Optimising COVID-19 vaccine efficacy by ensuring nutritional adequacy

Now that a number of COVID-19 vaccines are being employed to control the current pandemic, we are concerned about the likelihood of a poor response in the frail or malnourished elderly which would reduce the effectiveness of the vaccination campaigns.

Older people have a weakened immune response and are known to respond less well than middle-aged adults to many vaccines including the seasonal influenza vaccine. We note that the Oxford vaccine trial recruited older participants with ‘few comorbidities, [who] might not be representative of the general older population, including those living in residential care settings or older than 80 years’. Both the 56–69 and ≥70-year-old groups showed a lower IgG response and lower neutralising antibody titres to a single dose of the Oxford vaccine than did the 18–55-year-olds. Hence, in the real-world setting, weaker older people may not gain the desired clinical protection from the vaccine and resource may be wasted. Poor vaccination responses in older people are related not only to frailty which cannot be easily remedied, but also to deficiencies in micronutrients, which can be addressed.

An effective immune response requires an adequate host nutritional status. In recognising this, the European Food Safety Authority has authorised nutrient function health claims for vitamins A (including β-carotene), B<sub>6</sub>, B<sub>12</sub>, C and D, and the minerals Zn, Se, Fe and Cu based on scientific assessment of their contributions to the normal functioning of the immune system. Each of these micronutrients, as well as vitamin E, has been shown to have multiple key roles in supporting the immune system and reducing the risk of infections. This is detailed in recent comprehensive reviews that attest the importance of individual micronutrients to the immune response and explain the multiple mechanisms of action involved.

Human nutritional deficiency and malnutrition are common in the elderly. In a systematic review of intake and deficiency of eight trace elements in adults ≥60 years in seven Western countries, consistent nutritional insufficiency was found for Se, Zn, iodine and Cu. Notably, Zn insufficiency was observed in 31 and 49% of community-based women and men, respectively, and in 50 and 66% of women and men in institutional care. Se intake was similarly compromised with deficiency found in 49% of women and 37% of men in the community and in 44% of women and 27% of men in institutions. Significant proportions of both populations showed insufficiency for Fe, iodine and Cu. Specific to the UK, the 2019 National Diet and Nutrition Survey showed ‘a sustained worsening of the dietary intakes and chronic shortages of several of the nutrients involved in supporting the normal immune functions; these included vitamins A, B<sub>12</sub>, C and D and the trace minerals Zn, Se and Cu’. Such micronutrient deficiencies may limit the effectiveness of the COVID vaccines.

We propose that a nutritional supplement (e.g. containing vitamins A, B<sub>6</sub>, B<sub>12</sub>, C, D and E and the minerals Zn, Cu, Se and Fe) should be provided free of charge to all those aged over 70 years for a period of weeks before and after they receive the vaccine. The additional cost of providing a supplement of those nutrients important to immune function that are likely to be insufficient or deficient in the elderly would be a small investment to better assure a robust vaccine response. It is possible to buy a multivitamin and mineral supplement, retail, for around £1-50 (US$2) per forty-five tablets. A 45-d supply of the supplement, purchased wholesale, would provide great potential gain and would add only a modest cost to any vaccination programme: the US Government negotiated price of the Pfizer vaccine is US$20 per dose (i.e. US$40 per full treatment), the
Moderna vaccine is costed at US$10–$50 per dose with the European Union negotiating a cost of up to US$25 per dose (i.e. US$50 per full treatment), while the cost of the AstraZeneca vaccine to the US Government is US$4 per dose (i.e. US$8 per full treatment).18

Margaret P. Rayman1 and Philip C. Calder2,3

1Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
2Faculty of Medicine, University of Southampton, Southampton, UK
3NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK

e-mail P.C.Calder@soton.ac.uk

doi:10.1017/S0007114521000386

References