e) \cap B(f)$$
 and $(e - ef) \lor (f - ef) \leq 1 - f(\alpha)$

if and only if $e \vee f - e \leq 1 - f(\alpha)$ and $e \vee f - f \leq 1 - f(\alpha)$, we can replace e by $e \vee f$, hence assume that $e \leq f$. We now have to show B(e) = B(f) if and only if $e - f \leq 1 - f(\alpha)$ (where $e \geq f$).

From the definition of B(e) (and B(f)) it follows that B(e) = B(f) if and only if, for each n > 0,

(1)
$$f_{-n}(\Lambda\{1 - \beta_{-m}(e): 1 \le m \le n\})$$

= $f_{-n}(\Lambda\{1 - \beta_{-m}(f): 1 \le m \le n\}).$

Suppose now that $e - f \leq 1 - f(\alpha)$, then for each m > 0,

 $e - f \leq 1 - f_m = 1 - e_{-m}$

Hence, for m > 0, $\beta_{-m}(e - f) = 0$ and (1) follows for each n > 0.

For the other direction, suppose that (1) holds for each n > 0 and that $e - f \leq 1 - f(\alpha)$. Then there is a positive integer j such that $(e - f)f_j \neq 0$ and $(e - f)f_m = 0$ for each 0 < m < j. Since $(e - f)f_m = 0$,

$$\beta_{-m}(e - f) = 0$$
 for $0 < m < j$.

Hence

$$\begin{aligned} &\Lambda\{1 - \beta_{-m}(f): 1 \leq m < j\} \\ &= f_{-j}(1 - \beta_{-j}(f))(\Lambda\{1 - \beta_{-m}(e): 1 \leq m < j\}) \end{aligned}$$

and (1) implies that

.

$$f_{-j}(1 - \beta_{-j}(e))(\Lambda\{1 - \beta_{-m}(e): 1 \le m < j\})$$

= $f_{-j}(1 - \beta_{-j}(f))(\Lambda\{1 - \beta_{-m}(e): 1 \le m < j\}).$

Therefore

$$\begin{aligned} \beta_{-j}(e - f) &= \beta_{-j}(1 - f) - \beta_{-j}(1 - e) \\ &\leq 1 - \Lambda \{1 - \beta_{-m}(e) : 1 \leq m < j\} \\ &= V\{\beta_{-m}(e) : 1 \leq m < j\}. \end{aligned}$$

But

$$\beta_{-j}(e - f)\beta_{-m}(e) = \beta_{-j}[(e - f)\beta_{j-m}(e)]$$

$$\leq \beta_{-j}[(e - f)f_{j-m}] = 0$$

 $(as (e - f)f_m = 0 \text{ for } 0 < m < j) \text{ for } 0 < m < j.$ Thus

$$\beta_{-j}(e-f) = 0$$
 and $f_j(e-f) = \beta_j(\beta_{-j}(e-f)) = 0$,

contradicting our assumption. Hence it follows from (1) that

 $e - f \leq 1 - f(\alpha).$

The last assertion of the lemma follows from the fact that $H^{\infty}(\alpha) = B(I)$ and M = B(0).

COROLLARY 3.12. Let e be a projection in $Z(M_0)$. Then B(e) is a maximal σ -weakly closed subalgebra of M if and only if $ef(\alpha)M_0$ is a factor (or $ef(\alpha)M_0 = \{0\}$).

In particular, $H^{\infty}(\alpha)$ is a maximal σ -weakly closed subalgebra of M if and only if $f(\alpha)M_0$ is a factor.

Proof. Suppose $ef(\alpha)M_0$ is a factor or $ef(\alpha) = 0$. Then each projection $z \in Z(M_0)$ that satisfies $z \leq ef(\alpha)$ is either 0 or $ef(\alpha)$. Hence, for each such z, B(z) = M (if z = 0) or B(z) = B(e) (if $z = ef(\alpha)$, as

 $e - z = e(1 - f(\alpha)) \leq 1 - f(\alpha)).$

If there is some projection $f \in Z(M_0)$ such that $B(f) \supseteq B(e)$ then $B(f) = B(ff(\alpha))$ (by the previous lemma) and

 $B(fef(\alpha)) = B(f) \cup B(e) = B(f) \supseteq B(e).$

But $fef(\alpha) \leq ef(\alpha)$; hence B(f) = B(e) or B(f) = M.

