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Introduction to GPU Kernels and Hardware

This book aims to teach you how to use graphics processing units (GPUs) and Compute
Unified Device Architecture (CUDA) to speed up your scientific or technical computing
tasks. We know from personal experience that the best way to learn to speak a new language
is to go to the relevant country and immerse yourself in the culture. Thus, we have chosen to
start our book with a complete working example of an interesting problem. We present three
versions of the code, firstly a standard Cþþ implementation for a single central processing
unit (CPU) thread, and secondly a multithread CPU version suitable for running on one or
two threads on each core for a multicore CPU, say between 4 and 16 threads. The third
version uses CUDA to run with thousands of simultaneous threads. We don’t expect readers
to immediately grasp all the nuances in the CUDA code – that is what the rest of this book is
for. Rather I hope you will see how similar the code is in all three versions and be
encouraged that GPU programming is not difficult and that it brings huge rewards.
After discussing these introductory examples, we go on to briefly recap the architecture of

traditional PCs and then introduce NVIDIA GPUs, introducing both their hardware features
and the CUDA programming model.

1.1 Background

A modern PC processor now has two, four or more computing CPU cores. To get the best
from such hardware, your code has to be able to run in parallel on all the resources available.
In favourable cases, tools like OpenMP or the Cþþ11 thread class defined in <thread>
allow you to launch cooperating threads on each of the hardware cores to get a potential
speed-up proportional to the number of cores. This approach can be extended to clusters of
PCs using communication tools like Message Passing Interface (MPI) to manage the inter-
PC communication. PC clusters are indeed now the dominant architecture in high-
performance computing (HPC). A cluster of at least 25 PCs with 8-core CPUs would be
needed to give a factor of 200 in performance. This is doable but expensive and incurs
significant power and management overheads.
An alternative is to equip your PC with a modern, reasonably high-specification GPU. The

examples in this book are based on an NVIDIA RTX 2070 GPU, which was bought for £480
in March 2019. With such a GPU and using NVIDIA’s Cþþ-like CUDA language, speed-
ups of 200 and often much more can be obtained on a single PC with really quite modest
effort. An additional advantage of the GPU is that its internal memory is about 10 times
faster than that of a typical PC, which is extremely helpful for problems limited by memory
bandwidth rather than CPU power.
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At the heart of any CUDA program are one or more kernel functions, which contain the
code that actually runs on the GPU. These kernel functions are written in standard Cþþ with
a small number of extensions and restrictions. We believe they offer an exceptionally clear
and elegant way of expressing the parallel content of your programs. This is why we have
chosen CUDA for this book on parallel programming. One feature that distinguishes the
book from other books on CUDA is that we have taken great care to provide interesting real-
world problems for our CUDA examples. We have also coded these examples using features
of modern Cþþ to write straightforward but elegant and compact code. Most of the
presently available online tutorials or textbooks on CUDA use examples heavily based on
those provided by the NVIDIA Software Development Kit (SDK) examples. These
examples are excellent for demonstrating CUDA features but are mostly coded in a verbose,
outdated C style that often hides their underlying simplicity.1

To get the best from CUDA programs (and, indeed, any other programming language), it
is necessary to have a basic understanding of the underlying hardware, and that is the main
topic of this introductory chapter. But, before that, we start with an example of an actual
CUDA program; this is to give you a foretaste of what is to come – the details of the code
presented here are fully covered in later chapters.

1.2 First CUDA Example

Here is our first example showing what is possible with CUDA. The example uses the
trapezoidal rule to evaluate the integral of sin(x) from 0 to π, based on the sum of a large
number of equally spaced evaluations of the function in this range. The number of steps is
represented by the variable steps in the code. We deliberately choose a simple but
computationally expensive method to evaluate sin(x), namely, by summing the Taylor
series for a number of terms represented by the variable terms. The sum of the sin values is
accumulated, adjusted for end points and then scaled to give an approximation to the
integral, for which the expected answer is 2.0. The user can set the values of steps and
terms from the command line, and for performance measurements very large values are
used, typically 106 or 109 steps on the CPU or GPU, respectively, and 103 terms.

Example 1.1 cpusum single CPU calculation of a sin integral

02 #include <stdio.h>
03 #include <stdlib.h>
04 #include "cxtimers.h"

05 inline float sinsum(float x, int terms)
06 {

// sin(x) = x - x^3/3! + x^5/5! ...
07 float term = x; // first term of series
08 float sum = term; // sum of terms so far
09 float x2 = x*x;
10 for(int n = 1; n < terms; n++){
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We will show three versions of this example. The first version, cpusum, is shown in
Example 1.1 and is written in straightforward Cþþ to run on a single thread on the host PC.
The second version, ompsum, shown in Example 1.2 adds two OpenMP directives to the
first version, which shares the loop over steps between multiple CPU threads shared
equally by all the host CPU cores; this illustrates the best we can do on a multicore PC
without using the GPU. The third version, gpusum, in Example 1.3 uses CUDA to share the
work between 109 threads running on the GPU.

Description of Example 1.1

This is a complete listing of the cpusum program; most of our subsequent listings will omit standard
headers to save space. Notice that we chose to use 4-byte floats rather than 8-byte doubles for the
critical function sinsum. The reasons for this choice are discussed later in this chapter, but briefly we

11 term *= -x2 / (float)(2*n*(2*n+1));
12 sum += term;
13 }
14 return sum;
15 }

16 int main(int argc, char *argv[])
17 {
18 int steps = (argc >1) ? atoi(argv[1]) : 10000000;
19 int terms = (argc >2) ? atoi(argv[2]) : 1000;

20 double pi = 3.14159265358979323;
21 double step_size = pi/(steps-1); // n-1 steps

22 cx::timer tim;
23 double cpu_sum = 0.0;
24 for(int step = 0; step < steps; step++){
25 float x = step_size*step;
26 cpu_sum += sinsum(x, terms); // sum of Taylor series
27 }
28 double cpu_time = tim.lap_ms(); // elapsed time

