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Abstract

To any given balanced semigroup identity » « i » a number of polyhedral convex cones are associated.
In this setting an algorithm is proposed which determines whether the given identity is satisfied in the
bicylic semigroup

BC = (a, b | crb = aba = a, ab2 = bab = b)

or in the semigroup
E — {a, b | a2b = a, ab2 = b).

The semigroups BC and E deserve our attention because a semigroup variety contains a simple semigroup
which is not completely simple (respectively, which is idempotent free) if and only if this variety contains
BC (respectively, E). Therefore, for a given identity v =s w it is decidable whether or not the variety
determined by v & w contains a simple semigroup which is not completely simple (respectively, which
is idempotent free).

2000 Mathematics subject classification: primary 20M05, 20M07.

Introduction

One of the main issues of [19] was to characterize and classify the semigroup vari-
eties satisfying the property [J = V], that is, the semigroup varieties consisting of
semigroups where the Green relations J and T> coincide. All the varieties minimal
for not satisfying [J = T>] were found. After this, it is only natural to ask for a
characterization of the semigroup varieties in which all the simple semigroups are
bisimple. That this is a much weaker condition is testified by the fact that even in the
join of all the semigroup varieties minimal for not satisfying [J — T>], all the simple
semigroups are completely simple (concluding remark of Section 4).
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64 F. Pastijn [2]

From the investigations by Jones [12] it follows that a semigroup variety contains
a simple semigroup which is not bisimple if and only if it contains the bicyclic semi-
group BC (Corollary 2.5). It is for this reason that we carefully examine the equational
theory of BC. We determine whether a given identity belongs to the equational theory
of BC in three distinct ways (Theorems 4.1, 4.5, 4.6). The last characterization is
one of determinantal form which uses a consistency criterion, due to Motzkin [17],
for a system of strict inequalities. Polyhedral convex cones that can be derived from
the given identity in a way explained in Section 3 provide an adequate setting for
formulating these results.

A sufficient condition (Theorem 4.10) enables us to generate, with relative ease,
examples of identities which are satisfied in BC (Theorem 4.14). As a result, we
are able to improve on the celebrated result by Shneerson [24] which states that the
variety generated by BC is of infinite axiomatic rank (Theorem 5.5, Corollary 5.6).

From [12] it also follows that a semigroup variety contains an idempotent free
simple semigroup if and only if it contains the idempotent free simple semigroup E
(Corollary 2.3). The variety generated by E contains the variety generated by BC
properly, in fact, the interval in the lattice of semigroup varieties between the varieties
generated by BC and by E respectively, is of the power of the continuum (Theo-
rem 6.3). Again, using the language of polyhedral convex cones, we characterize the
identities which belong to the equational theory of E (Theorem 6.4). A sufficient
condition (Theorem 6.8) that requires some of the polyhedral convex cones involved
to coincide with their boundary, enables us to generate plenty of identities satisfied
in E (Theorem 6.9).

1. Preliminaries

We refer to [8, 11] for the necessary background on semigroups, and in particular
on (O-)simple, (O-)bisimple, and completely (O-)simple semigroups. For a general
background on universal algebra we refer to [14]. It remains to review some further
terminology and notation which will be used in this paper.

In the following X will be a fixed countably infinite set, the elements of which we
call variables. These variables will be denoted by x, y, x', >>,-,..., and the like. For
any nonempty set A, A*(A+) will be the set of all (nonempty) words whose letters
belong to A. Then A+(A*) forms a semigroup (with identity) for the operation of
catenation of words. For any v e X+ and x e X, nx(v) denotes the number of
occurrences of x in v. Then c{v) — {x e X \ nx(v) > 1} is called content of v and
Hv) = Svec(i') nx(v)tne length of v. If 1 denotes the empty word of X* we agree to
put c(\) — 0 and l{\) — 0. For v e X+ and v = vtv2 in X*, we call vx a prefix of v
and v2 a suffix of v. For v e X+, h(v) (t(v)) denotes the first (last) letter of v.

https://doi.org/10.1017/S1446788700014646 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014646


[3] Cones and the bicyclic semigroup 65

Let S be a semigroup. A mapping a : X —*• S will be called a substitution by
elements of S. This mapping extends in a unique way to a homomorphism of X+

into S, and we agree to denote this homomorphism again by a. A semigroup identity
is a pair of words of X+, commonly denoted in the form v m w, where v, w e X+.
We say that the identity v % w is satisfied in 5 if va = wo holds true in 5 for
every substitution o by elements of S. The identity v ~ w is called balanced if
nx(v) = nx{w) for all x e X. If this is the case, then €(u) = l(w), and £(u) = t(w)
will be called the length of v ^ w. An identity is satisfied in the infinite cyclic
semigroup if and only if it is balanced.