Now suppose that B(e) is a maximal σ -weakly closed subalgebra of M. If $ef(\alpha)M_0$ is not a factor and $ef(\alpha) \neq 0$ then there is some projection $q \leq ef(\alpha)$ in $Z(M_0)$ such that $q \neq 0$ and $q \neq ef(\alpha)$. It follows that

 $q \leq 1 - f(\alpha)$ and $e - q \leq 1 - f(\alpha)$.

Hence (by the previous lemma) $B(q) \neq M$ and $B(q) \neq B(e)$. Since B(e) is a maximal σ -weakly closed subalgebra this cannot occur and, hence, $ef(\alpha)M_0$ is a factor or $ef(\alpha) = 0$.

The last assertion follows immediately.

For analytic crossed products it was proved in [4] that the maximality of H^{∞} is equivalent to M_0 being a factor. The next corollary also extends a result that was known for analytic crossed products (see [5]).

COROLLARY 3.13. The following conditions are equivalent:

(1) For each σ -weakly closed subalgebra B of M that contains $H^{\infty}(\alpha)$ there is a projection $q \in Z(M_0)$ such that

 $B = qM + (1 - q)H^{\infty}(\alpha).$

(2) $f(\alpha)e(\alpha)Z(M_0) \subseteq Z(M)$.

Proof. (1) implies (2): Let e be a projection in $f(\alpha)e(\alpha)Z(M_0)$ and suppose that j > 0 is such that

 $\beta_{-m}(e) \leq e$ for each $0 \leq m < j$.

Let p be the projection $e\beta_j(1 - e)$. Then p satisfies the following properties:

(i) For each $m \in \mathbb{Z}$,

$$\beta_{j+m}(p)\beta_m(p) = 0.$$

(ii) For each 0 < m < j and $n \in \mathbb{Z}$,

$$f_n\beta_{n-m}(p)=0.$$

In particular $\beta_{-m}(p) = 0$.

(iii) For each $m \in \mathbb{Z}$,

$$\beta_m(p) \leq f_{m+j}.$$

Indeed, to prove (i) note that

$$\beta_{j+m}(p) \leq \beta_{j+m}(e)$$
 and
 $\beta_m(p) \leq \beta_m(\beta_j(1-e)) \leq \beta_{m+j}(1-e).$

We assumed that $\beta_{-m}(e) \leq e$ for 0 < m < j. Hence

$$f_{m-j}\beta_{-j}(e) = \beta_{m-j}(\beta_{-m}(e)) \le \beta_{m-j}(e) \le e \quad \text{for } 0 < m < j$$

and it follows that

$$f_{m-j}\beta_{-j}(p) = f_{m-j}\beta_{-j}(e)(1-e) = 0.$$

Thus

$$f_m p = f_m f_j p = \beta_j (f_{m-j} \beta_{-j}(p)) = 0$$

and consequently

 $\beta_{-m}(p) \leq \beta_{-m}(1-f_m) = 0.$

Property (ii) follows by applying β_n to $\beta_{-m}(p) = 0$. Property (iii) is an immediate consequence of the fact that $p \leq f_j$.

Consider now the algebra B(1 - p). By (1) there is a projection $q \in Z(M_0)$ such that

$$B(1-p) = qM + (1-q)H^{\infty}(\alpha).$$

This implies that for each n > 0,

$$qf_{-n} = f_{-n}(\wedge \{1 - \beta_{-m}(1 - p): 0 < m \leq n\}).$$

But then

$$qf_{-n} = \beta_{-n}(p)(\wedge \{1 - f_{-m} + \beta_{-m}(p): 0 < m < n\}).$$

By (ii) $f_{-m}\beta_{-n}(p) = 0$ for $0 < m < n \leq j$. Hence

 $qf_{-n} = \beta_{-n}(p)$ for $n \leq j$

(in fact, for $0 \le n < j$, $qf_{-n} = \beta_{-n}(p) = 0$ by (ii)). If n > j then

$$qf_{-n} \leq \beta_{-n}(p)(1 - f_{-n+j} + \beta_{-n+j}(p)) = 0$$

(applying (i) and (iii)). It follows that, for n > j,

 $f_{-n}\beta_{-j}(p) = f_{-n}f_{-j}q = 0$

and consequently

$$\beta_{-j}(p) \leq 1 - f_{-n}$$
 and
 $p = f_j p = \beta_j (\beta_{-j}(p)) \leq \beta_{-j} (1 - f_{-n}) \leq 1 - f_{j-n}$

for each n > j.