29 // Trapezoidal Rule correction
30 cpu_sum -= 0.5*(sinsum(0.0,terms)+sinsum(pi, terms));
31 cpu_sum *= step_size;
32 printf("cpu sum = %.10f,steps %d terms %d time %.3f ms\n",

cpu_sum, steps, terms, cpu_time);
33 return 0;
34 }

D:\ >cpusum.exe 1000000 1000
cpu sum = 1.9999999974,steps 1000000 terms 1000 time 1818.959 ms
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wish to exploit limited memory bandwidth and to improve calculation speed. For scientific work, the
final results rarely need to be accurate to more than a few parts in 10‒8 (a single bit error in an IEEE
4-byte float corresponds to a fractional error of 2‒24 or ~6 � 10‒8). But, of course, we must be careful
that errors do not propagate as calculations progress; as a precaution the variable cpusum in the main
routine is an 8-byte double.

• Lines 2–4: Include standard headers; the header cxtimers.h is part of our cx utilities and
provides portable timers based on the Cþþ11 chrono.h library.

• Lines 5–15: This is the sinsum function, which evaluates sin(x) using the standard Taylor series.
The value of x in radians is given by the first input argument x, and the number of terms to be used is
given by the second input argument terms.

• Lines 7–9: Initialise some working variables; term is the value of the current term in the Taylor
series, sum is the sum of terms so far, and x2 is x2.

• Lines 10–13: This is the heart of our calculation, with a loop where successive terms are calculated
in line 11 and added to sum in line 12. Note that line 11 is the single line where all the time-
consuming calculations happen.

The main function of the remining code, in lines 16–35, is to organise the calculation in a straightfor-
ward way.

• Lines 18–19: Set the parameters steps and terms from optional user input.
• Line 21: Set the step size required to cover the interval between 0 and π using steps steps.
• Line 22: Declare and start the timer tim.
• Lines 23–27: A for loop to call the function sinsum steps times while incrementing x in to
cover the desired range. The results are accumulated in double cpusum.

• Line 28: Store the elapsed (wall clock) time since line 22 in cpu_time. This member function
also resets the timer.

• Lines 30–31: To get the integral of sin(x), we perform end-point corrections to cpusum and scale by
step_size (i.e. dx).

• Line 31: Print result, including time, is ms. Note that the result is accurate to nine significant figures
in spite of using floats in the function sinsum.

The example shows a typical command line launch requesting 106 steps and 103 terms in each step.
The result is accurate to nine significant figures. Lines 11 and 12 are executed 109 times in 1.8 seconds,
equivalent to a few GFlops/sec.

In the second version, Example 1.2, we use the readily available OpenMP library to share
the calculation between several threads running simultaneously on the cores of our
host CPU.

Example 1.2 ompsum OMP CPU calculation of a sin integral

02 #include <stdio.h>
03 #include <stdlib.h>
03.5 #include <omp.h>
04 #include "cxtimers.h"
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Description of Example 1.2

We just need to add three lines of code to the previous Example 1.1.

• Line 3.5: An extra line to include the header file omp.h. This has all the necessary definitions
required to use OpenMP.

• Line 19.5: An extra line to add the user-settable variable threads, which sets the number of CPU
threads used by OpenMP.

• Line 23.5: This is actually just a function call that tells openMP how many parallel threads to use. If
omitted, the number of hardware cores is used as a default. This function can be called more than
once if you want to use different numbers of cores in different parts of your code. The variable
threads is used here.

• Line 23.6: This line sets up the parallel calculation. It is a compile time directive (or pragma) telling
the compiler that the immediately following for loop is to be split into a number of sub-loops, the
range of each sub-loop being an appropriate part of the total range. Each sub-loop is executed in
parallel on different CPU threads. For this to work, each sub-loop will get a separate set of the loop
variables, x and omp_sum (n.b.: We use omp_sum instead of cpu_sum in this section of the
code). The variable x is set on each pass through the loop with no dependencies on previous passes,
so parallel execution is not problematic. However, that is not the case for the variable omp_sum,

05 float sinsum(float x, int terms)
06 {

. . . same as (a)
15 }

16 int main(int argc, char *argv[])
. . .

19.5 int threads = (argc >3) ? atoi(argv[3]) : 4;
. . .

23.5 omp_set_num_threads(threads); // OpenMP
23.6 #pragma omp parallel for reduction (+:omp_sum) // OpenMP
24 for(int step = 0; step < steps; step++){

. . .
32 printf("omp sum = %.10f,steps %d terms %d

time %.3f ms\n", omp_sum,steps,terms,cpu_time);
33 return 0;
34 }

D:\ >ompsum.exe 1000000 1000 4 (4 threads)
omp sum = 1.9999999978, steps 1000000 terms 1000 time 508.635 ms
D:\ >ompsum.exe 1000000 1000 8 (8 threads)
omp sum = 1.9999999978, steps 1000000 terms 1000 time 477.961 ms
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which is supposed to accumulate the sum of all the sin(x) values. This means the sub-loops have
to cooperate in some way. In fact, the operation of summing a large number of variables, held either
in an array or during loop execution, occurs frequently and is called a reduce operation. Reduce is an
example of a parallel primitive, which is a topic we discuss in detail in Chapter 2. The key point is
that the final sum does not depend on the order of the additions; thus, each sub-loop can accumulate
its own partial sum, and these partial sums can then be added together to calculate the final value of
the sum_host variable after the parallel for. The last part of the pragma tells OpenMP that the
loop is indeed a reduction operation (using addition) on the variable omp_sum. OpenMP will add
the partial sums accumulated by each thread’s copy of omp_sum and place the final result into the
omp_sum variable in our code at the end of the loop.

• Line 32: Here we have simply modified the existing printf to also output the value of threads.

Two command line launches are shown at the end of this example, the first using four OMP threads
and the second using eight OMP threads.