Let E be a nonempty set of identities. We say that the identity v ~ ID is a
consequence of E if there exists a positive integer k, words a , , . . . , uk e X+, and
substitutions au ..., o>_, by elements of X+ such that v = u\, uk = w, and for all
1 < / < k,

ui+i =ri(qioi)si,

for some r,-, s, € X* and ph qt e X+, where p, ~ <?,- or ^, % p, belongs to Z. An
equational theory is a set of identities which is closed for taking consequences. If S is
a semigroup, then the set of all identities that are satisfied in S is an equational theory
and will be called the equational theory of 5.

Let E be a equational theory. A word v € X+ is called an isoterm of Y, if, whenever
v % w belongs to S, v = w. If A is a subset of E such that E consists of all the
consequences of A, then A is called a basis of E. E is said to be of finite axiomatic
rank if there exists a positive integer n and a basis A of E where the number of
variables involved in each identity of A is less than n\ otherwise E is said to be of
infinite axiomatic rank. With some abuse of terminology we shall permit ourselves to
say that, for a given basis A of E, the identity p ~ q of E belongs to A if for some
permutation a of X, pa ss qa or qo R» po is an element of A.

For any class K of semigroups, let H(K) (S(K)) be the class of all semigroups
which are isomorphic to a homomorphic image (a subsemigroup) of a member of K,
and P(K) the class of all semigroups which are isomorphic to the direct product of
members of K. The class K is said to be a variety if K is closed for the class operators
H, S, and P, that is, K = H(K) = S(K) = P(K). For any class K, HSP(K) is the
smallest variety containing K. If K consists of the semigroup S only, then HSP(K)
will also be denoted HSP(S). An equational class of semigroups is a class consisting
of all the semigroups in which all the identities of an equational theory are satisfied. By
Birkhoff's completeness theorem, the notions of variety and equational class coincide.
In particular, for any semigroup S, HSP(S) consists of all the semigroups in which
all the identities satisfied by S are satisfied. Accordingly, HSP(S) will be said to be
of finite (infinite) axiomatic rank if the same is true for the equational theory of S.

https://doi.org/10.1017/S1446788700014646 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014646


66 F. Pastijn [4]

2. The significance of the semigroups A, E, and BC

The semigroups A, E, and BC are each generated by two generators, say a and b.
They have the following presentations:

A = {a,b \a2b = a),

E = {a,b\ a2b = a, ab1 = b),

BC = (a,b\ a2b = aba = a, ab2 = bab = 6).

Clearly then, £ is a homomorphic image of A, and BC is a homomorphic image
of E, hence HSP(fiC) c HSP(£) c HSP(A). We shall soon discover that these
inclusions are strict.

It is fairly easy to solve the word problem for each of these three presentations. It
was noticed in [12, Theorem 2.7 (i)] that every element of A can be written in a unique
way in the form v(ab)eam, with v a word over {(ab)"~]b | n > 2}, £ > 0, m > 0, and
with v nonempty if £ = m = 0. Moreover, the subsemigroup of A generated by the
elements of the form (ab)"~[b, n > 1, is actually freely generated by those elements
[12, Theorem 2.7 (vi)], and therefore HSP(A) — S, the variety of all semigroups.

RESULT 2.1 (see [12]). A right simple semigroup which is not a right group gener-
ates the variety S of all semigroups.

PROOF. Let 5 be a right simple semigroup, which is not a right group. Then S
is necessarily idempotent free and by [12, Corollary 4.3] S contains a copy of A
as a subsemigroup . Therefore S contains a subsemigroup isomorphic to the free
semigroup of infinite rank, whence HSP(S) = S. •