Hence $p \leq 1 - e(\alpha)$. But $p \leq e \leq e(\alpha)$ and thus

$$0 = p = e\beta_i(1 - e)$$

and, by applying β_{-i} ,

$$\beta_{-i}(e)(1-e) = 0.$$

Hence $\beta_{-j}(e) \leq e$. By induction we find that for each projection $e \in e(\alpha)f(\alpha)Z(M_0)$ and each j > 0, $\beta_{-j}(e) \leq e$.

Fix now a projection $e \in e(\alpha)f(\alpha)Z(\dot{M}_0)$ and suppose that j > 0 is such that for each $0 \leq m < j$, $\beta_m(e) \leq e$. We will show that $\beta_j(e) \leq e$ and this induction argument will imply that $\beta_n(e) \leq e$ for each $n \in \mathbb{Z}$ and, hence, that e lies in Z(M) (by Lemma 2.4(5)).

Let p be the projection $e\beta_{-i}(1 - e)$. Then for n > 0,

$$\beta_{-n}(p) \leq p \leq f_{-j}$$

(since $p \leq e \leq e(\alpha) f(\alpha)$). Also

$$\beta_j(p) = \beta_j(e)(1-e) \le 1-e \le 1-p \text{ and}$$

$$f_jp = \beta_j(\beta_{-j}(p)) \le \beta_j(p) \le 1-p.$$

Hence $f_j p = 0$ and consequently $\beta_{-j}(p) = 0$. Consider now the algebra B(1 - p). Then there is a projection $q \in Z(M_0)$ such that

$$B(1-p) = qM + (1-q)H^{\infty}(\alpha).$$

Hence, for n > 0.

$$qf_{-n} = \beta_{-n}(p)(\Lambda\{1 - f_{-m} + \beta_{-m}(p): 0 < m < n\}).$$

For n = j,

$$\beta_{-n}(p) = \beta_{-j}(p) = 0,$$

hence $qf_{-j} = 0$. For $n \neq j$

$$qf_{-n} \leq \beta_{-n}(p) \leq f_{-i}.$$

Thus

426

$$qf_{-n} = qf_{-n}f_{-j} \le qf_{-j} = 0.$$

This implies that

$$B(1-p) = qM + (1-q)H^{\infty}(\alpha) = H^{\infty}(\alpha)$$

and, by Lemma 3.11,

$$p \leq 1 - f(\alpha).$$

But $p \leq e \leq f(\alpha)$ and consequently p = 0. Since $p = e\beta_{-i}(1 - e)$,

$$0 = \beta_i(e)(1 - e)$$
 and $\beta_i(e) \leq e$.

This completes the proof that

$$e(\alpha)f(\alpha)Z(M_0) \subseteq Z(M)$$

(2) implies (1): Suppose that

$$e(\alpha)f(\alpha)Z(M_0) \subseteq Z(M).$$

Let e be a projection in $Z(M_0)$ and write $e = p_1 + p_2 + p_3$ where

$$p_1 = ee(\alpha)f(\alpha), p_2 = ee(\alpha)(1 - f(\alpha))$$
 and $p_3 = e(1 - e(\alpha)).$

Then $B(1 - p_2)$ is $H^{\infty}(\alpha)$ (by Lemma 3.11). We now show that $B(1 - p_1)$ and $B(1 - p_3)$ have the property described in (1).

For each n > 0, $f_{-n}p_3 = 0$ hence $\beta_n(p_3) = 0$. But then, for $m \in \mathbb{Z}$ and n > 0,

$$f_m\beta_{m+n}(p_3) = \beta_m(\beta_n(p_3)) = 0.$$

Hence

$$\beta_m(p_3)\beta_n(p_3) = 0$$
 for $n \neq m$ in **Z**.