The results of running ompsum on an Intel quad-core processor with hyper-threading are
shown at the bottom of the example using either four or eight threads. For eight threads the
speed-up is a factor of 3.8 which is a good return for little effort. Note using eight cores
instead of four for our PC means running two threads on each core which is supported by
Intel hyper-threading on this CPU; we see a modest gain but nothing like a factor of 2.

In Visual Studio Cþþ, we also have to tell the compiler that we are using OpenMP using
the properties dialog, as shown in Figure 1.1.

In the third version, Example 1.3, we use a GPU and CUDA, and again we parallelise the
code by using multiple threads for the loop in lines 24–27, but this time we use a separate
thread for each iteration of the loop, a total of 109 threads for the case shown here. The code
changes for the GPU computation are a bit more extensive than was required for OpenMP,
but as an incentive to continue reading, we will find that the speed-up is now a factor of
960 rather than 3.8! This dramatic gain is an example of why GPUs are routinely used in
HPC systems.

Figure 1.1 How to enable OpenMP in Visual Studio
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Example 1.3 gpusum GPU calculation of a sin integral

01 // call sinsum steps times using parallel threads on GPU
02 #include <stdio.h>
03 #include <stdlib.h>
04 #include "cxtimers.h" // cx timers
04.1 #include "cuda_runtime.h" // cuda basic
04.2 #include "thrust/device_vector.h" // thrust device vectors

05 __host__ __device__ inline float sinsum(float x, int terms)
06 {
07 float x2 = x*x;
08 float term = x; // first term of series
09 float sum = term; // sum of terms so far
10 for(int n = 1; n < terms; n++){
11 term *= -x2 / (2*n*(2*n+1)); // build factorial
12 sum += term;
13 }
14 return sum;
15 }

15.1 __global__ void gpu_sin(float *sums, int steps, int terms,
float step_size)

15.2 {
// unique thread ID

15.3 int step = blockIdx.x*blockDim.x+threadIdx.x;
15.4 if(step<steps){
15.5 float x = step_size*step;
15.6 sums[step] = sinsum(x, terms); // store sums
15.7 }
15.8 }

16 int main(int argc, char *argv[])
17 {

// get command line arguments
18 int steps = (argc >1) ? atoi(argv[1]) : 10000000;
19 int terms = (argc >2) ? atoi(argv[2]) : 1000;
19.1 int threads = 256;
19.2 int blocks = (steps+threads-1)/threads; // round up

20 double pi = 3.14159265358979323;
21 double step_size = pi / (steps-1); // NB n-1

// allocate GPU buffer and get pointer
21.1 thrust::device_vector<float> dsums(steps);
21.2 float *dptr = thrust::raw_pointer_cast(&dsums[0]);
22 cx::timer tim;
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Description of Example 1.3

This description is here for the sake of completeness. If you already know a bit of CUDA, it will make
sense. If you are new to CUDA, skip this description for now and come back later when you have read
our introduction to CUDA. At this point, the message to take away is that potentially massive speed-
ups can be achieved and that, to my eyes at least, the code is elegant, expressive and compact and the
coding effort is small.

The details of the CUDA methods used here are fully described later. However, for now you should
notice that much of the code is unchanged. CUDA is written in Cþþ with a few extra keywords; there
is no assembly to learn. All the details of the calculation are visible in the code. In this listing, line
numbers without dots are exactly the same lines in Example 1.1, although we use gpu instead of cpu
in some of the variable names.

• Lines 1–4: These include statements are the same as in Example 1.1.
• Line 4.1: This is the standard include file needed for all CUDA programs. A simple CUDA program
just needs this, but there are others that will be introduced when needed.

• Line 4.2: This include file is part of the Thrust library and provides support for thrust vectors on the
GPU. Thrust vector objects are similar to the std::vector objects in Cþþ, but note that CUDA
has separate classes for thrust vectors in CPU memory and in device memory.

• Lines 5–15: This is the same sinsum function used in Example 1.1; the only difference is that in
line 5 we have decorated the function declaration with __host__ and __device__, which tell
the compiler to make two versions of the function, one suitable for code running on the CPU (as
before) and one for code running on the GPU. This is a brilliant feature of CUDA: literally the same
code can be used on both the host and device, removing a major source of bugs.2

• Lines 15.1–15.8: These define the CUDA kernel function gpu_sin that replaces the loop over
steps in lines 24–27 of the original program. Whereas OpenMP uses a small number of host
threads, CUDA uses a very large number of GPU threads. In this case we use 109 threads, a separate
thread for each value of step in the original for loop. Kernel functions are declared with the
keyword __global__ and are launched by the host code. Kernel functions can receive arguments
from the host but cannot return values – hence they must be declared as void. Arguments can either

22.1 gpu_sin<<<blocks,threads>>>(dptr,steps,terms,
(float)step_size);

22.2 double gpu_sum =
thrust::reduce(dsums.begin(),dsums.end());

28 double gpu_time = tim.lap_ms(); // get elapsed time
29 // Trapezoidal Rule Correction
30 gpu_sum -= 0.5*(sinsum(0.0f,terms)+sinsum(pi, terms));
31 gpu_sum *= step_size;
32 printf("gpusum %.10f steps %d terms %d

time %.3f ms\n",gpu_sum,steps,terms,gpu_time);
33 return 0;
34 }

D:\ >gpusum.exe 1000000000 1000
gpusum = 2.0000000134 steps 1000000000 terms 1000 time 1882.707 ms
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be passed to kernels by value (good for single numbers) or as pointers to previously allocated device
memory. Arguments cannot be passed by reference, as in general the GPU cannot directly access
host memory.

Line 15.3 of the kernel function is especially noteworthy, as it encapsulates the essence of parallel
programming in both CUDA and MPI. You have to imagine that the code of the kernel function is
running simultaneously for all threads. Line 15.3 contains the magic formula used by each particular
instance of an executing thread to figure out which particular value of the index step that it
needs to use. The details of this formula will be discussed later in Table 1.1. Line 15.4 is an out-of-
range check, necessary because the number of threads launched has been rounded up to a multiple
of 256.