The Croisot-Teissier semigroups and the Baer-Levi semigroups, which were inves-
tigated in [8, Chapter 8], form examples of right simple semigroups which are not
right groups. The semigroup A has a unique least ideal, namely the ideal consisting
of all the elements of A which are not of the form b" for some n > 1. This ideal
is a simple idempotent free semigroup [12, Theorem 2.7 (v)], but since it contains a
free semigroup of infinite rank, it generates the variety S of all semigroups. Other
interesting examples of simple idempotent free semigroups were given in [3] (see also
[8, Exercises 2.1.10 and 8.4.6]), while [4, 5,6] provide for further clever constructions
of such semigroups. In fact, every idempotent free semigroup can be embedded into a
simple idempotent free semigroup [25]. More often than not however, a simple semi-
group obtained from these examples and constructions obviously generates the variety
of all semigroups. Therefore the following question imposes itself quite naturally: is
there any simple idempotent free semigroup which does not generate the variety of all
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semigroups? To answer this question we turn to the semigroup £ . This semigroup is
a special instance of the construction given in [5] (see [12, Example 2.5]).

One readily verifies that every element of the semigroup E can be written uniquely
in the form bs(ab)ma" for some s > 0, m > 0, n > 0, with s + m + n > 1.
The multiplication in E then follows the following rule: for bs'(ab)m]a"' e E and
b5-(ab)m2a"! e E, we have

a"! if s2 > « i ,

bSi(ab)mxan>+ni-s' if n, > s2,
(2.1) bSi(ab)m<an'bS2(ab)m2a"2 = {

bs' (ab)""+m'+]a"1- if n, = s2 > 0,

bs'(ab)m'+m'-an- if «, = s2 = 0.

Clearly, £ is idempotent free. For any bs(ab)man e E we have that

as+2(bs(ab)man)bn+l = a,

whence E is simple. For the sake of completeness we should mention that the
semigroup E was investigated for various reasons in [12, 15, 21, 22].

Recall that by an idempotent free 0-simple semigroup we mean a 0-simple semi-
group that does not contain an idempotent other than 0.

RESULT 2.2 (see [12]). A (O-)simple idempotent free semigroup which does not
generate the variety of all semigroups contains a copy of E as a subsemigroup.

PROOF. From [12, Theorems 4.2, 6.4 and the concluding remark] it follows that a
0-simple idempotent free semigroup contains a copy of the free semigroup of infinite
rank or a copy of £ as a subsemigroup. •

COROLLARY 2.3. HSP(£) is the smallest variety containing a (0-)simple idempo-
tent free semigroup.

Of course the statements of Result 2.2 and Corollary 2.3 would be self-evident if E
does not generate a proper semigroup variety. Later in this paper we shall indeed
find an infinity of nontrivial semigroup identities, which are satisfied in E. In the
meantime we take heart from the fact that no free semigroup of rank greater than 1
divides £ [12, Theorem 2.3 and subsequent remark].

The semigroup BC is called the bicyclic semigroup . From the presentation of BC
it follows that the element ab of BC is the identity element of BC. If we agree to
write ab = I = a0 — b°, then we have that every element of BC can be written
uniquely in the form bsa" for some s > 0, « > 0. Further, for any bs'a"' e BC and

https://doi.org/10.1017/S1446788700014646 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014646


68 F. Pastijn [6]

bSla"2 e BC we have

ibsl+S2-nin2 i f >n

(2.2) bs'an'bS2an2 = \
[fc5|fl"1+"!-5! if «, > s2-

From (2.1) and (2.2) it now follows that

(2.3) £ -+ BC, b\ab)man -* bsan

is a homomorphism from £ onto BC. Since £ is simple, so is its homomorphic image
BC. The semigroup BC is not idempotent free; the idempotents of BC are precisely
the elements of the form bsas, s > 0.

RESULT 2.4 (see [3]). A (0-)simple semigroup which is not idempotent free and is
not completely (0-)simple contains a copy of BC as a subsemigroup.

The proof of the above result can also be found in [8, Theorem 2.54].

COROLLARY 2.5. For a semigroup variety V, the following are equivalent:

(i) V contains BC,
(ii) V contains a simple semigroup which is not bisimple,

(iii) V contains a (O-)simple semigroup which is not completely (O-)simple.

PROOF. The subsemigroup of BC which consists of the elements bsa", s > 0,
n > 0, with either s and n both even or s and n both odd, is simple but not bisimple
since it consists of two D-classes (see also [18]). Therefore (i) implies (ii). Since
every completely (O-)simple semigroup is (O-)bisimple, we have that (ii) implies (iii).
Let us now assume that V satisfies (iii). If V contains a (O-)simple idempotent free
semigroup , then V contains £ by Corollary 2.3, and therefore V also contains the
homomorphic image BC of E. Otherwise, V contains BC by Result 2.4. Thus, (iii)
implies (i). •

Corollaries 2.3 and 2.5 provide us with the necessary motivation for investigating
the equational theories of E and of BC. Since the equational theory of £ is contained
in the equational theory of BC, the latter one will be studied first.