For each n > 0 let z(-n) be the projection in $Z(M_0)$ that satisfies

$$B(1 - p_3) \cap M_{-n} = z(-n)M_{-n}$$

Then

$$z(-n) = \beta_{-n}(p_3)(\Lambda\{1 - f_{-m} + \beta_{-m}(p_3): 0 < m < n\}).$$

Since $\beta_{-n}(p_3)\beta_{-m}(p_3)$ whenever $n \neq m$,

$$z(-n) = \beta_{-n}(p_3)(\Lambda\{1 - f_{-m}: 0 < m < n\}) \text{ and}$$

$$z(-n)z(-j) = 0 \text{ if } n \neq j.$$

Let q_3 be $\sum_{n=1}^{\infty} z(-n)$. If 0 < m < n then

$$z(-n) \leq 1 - f_{-m}.$$

If m > n > 0 then

 $f_{-m}\beta_{-m}(p_2) = 0$

(because $f_m \beta_{m+n}(p_3) = 0$ for $m \in \mathbb{Z}$, n > 0) and consequently $f_{-m}z(-n)$ = 0. We see, therefore, that

 $z(-n)f_{-m} = 0$ for all $n \neq m, n, m > 0$.

It follows from this that

$$q_3 f_{-m} = z(-m)$$
 for each $m > 0$.

Hence

$$B(1 - p_3) = q_3M + (1 - q_3)H^{\infty}(\alpha).$$

Now consider the algebra $B(1 - p_1)$ and write z(-n) for

$$\beta_{-n}(p_1)(\Lambda\{1 - f_{-m} + \beta_{-m}(p_1): 0 < m < n\})$$

(such that $B(1-p_1) \cap M_{-n} = z(-n)M_{-n}$) for each n > 0. But

$$p_1 \in e(\alpha)f(\alpha)Z(M_0) \subseteq Z(M).$$

Hence

$$1 - p_1 \in Z(M)$$
 and
 $\beta_{-m}(1 - p_1) = f_{-m}(1 - p_1), m \in \mathbb{Z}.$

Consequently

$$z(-n) = f_{-n}p_1(\Lambda\{1 - f_{-m}(1 - p_1): 0 < m < n\}) = f_{-n}p_1.$$

Therefore

$$B(1 - e) = V\{B(1 - p_i): i = 1, 2, 3\}$$

= $(q_3 + p_1)M + (1 - q_3 - p_1)H^{\infty}(\alpha).$

Since any σ -weakly closed subalgebra of M that contains $H^{\infty}(\alpha)$ is B(1 - e) for some projection $e \in Z(M_0)$, (1) follows.

REFERENCES

- 1. W. B. Arveson, On groups of automorphisms of operator algebras, J. Funct. Anal. 15 (1974), 217-243.
- 2. S. Kawamura and J. Tomijama, On subdiagonal algebras associated with flows in operator algebra, J. Math. Soc. Japan 29 (1977), 73-90.
- 3. R. I. Loebl and P. S. Muhly, Analyticity and flows in von Neumann algebras, J. Funct. Anal. 29 (1978), 214-252.
- 4. M. McAsey, P. S. Muhly and K.-S. Saito, Nonselfadjoint crossed products (Invariant subspaces and maximality), Trans. Amer. Math. Soc. 248 (1979), 381-409.
- 5. —— Nonselfadjoint crossed products II, J. Math. Soc. Japan 33 (1981), 485-495.
 6. —— Nonselfadjoint crossed products III (Infinite algebras), Preprint.
- 7. K.-S. Saito, The Hardy spaces associated with a periodic flow on a von Neumann algebra, Tohoku Math. J. 29 (1977), 69-75.

- 8. —— Invariant subspaces for finite maximal subdiagonal algebras, Pacific J. of Math. 93 (1981), 431-434.
- 9. Invariant subspaces and cocycles in nonselfadjoint crossed products, J. Funct. Anal. 45 (1982), 177-193.
- 10. —— Nonselfadjoint subalgebras by compact abelian actions on finite von Neumann algebras, Tohoku Math. J. 34 (1982), 485-494.
- 11. —— Spectral resolutions of invariant subspaces by compact abelian group actions on von Neumann algebras, Preprint.
- 12. B. Solel, The invariant subspace structure of nonselfadjoint crossed products, Trans. Amer. Math. Soc. 279 (1983), 825-840.
- 13. Invariant subspaces for algebras of analytic operators associated with a periodic flow on a finite von Neumann algebra, J. Funct. Anal. 58 (1984), 1-19.

Dalhousie University, Halifax, Nova Scotia