• Lines 15.5 and 15.6 of the kernel: These correspond to the body of the for loop (i.e. lines 25–26 in
Example 1.1). One important difference is that the results are stored in parallel to a large array in the
global GPU memory, instead of being summed sequentially to a unique variable. This is a common
tactic used to avoid serial bottlenecks in parallel code.

• Lines 16–19 of main: These are identical to the corresponding lines in Example 1.1.
• Lines 19.1–19.2: Here we define two new variables, threads and blocks; we will meet these
variables in every CUDA program we write. NVIDIA GPUs process threads in blocks. Our
variables define the number of threads in each block (threads) and the number of thread blocks
(blocks). The value of threads should be a multiple of 32, and the number of blocks can be
very large.

• Lines 20–21: These are the same as in Example 1.1.
• Line 21.1: Here we allocate an array dsum in GPU memory of size steps. This works like
std::vector except we use the CUDA thrust class. The array will be initialised to zero on
the device.

• Line 21.2: Here we create a pointer dptr to the memory of the dsum vector. This is a suitable
argument for kernel functions.

• Lines 22.1–22.2: These two lines replace the for loop in lines 23–27 of Example 1.1, which called
sinsum steps times sequentially. Here line 22.1 launches the kernel gpu_sin, which uses
steps separate GPU threads to call sinsum for all the required x values in parallel. The individual
results are stored in the device array dsums. In line 22.2 we call the reduce function from the thrust
library to add all the values stored in dsums, and then copy the result from the GPU back to the host
variable dsum.3

• Lines 28–34: These remaining lines are identical to Example 1.1; notice that the host version of our
sinsum function is used in line 30.

As a final comment we notice that the result from the CUDA version is a little less
accurate than either of the host versions. This is because the CUDAversion uses 4-byte floats
throughout the calculation, including the final reduction step, whereas the host versions use
an 8-byte double to accumulate the final result sum over 106 steps. Nevertheless, the CUDA
result is accurate to eight significant figures, which is more than enough for most
scientific applications.
The sinsum example is designed to require lots of calculation while needing very little

memory access. Since reading and writing to memory are typically much slower than
performing calculations, we expect both the host CPU and the GPU to perform at their best
efficiencies in this example. In Chapter 10, when we discuss profiling, we will see that the
GPU is delivering several TFlops/sec in the example. While the sinsum function used in this
example is not particularly interesting, the brute force integration method used here could be
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used for any calculable function spanned by a suitable grid of points. Here we used 109 points,
which is enough to sample a function on a 3D Cartesian grid with 1000 points along each of
the three coordinate axes. Being able to easily scale up to 3D versions of problems that can
only be reasonably done in 2D on a normal PC is another great reason to learn about CUDA.

In order to write effective programs for your GPU (or CPU), it is necessary to have some
feeling for the capabilities of the underlying hardware, and that is our next topic. So, after
this quick look at CUDA code and what it can do, it is time to go back to the beginning and
remind ourselves of the basics of computer hardware.

1.3 CPU Architecture

Correct computer code can be written by simply following the formal rules of the particular
language being used. However, compiled code actually runs on physical hardware, so it is
helpful to have some insights into hardware constraints when designing high-performance
code. This section provides a brief overview of the important features in conventional CPUs
and GPUs. Figure 1.2 shows a simplified sketch of the architecture of a traditional CPU.

Briefly the blocks shown are:

• Master Clock: The clock acts like the conductor of an orchestra, but it plays a very boring
tune. Clock-pulses at a fixed frequency are sent to each unit causing that unit to execute its
next step. The CPU processing speed is directly proportional to this frequency. The first
IBM PCs were launched in 1981 with a clock-frequency of 2.2 MHz; the frequency then
doubled every three years or so peaking at 4 GHz in 2002. It turned out that 4 GHz was the
fastest that Intel was able to produce reliability, because the power requirement (and hence
heat generated) is proportional to frequency. Current Intel CPUs typically run at ~3.5 GHz
with a turbo boost to 4 GHz for short periods.

• Memory: The main memory holds both the program data and the machine code instruc-
tions output by the compiler from your high-level code. In other words, your program code
is treated as just another form of data. Data from memory can be read from memory by
either the load/save unit or the program fetch unit but normally only the load/save unit can
write data back to the main memory.4

Figure 1.2 Simplified CPU architecture
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• Load/Save: This unit reads data from and sends data to themainmemory. The unit is controlled
by the Execute logicwhich at each step specifies if data is to be read orwritten tomainmemory.
The data in question is transferred to or from one of the registers in the register file.

• Register File: This is the heart of a CPU; data must be stored in one or more registers in
order to be operated on by the ALU.

• ALU or Arithmetic Logic Unit: This device performs arithmetic and logical operations in
data stored in registers; at each step the required operation is specified by the execute unit.
This is the piece of hardware that actually computes!

• Execute: This unit decodes the instruction sent by the instruction fetch unit, organises the
transfer of input data to the register file, instructs ALU to perform the required operation
on the data and then finally organises the transfer of results back to memory.

• Fetch: The fetch unit fetches instructions from main memory and passes them to the
execute unit. The unit contains a register holding the program counter (PC)5 that contains
the address of the current instruction. The PC is normally incremented by one instruction
at each step so that the instructions are executed sequentially. However, if a branch is
required, the fetch unit changes the PC to point to the instruction at the branch point.

1.4 CPU Compute Power

The computing power of CPUs has increased spectacularly over time as shown in Figure 1.3.
The transistor count per chip has followed Moore’s law’s exponential growth from 1970.