One of the major issues of [19] was the classification of the semigroup varieties
which satisfy the property [J = T>], that is, the semigroup varieties which consist of
semigroups for which the Green relations J and T> coincide. In such varieties simple
semigroups must be bisimple, and it is precisely because of our present Corollary 2.5
that the variety generated by BC was eyed with special concern. In [19] the varieties
minimal for not satisfying [J — V] were found; they are countably infinite in number,
and every semigroup variety not satisfying [J — V] contains one of these minimal
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ones. In view of Corollary 2.5 we know that the semigroup variety HSP(BC) contains
at least one of the varieties minimal for not satisfying [J = £>]. In Section 4 we
shall see that HSP(BC) properly contains the join of all the varieties minimal for not
satisfying [J = V]. The basic strategy in the present paper and [19] is the same.
Results 2.2 and 2.4 show that E and BC serve a role as forbidden divisors in a sense
explained in full in [19]. The present paper is otherwise quite independent from [19].

We shall henceforth prefer to write the elements of E in the form bs(ab)"'al+\
where s > 0, m > 0,1 an integer such that I + s > 0, and such that I + m + 2s > 1.
Accordingly, we write the elements of BC in the form bsae+s, where s > 0 and
t + s > 0, with t an integer. The reason for introducing such integers t will be
apparent from the following observation.

RESULT 2.6 (see [12, 24]). The mappings

E -* Z, bs{ab)mal+s -> t,

BC -* Z, bsae+s -* I,

are homomorphisms onto the additive group of the integers.

It is now necessary to introduce some auxiliary results of a technical nature for later
consideration. Their purpose is to generalize to any number of factors the rules (2.1)
and (2.2) which describe the multiplication in E and BC, respectively.

Let v be a nonempty word over X,

(2.5) i; = JC(-,JC,-, • • • xia, c(v) = {xu ..., x,}, n > 1,

and let q> be a substitution of the variables which occur in v by elements of BC

(2.6) xtf = bs' a(l+Sl, 1 < i < t, s( > 0, t{ + s,- > 0.

LEMMA 2.7. Let v be a nonempty word over X as in (2.5) and <p the substitution

(2.6) of the variables which occur in v by elements of BC. Let

(2.7) i = max (stl, -ih +sh,..., -lu - £h €,„_, + sia).

Then in BC, v<p = bsa('<+"+l»+s.

PROOF. We let 1 < j < n and Vj be the prefix of length j of v. We show by
induction on j that the statement of the lemma holds true for Vj.

The case j = 1 is trivial. We next consider the case j — 2. From Result 2.6 we
know that (bSi>at'<+s'<)(bSh-a("-+Sii) is of the form b'al^+t^+t for some t. From (2.2) we
see that if sh > tn + sh, then

t = sh + s,, - (£,-, + 5,-,) = sh - lil = max(5,-,, -lh + sh),
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and if sh < ih + sit, then t = sh = max(sit, —ih + sh). Therefore the statement of
the lemma holds true for v2.

We next assume that 2 < j < n and Vj<p = b' alii+'"+li>+', with

t = m a x ( s , , , -lh +si2,..., -lit £,-,_, + si;).

Then, using the fact that the statement of the lemma holds true for words of length 2,
we find

where

r = max(r, -(£,-, + . . . + £,.) + S/.+i)

= max(s,,, -£,-, + s,-2, . . . , -£,-, ti: + sii+l)

and we see that the statement of the lemma holds true for u;-+1. This concludes our
proof by induction. •

If, given a balanced identity v ^ w one wants to verify whether this identity is
satisfied in BC, one has to try out all possible substitutions by elements of BC. The
reader who has been experimenting with this type of exercise must at least have had
the intuitive feeling that it is sufficient to verify a finite number of cases, and so it
should be decidable whether the given v % w belongs to be equational theory of BC.
Lemma 2.7 already makes this more precise; the cases to be considered are related
to the circumstance of which entries in (2.7) yield the maximum, and similarly for w
instead of v.

We shall now do similar work for the semigroup E. Let v be as in (2.5), but we
now consider a substitution of the variables which occur in v by elements of E:

x,p

Si > 0, m, > 0, I; + Si > 0, I, + trii + 2s, > 1.