The CPU frequency stopped rising in 2002. The performance per core continues to rise

Figure 1.3 Moore’s law for CPUs
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slowly but recent growth has been due to innovations in design rather than increase in
frequency. The major contribution to performance per chip since 2002 has been from
multicore technology. GPUs are excluded from this plot although recent Intel Xeon-phi
designs with hundreds of cores are becoming quite GPU-like. Remarkably the power used
by a single device has also not increased since 2002. The data are from https://github.com/
karlrupp/microprocessor-trend-data.

It is really worth taking a moment to contemplate the story told in this figure. The compute
power of individual devices has increased by a factor of more than 106 in the last 30 years
and also the number of devices has grown at an even faster rate. Many people now own
numerous devices in their smartphones, laptops, cars and household gadgets while the
internet giants run vast server farms each of which must have a processor count running
into millions. Likewise, for scientific computing the most powerful systems in the recent
TOP500 list of supercomputers also have millions of processing cores. These developments,
particularly in the last 15 years or so, have transformed society – and the process has only
just begun, there is no sign that the trends shown in the figure are about to stop.

One hope I have in writing this book, is that learning about GPUs and parallel program-
ming will be a small help in keeping up with the changes to come.

1.5 CPU Memory Management: Latency Hiding Using Caches

Data and instructions do not move instantly between the blocks shown in Figure 1.1; rather
they progress clock-step by clock-step through various hardware registers from source to
destination so that there is a latency between issuing a request for data and the arrival of that
data. This intrinsic latency is typically tens of clock-cycles on a CPU and hundreds of
clock-cycles on a GPU. Fortunately, the potentially disastrous performance implications of
latency can be largely hidden using a combination of caching and pipelining. The basic idea
is to exploit the fact that data stored in sequential physical memory locations are mostly
processed sequentially in computer code (e.g. while looping through successive array
elements). Thus, when one element of data is requested by the memory load unit, the
hardware actually sends this element and a number of adjacent elements on successive
clock-ticks. Thus, although the initially requested element may arrive with some latency,
thereafter successive elements are available on successive clock-ticks. Thinking of data
flows along the lines shown in Figure 1.1 just like water flows through pipes in your house
is a valid comparison – when you turn on a hot tap, it takes a little while for the hot water to
arrive (latency) and thereafter it stays hot.

In practice PCs employ a number of memory cache units to buffer the data streaming from
multiple places in main memory as shown in Figure 1.4.

Note that in Figure 1.4 all three caches are on-chip and there are separate L1 caches for
data and instructions. The main memory is off chip.

Program instructions are also streamed in a pipeline from main memory to the instruction
fetch unit. This pipeline will be broken if a branch instruction occurs, and PC hardware uses
sophisticated tricks such as speculative execution to minimise the effects. In speculative
execution the PC executes instructions on one or more of the paths following the branch
before the result of the branch is known and then uses or discards results once the branch
path is known. Needless to say, the hardware needed for such tricks is complex.
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The caching scheme shown in Figure 1.4 is typical for modern CPU multi-core chips.
There are three levels of caching memories, all integrated into the CPU chip. First the level-3
(L3) cache is large at 8 MB and is shared by the 4 CPU cores. Each core also has
progressively faster L2 and L1 caches, with separate L1 caches for data and instructions.
The hardware transfers cache data in packets called cache lines of typically 64 or 128

bytes. On current Intel processors the cache line size is 64 bytes, but the hardware usually
transfers two adjacent lines at once giving an effective size of 128 bytes. The data in a cache
line corresponds a contiguous region of the main memory beginning at an address that is a
multiple of the cache line size.

1.6 CPU: Parallel Instruction Set

Before discussing the powerful parallel capabilities of GPUs, it is worth noting that Intel
CPUs also have some interesting parallel capabilities in the form of vector instructions.
These first appeared around 1999 with the Pentium III SSE instruction set. These instructions
used eight new 128-bit registers each capable of holding 4 4-byte floats. If sets of 4 such
floats were stored in sequential memory locations and aligned on 128-byte memory bound-
aries they can be treated as a 4-element vector and these vectors can be loaded to and stored
from the SSE registers in a single clock-cycle and likewise enhanced ALUs could perform
vector arithmetic in single clock-cycles. Thus, using SSE could potentially speed up some
floating-point calculations by a factor of four. Over the years SSE has evolved and many
recent Intel CPUs support AVX2 which uses 256-bit registers and can support many data
types. Currently Intel’s most recent version is AVX-512 which uses 512-byte registers
capable of holding vectors of up to 16 floats or 8 doubles. The use of AVX on Intel CPUs
is discussed in detail in Appendix D.

Figure 1.4 Memory caching on 4-core Intel Haswell CPU
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1.7 GPU Architecture

In this section we give more details of the evolution of GPU computing in general and
specifically on NVIDIA hardware.

1.7.1 First a Little Bit of History

GPUs were designed for high-performance computer graphics; in modern gaming a screen
size of say 1920 � 1080 pixels refreshed at 60 Hz is normal. Each pixel needs to be
computed from the instantaneous state of the game and the player’s viewpoint – about
1.25 � 108 pixel calculations per second. While this might just about be possible with a
modern processor, it certainly was not possible one or two decades ago when interest in PC
gaming emerged. Note this is a massively parallel computing problem as the pixel values
can all be calculated independently. Gaming cards emerged as dedicated hardware with a
large number of simple processors to perform the pixel calculations. An important technical
detail is that the pixel array representing the image is stored in a 2D array in a digital frame
buffer as data, with typically 3-bytes per pixel representing the red, green and blue (RGB
coding) intensities of the pixel. The frame buffer is specialised computer memory (video
ram) that can be read or written as normal but has an additional port allowing dedicated
video hardware to independently scan the data and send suitable signals to a monitor.

It was quickly noticed that an inexpensive card doing powerful parallel calculations and
sending the results to computer memory might have applications beyond gaming and in
around 2001 the acronym GPGPU (general purpose computing on graphics processing units)
and website gpgpu.org were born. In 2007 NVIDIA launched their GPU programming toolkit
which changed GPU programming from being a difficult niche activity to mainstream.

1.7.2 NIVIDA GPU Models

NVIDIA produces three classes of GPU:

1. The GeForce GTX, GeForce RTX or Titan branded models, e.g. GeForce GTX 1080; these
are the least expensive and are aimed at the gamingmarket. Typically, these models have less
FP64 support than the equivalent scientific versions and do not use EEC memory. However,
for FP32 calculations their performance can match or exceed the scientific card. The Titan
brandedmodels are themost powerful andmay havemore capableGPUs. TheRTX3090 has
the highest FP32 performance of any NVIDIA card released up to March 2021.

2. The Tesla branded models, e.g. Tesla P100; these are aimed at the high-end scientific
computing market, have good FP64 support and use EEC memory. Tesla cards have no
video output ports and cannot be used for gaming. These cards are suitable for deploy-
ment in server farms.

3. The Quadro branded GPUs, e.g. Quadro GP100; these are essentially Tesla model GPUs
with added graphics capabilities and are aimed at the high-end desktop workstation market.

Between 2007 and the time of writing in 2020 NVIDIA have introduced 8 different GPU
generations with each successive generation having more software features. The generations are
named after famous scientists and within each generation there are usually several models which
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themselvesmay differ in software features. The specific capability of a particularGPU is known as
itsComputeCapability orCC,which is specified by amonotonically increasing number. Themost
recent generation is Ampere with a CC value of 8.0. The examples in the book were developed
using a Turing RX 2070 GPU with a CC of 7.5. A fuller account can be found in Appendix A.

1.8 Pascal Architecture

NVIDIA GPUs are built up in a hierarchical manner from a large number of basic compute-
cores, the arrangement for the Pascal generation GTX1080 is shown in Figure 1.4:

1. The basic unit is a simple compute-core; it is capable of performing basic 32-bit floating
point and integer operations. These cores do not have individual program counters.

2. Typically, groups of 32 cores are clustered together form what NVIDIA call “32-core
processing blocks” – I prefer to use the term “warp-engine”. This is because, as explained
in the software sections, in a CUDA kernel program the executing threads are grouped
into 32-thread groups which NVIDIA calls “warps” which can be considered as the basic
execution unit in CUDA kernel programs. All threads in a given warp run in lock-step
executing the same instruction at every clock-cycle. In fact, all threads in a given warp are
run on the same warp-engine which maintains a single program counter that is used to
send a common instruction sequence to all the cores belonging to that warp-engine.6

Importantly, the warp-engine adds additional compute resources shared by its cores.
These include special function units (SFUs) which are used for fast evaluation of
transcendental functions such as sin or exp, and double precision floating point units
(FP64). In Pascal GPUs, warp-engines have eight SFUs and either 16 or one FP64 unit.

3. Warp-engines are themselves grouped together to form what NVIDIA calls symmetric
multiprocessors or SMs. In the Pascal generation a GPU has either two (Tesla GP100
only) or four warp-engines (all others). Thus, an SM has typically 128 compute cores.
The threads in a CUDA kernel program are grouped into a number of fixed size thread
blocks. Each thread block in fact runs on a single SM, but different thread blocks may run
on different SMs. This explains why threads in the same thread block can communicate
with each other, for example using shared memory or __syncthreads(), but threads
in different thread blocks cannot.

The SM also adds texture units and various on chip memory resources shared equally
between warp-engines, including a register file of 64K 32-bit words, shared memory of
96 KB and L1/texture cache of 24 KB or 48 KB.

4. Finally, a number of SMs are grouped together to make the final GPU. For example, the
GTX 1080 has 20 SMs containing a total of 20 � 128 ¼ 2560 compute-cores. Note all
these cores are on the same hardware chip. An L2 cache of either 4 GB or 2 GB shared by
all SMs is also provided at this level.

For the gaming market NVIDIA make a range of GPUs which differ in the number of SM
units on the chip, for example the economy GTX 1030 has just 3 SM units. Gaming cards
may also have different clock-speeds and memory sizes.
In Figure 1.5 a single compute core is shown on the left; it is capable of performing 32-bit

floating point or integer operations on data which flows through the core. The hardware first
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groups the cores into “warps” of 32 cores processed by a “Warp Engine” (WE) which adds
shared resources including IO, double precision units (either 1 or 16), and eight special
function units (SFUs). The SFUs evaluate 32-bit transcendental functions such as sin or exp.
All the threads in any particular CUDA warp run together on a single warp engine. Small
groups of WEs, usually two or four, are then grouped together into one SM unit. Finally,
multiple SMs are grouped together to make the GPU.

1.9 GPU Memory Types

GPU memory is also organised in a hierarchical fashion similar to cores, with the main GPU
memory at the bottom of the pyramid and various specialised memories and caches above.
This is also indicated in Figure 1.5. The memory types are as follows:

• Main memory: This is analogous to the main memory of a CPU; the program itself and all
data resides here. The CPU can write and read data to and from the GPUmainmemory. These
exchanges go via the PCI bus and are relatively slow and thereforeCUDAprograms should be
designed to minimise data transfers. Helpfully data in the GPU main memory is preserved
between kernel calls so that it can be reused by successive kernel calls without the need to
reload. It is also possible formemory transfers to proceed in parallel with kernel execution (i.e.
asynchronous transfers), this can be helpful in data processing tasks such as manipulating
frames of a movie, where the next frame can be transferring to the GPU while the present
frame is being processed. Notice that because texture and constant data are stored in the GPU
main memory they can be written to by the CPU even though they are read only on the GPU.

• Constant Memory: A dedicated 64 KB of GPU main memory is reserved for constant
data. Constant memory has a dedicated cache which bypasses the L2 cache so if all threads
from a warp read the same memory location this can be as fast as if the data was in a
register. In practice recent versions of the NVCC compiler can often detect this situation in
your code and automatically place variables in constant memory. The use of const and
restrict where appropriate will be helpful. It is probably not worthwhile worrying too

Figure 1.5 Hierarchical arrangement of compute cores in an NVIDIA GTX1080
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much about explicitly using constant memory. Notice also that this memory is quite
limited and therefore not useful for large tables of parameters.