LEMMA 2.8. Let v be a nonempty word over X as in (2.5) and <p the substitution
(2.8) of the variables which occur in v by elements of E. Let s be given by (2.7),

r = min Y, Y' = {j e Y | s, / 0, y > r}, and
(2.9)

Then in E, v<p = bs(ab)m ae^
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PROOF. Since (2.3) is a homomorphism from E onto BC, it follows from
Lemma 2.8 that v<p — bs(ab)mal>>+'+f"i+s for some m, and with 5 given by (2.7).
It remains to verify that m is indeed as in the statement of the lemma. The same
remark applies to all the prefixes of v.

We prove by induction on / that the statement of the lemma holds true for the prefix
vr+i of length r + i of v, for 0 < / < n — r.

We first consider the case i = 0. If r = 1, then vr = JC,-,, vrq> = bs^(ab)m^atl'+5'i
and we see that the exponent m,, is according to the calculation in (2.9). So vr<p is
obviously of the required form. We next assume that r > 1 and

t = max(s;i, . . . , -£,-, £,r_, + s,-r_,).

Since r — min Y we know that t < s, where

5 = max(s,-,, . . . , -£„ £,r_, + 5,v) = -lh ,̂r_, + 5,v.

Consequently, ? + £ , ,+• • • + £,f_, < 5,r. From the remark made before we have that

for some m'. Therefore, applying ab2 = b repeatedly we obtain

vr(p = (Vr-wKxirV) = b!(ab)m'ae"+ +l"->+l bs" {ab)m"al-+s"

= b'+s-~{("+ -+'v-.+'> (afe)""'a'->+^ = b*{ab)mi' a^+-+t"+s

and again vr<p is of the required form.
We now consider / such that r < r + i < n and we assume that the statement of

the lemma holds true for vr+,. In other words, we assume that

where

e K' | r

If ir+i+\ £ Y, then -t^ lir^ + sir+i+l < s, and applying a2b — a repeatedly we
obtain

vr+i+l<p = (vr+i<p)(xir+i+lcp) = bs(abr'a('++e^+sbs^(abr^al^+s"^'
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y < r

since /,-+,•+1 ^ >̂ ar>d we conclude that again vr+i+\<p is of the required form.
We next suppose that ir+,+i 6 Y. First consider the case where ir+i+\ € Y', that

is, sir+i+l =lh + ... + lir+. + s > 0. Then ««-.+ +fv+,+» £v.,+, = ab follows from a
repeated application of a2b = a, and we obtain, by (2.1),

vr+i+i<p =
where

as required. If ir+i+\ e Y — Y\ then sir+i+l = £,-, H h £,v+i. + ^ = 0 and

vr+i+i<p =

where

+ m -v + , + , = | 2 ^ m ( j \ + {j e Y ' \ r < j < r + i +

\r<j<r+i+\

as required. This concludes our proof by induction. •

3. Polyhedral convex cones and balanced identities

To fix the notation we let A be an m by n matrix whose entries are integers. The
rows of A are denoted by Ai, . . . , Am. Let x be the column vector whose entries
Xi, . . . , \n can assume rational values. Ax < 0 stands for the system of inequalities
A|X < 0, . . . , Amx < 0. The solution set of this system, to be interpreted as a subset
of the n-dimensional space Q" over the rationals, is called a polyhedral convex cone,
and denoted by A*. For any subset I of M — {1, . . . , m), A* is the solution set of
the system A,x < 0, i e / , A,x — 0, / ^ / . The A*, / C M , are called the faces
of A*. Clearly the polyhedral convex cone A* is the disjoint union of its nonempty
faces. The boundary of A* is the face AjJ. We shall also be particularly interested
in the face A^ which consists of the solution set of the system of strict inequalities
A,x < 0, i = 1, . . . , m.
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The dimension of the nonempty face A*, is the dimension of the vector space which
forms the solution set of the system A,-x = 0, / £ / . In particular, the dimension d
of the boundary AjJ is d = n — rank A. The convex hull of a set C of vectors is the
set of all the finite linear combinations of vectors of C with nonnegative coefficients.
The polyhedral convex cone A* is the convex hull of a finite number of vectors [16].
It suffices to take a set Co U C, of vectors, where Co consists of vectors whose convex
hull is the boundary A^, and C, contains, for every (d + l)-dimensional face, a vector
of that face which does not belong to the boundary. Since such representatives of the
(d + l)-dimensional faces can be calculated, questions such as whether for a given A
the face A*M is empty can certainly be decided. We refer to the survey paper [10] for
the necessary background on polyhedral convex cones.