• Texture memory: This feature is directly related to the graphics processing origins of
GPUs. Texture memory is used to store arrays of up to three dimensions and is optimised
for local addressing of 2D arrays. They are read only and have their own dedicated caches.
Textures are accessed by the special lookup functions, tex1D, tex2D and tex3D. These
functions are capable of performing very fast 1D interpolation, 2D bilinear interpolation or
3D trilinear interpolation for arbitrary input positions within the texture. This is a massive
help for image processing tasks and I highly recommend using texture lookup wherever
helpful. A number of our examples will illustrate how to use textures.

Recent versions of CUDA support additional texture functionality, including layered textures
(indexable stacks of 1D or 2D textures) and surfaces which can be written to by the GPU.

• Local memory: These are memory blocks private to each individual executing thread; they
are used as overflow storage for local variables in intermediate temporary results when the
registers available to a thread are insufficient. The compiler handles the allocation and use of
this resource. Local memory is cached via the L2 and L1 caches just like other data.

• Register file: Each SM has 64K 32-bit registers which are shared equally by the thread
blocks concurrently executing on the SM. This can be regarded as a very important
memory resource. In fact there is a limit of 64 on the maximum number of concurrent
warps (equivalent to 2K threads) that can execute on a given SM. This means that if the
compiler allows a thread to use more than 32 registers, the maximum number of thread
blocks running on the SM (i.e. occupancy) is reduced, potentially harming performance.
The NVCC compiler has a switch, --maxrregcount <number>, that can be used to
tune overall performance by trading occupancy against thread computational performance.

• Shared memory: Each SM provides between 32 KB and 64 KB of shared memory.7 If a
kernel requires shared memory the size required can be declared either at kernel launch
time or at compile time. Each concurrently executing thread block on an SM gets the same
size memory block. Thus if your kernel requires more than half of the maximum amount
of shared memory, the SM occupancy will be reduced to a single thread block per SM.
Realistic kernels would usually ask for no more than half that available memory.

Shared memory is important because it is very fast and because it provides the best way for
threads within a thread block to communicate with each other. Many of our examples feature
the use of shared memory.
Many early CUDA examples emphasise the faster memory access provided by shared

memory compared to the poor performance of the (then poorly cached) main memory.
Recent GPUs have much better memory caching so using shared memory for faster access
is less important. It is important to balance the performance gain from using shared memory
against reduced SM occupancy when large amounts of shared memory are needed.
Current GPUs use their L1 and L2 caches together with high occupancy to effectively hide

the latency of main memory accesses. The caches work most effectively if the 32 threads in a
warp access 32-bit variables in up to 32 adjacent memory locations and the starting location
is aligned on a 32-word memory boundary. Using such memory addressing patterns is called
memory coalescing in CUDA documentation. Early documentation places great emphasis on
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this topic because early GPUs had poor or no caching. Modern GPUs are more forgiving so
you probably just need to stick to the golden rule: adjacent threads (or indices on CPUs)
address adjacent memory locations. The memory arrangement is shown in Figure 1.6.

1.10 Warps and Waves

The GPU architecture is reflected in the way a CUDA kernel is designed and launched by
host software. Designing good kernels to match particular problems requires skill and
experience and is essentially what the rest of this book is about. When you get it right, it
is very satisfying to see your code speed up by a large factor. First you have to decide how
many threads, Nthreads, to use. Choosing a good value for Nthreads is one of the most
important choices you make when designing CUDA kernels. The choice of Nthreads is of
course problem specific. For our example for the gpusum program in Example 1.3 we used
a value of Nthreads equal to the number of steps. So for 109 steps we used 109 threads
which is huge compared to the eight that can be run in parallel on our CPU. In later chapters
we will say a lot about image processing. To process a 2D image having nx × ny pixels, a
good choice is to put Nthreads = nx × ny. The key point is that Nthreads should be
big, arguably as big as possible.

If you are new to CUDAyou might expect that setting Nthreads equal to Ncores, the
number of cores in your GPU, would be enough to keep the GPU fully occupied. In fact, this
is far from correct; one of the very neat features on NVIDIA GPUs is that the hardware can
hide the latencies in memory accesses or other hardware pipelines by rapidly switching
between threads and use the data for particular threads as soon as it becomes available.

To be specific the GPU used for most of our examples is a RTX 2070 which has 36 SM
units (Nsm = 36) and each SM has hardware to process two warps of 32 threads (Nwarp =
2). Thus, for this GPU Ncores = Nsm × Nwarp × 32 = 2304. What is less obvious is
that during kernel processing each SM unit has a large number of resident threads, Nres, for

Figure 1.6 GPU memory types and caches
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the RTX 2070; Nres =1024 equivalent to 32 warps. At any given instant two of these
32 warps will be active and the remainder will be suspended, possibly waiting for pending
memory requests to be satisfied. This is how the latency hiding is implemented in NVIDIA
hardware. When we launch a kernel with say 109 threads these threads are run in waves of
Nwave = Nres × Nsm threads; this is actually 27127 waves on the 2070 GPU with
Nwave = 36864, with the last wave being incomplete. Ideally the minimum number of
threads in any kernel launch should be Nwave, and if more threads are possible it should be
a multiple of Nwave.
Note that although the Turing generation of GPUs have Nres = 1024 this is unusual; all

the other recent NVIDIA GPU generations have Nres = 2048, twice the Turing value. Since
for these GPUs Nwarp = 2 is the same as for Turing, Nwaves will be twice the Turing
value. Note that for any particular GPU generation Nsm will vary with model number, e.g.
Nsm = 46 for the RTX 2080 GPU, but Nwarp will not. Thus, Nwave will vary like Nsm
with GPU model for a given GPU generation.

1.11 Blocks and Grids

In CUDA the thread block is a key concept; it is a group of threads that are batched together
and run on the same SM. The size of the thread block should be a multiple of the warp size
(currently 32 for all NVIDIA GPUs) up to the hardware maximum size of 1024. In kernel
code, threads within the same thread block can communicate with each other using shared or
global device memory and can synchronise with each other where necessary. Threads in
different thread blocks cannot communicate during kernel execution and the system cannot
synchronise threads in different thread blocks. Note it is common for the thread block size to
be a sub multiple of 1024; often it is 256. In that case warps from up to four (or eight for non-
Turing GPUs) different thread blocks will coexist on the SMs during kernel execution. Even
though these blocks may coexist on the same SM they will still not be able to communicate.
When we launch a CUDA kernel we specify the launch configuration with two values, the

thread block size and the number of thread blocks. The CUDA documentation refers to this as
launching a grid of thread blocks and the grid-size is just the number of thread blocks. In our
examples we will consistently use the variable names threads and blocks for these
two values. Thus, the total number of threads is specified implicitly as Nthreads =
threads × blocks. Notice Nthreads must be a multiple of threads the thread block
size. If the number of threads you actually want our kernel to run is N, then blocks must be
large enough so that Nthreads ≥ N. This is the purpose of line 19.2 in Example 1.3; it is to
round up blocks to ensure there will be at least steps threads. Because of rounding up we
must include an out-of-range check in the kernel code to prevent threads of rank ≥ N from
running. That is the purpose of the test in line 15.4 of Example 1.3.
The CUDA documentation does not explicitly talk about waves very much; about the only

reference we found was in the 2014 blog post by Julien Demouth at https://developer.nvidia
.com/blog/cuda-pro-tip-minimize-the-tail-effect/. This is interesting because it implies that
threads are dispatched to SMs for execution in complete waves when possible, which in turn
means that it is important for blocks to be a multiple of the number of SMs on the GPU
being used.
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1.12 Occupancy

NVIDIA define occupancy as the ratio of the number of threads actually resident in the SM
units compared to the maximum value Nres. Occupancy is usually expressed as a percent-
age. Full occupancy of 100 per cent is the same as saying that complete waves are running
on the SMs of the GPU.

Even if we launch a kernel with sufficient threads to achieve 100 per cent occupancy we
might not actually achieve full occupancy. The reason for this is that each SM has a limited
total shared memory size and a limited number of registers. If our thread block size is
256 then full occupancy will only be achieved if four (or eight ) threads bocks are resident on
each SM which reduces the resources available to each thread block by the same factor.
NVIDIA GPUs have enough registers for each thread to use up to 32 registers while
maintaining full occupancy. Shared memory is more difficult as it is typically limited to
64 or 96 KB per SM which is equivalent to only 32 or 48 bytes per thread at full occupancy
for non-Turing GPUs. On the latest Ampere GPUs this is increased to 80 bytes.

Less than full occupancy is not necessarily bad for performance, especially if the kernel is
compute bound rather than memory bound, you may have to accept lower occupancy if your
kernel needs significant amounts of shared memory. Experimentation may be necessary in
these cases; using global memory instead of shared memory and relying on L1 caching for
speed may by a good compromise on modern GPUs.

Kernel code can use the built-in variables shown in Table 1.1 to determine the rank of a
thread in its thread block and in the overall grid. Only the 1D case is shown in this table the
2D and 3D cases are discussed in the next chapter.

This is the end of our introductory chapter. In Chapter 2 we introduce the more general
ideas behind parallel programming on SIMD machines and GPUs. We then give some more
detailed examples, including the classic problem of parallel reduction. We also discuss
kernel launches in more detail.

Endnotes Chapter 1

1 For example, the Nvidia plugin for Visual Studio Cþþ helpfully generates a sample program to get you
started but unfortunately that program is full of goto statements. The use of goto has of course been
deprecated since the early 1980s.

2 Both the Nvidia documentation and their example code mostly refer to the CPU as the host and to the
GPU as the device. We often but not always follow this convention.

Table 1.1 CUDA built-in variables. NB the first 4 are structs containing x, y and z members

variable comment

threadIdx id = threadIdx.x is thread rank in thread block
id = blockDim.x*blockIdx.x+threadIdx.x is thread rank in grid

blockIdx blockIdx.x is block rank in grid of blocks
blockDim blockDim.x is number of threads in one block
gridDim gridDim.x is number of blocks in the grid

threads = gridDim.x*blockDim.x is total number of threads in launch
warpSize Number of threads in warp, set to 32 on all current GPUs
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3 Later we will discuss reduce operation in some detail as an example of a parallel primitive. Our best
CUDA code for this operation will turn out to be a bit faster than using thrust.

4 Computers which store instructions and data in a common memory are said to have von Neumann
architecture, after the physicist John von Neumann who worked on the design of the early 1945 ADVC
machine. Arguably the idea of treating computer instructions as data can also be credited to Ada
Lovelace in the 1840s. The alternative Harvard architecture uses separate hardware to store data and
instructions. Examples include the Colossus computers, used at Bletchley Park from 1943, which were
programmed using switches and plugs. Paper tape could also be used to hold instructions. In a curious
case of nominative determinism, the English mathematician, Max Newman played an important role in
the design of Colossus – truly these “new men” ushered in our digital age. Today Harvard architecture is
still used for specialised applications, e.g. embedded systems running fixed programs stored in read only
memory units (ROMs).

5 Unfortunately, the acronym PC for program counter is the same as for personal computer. Actually, the
former use predates the introduction of personal computers by at least 20 years, thus we will use PC for
both. This should not be confusing as we will rarely use PC for program counter.

6 Recently the Volta/Turing generation of GPUs launched in 2017 has relaxed this restriction somewhat.
This is discussed later as an advanced topic.

7 This depends on the compute capability of a particular device. Most devices can be configured to have at
least 48 KB.
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