We now let v ~ w be a balanced semigroup identity. We assume

(3.1) c(v) = c(w) = {x ,*,}

and write

(3.2) v=Xjl...xi,.

The prefix Vj of length j of v thus ends in the variable xij. For any 1 < k < t, we let
/ n = {j | t(v^ — xk], and similarly, we let JXt = {j | t(wj) = xk}. Hence

\lxt\ = I /*,. I = nxt(v) = nXk(w).

For 1 < k < t, let j \ < j2 < • • • < j n , <„> be the distinct elements of IXt. Let V,t be
the nXt(v) x t matrix which has entry nA>(v;,_i) in the /th row and rth column. In a
similar fashion, we construct the matrix W,(. We constructed the matrices \Xt and
Wu in such a way that in each column the numbers are nondecreasing. The words v
and tu can be reconstructed if the matrices V.r, and WVt, 1 < k < t, are given. The first
row of \Xt consists of only zeros if and only if k — i\, and a similar remark applies to
the matrix Wl ( .

For j € / „ , 1 < k < t, let \j be the nH(v) x t matrix with entry nXr(Vj-i) in the
ith row and rth column. Thus, the rows of v, are all equal to each other, and equal
to some row of Vl(. The matrices w7 are constructed in a similar way. We shall be
interested in the polyhedral convex cones

(3.3) ( v , - W , ( r , j€lxt, l<k<t, and

(3.4) (w,-. - V , , ) * , f e Jxt, \<k<t.

In particular, we are interested in the faces of these cones which are solution sets of
the systems

(3.5) (Lj): ( v , - W , t ) x < 0 , j e / , ,

(3.6) (/?,): ( w r - V V ( ) x < 0 , j'eJXk,
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where x is the column matrix with entries X | , . . . , x,. We shall use the convention that
these 'unknowns' are denoted with the same letters as their corresponding variables
which occur in v and w, but we shall use a different type-face.

Polyhedral convex cones can be defined over any ordered field. Since the matrices
obtained from balanced identities in the way described above are all over the integers,
it makes sense to consider only the ordered field Q of the rationals.

The notation introduced here will be used throughout the paper.

4. The equational theory of BC

In this section we indicate how to decide, for a given identity v ~ ID, whether or not
v s» w is satisfied in BC. Our method yields an algorithm ready for implementation.
In [23] it was mentioned that semigroup identities satisfied in BC were discovered
with computer assistance; unfortunately little information is given about the algorithm
used. In this section we also generate many examples of identities satisfied in BC.

An identity v « w which is satisfied in BC is balanced because BC contains a
copy of the infinite cyclic semigroup . If v = *,, • • -xin, then v* = Jt,-, *,•„_, • • • JC,, is
the reverse of v. From the presentation given for BC, it follows that the mapping
a -* b, b —>• a gives rise to an antiautomorphism of BC, whence an identity v % w
is satisfied in BC if and only if v* % w* is satisfied in BC. From this it follows that
every result concerning the identities which hold in BC has its left-right dual version.
The same remark applies to the semigroup E.

Let D % io be an identity which is satisfied in BC, and let v ~ u> be the identity
which results from v «s w by deleting all the occurrences of some, but not all the
variables which are in c(v) = c(w). Then v % UJ is also satisfied in BC since BC has
an identity element ab. We say that v ~ w is obtained from v ~ w by deletion. The
fact that the equational theory of BC is closed for deletion will be applied without
further comment.

More specific features of the identities satisfied in BC will be given later in this
section. However, first we have the generalities.

THEOREM 4.1. A balanced identity v % w is satisfied in the bicydic semigroup BC
if and only if, with the notation of Section 3, for every 1 < j < n, the faces given by
(3.5) and (3.6) of the polyhedral convex cones (3.3) and (3.4), respectively, are empty.

PROOF. We let v ~ w be a balanced identity with c(v) — c(w), v as in (3.1) and
(3.2) and

(4.1) w = x r - • • x r .
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Assume that v % w is not satisfied in BC. Then there exists a substitution <p of the
variables of c(v) — c(w) by elements of BC such that v<p j^ w<p in BC. Let <p be
given by (2.6). Then by Lemma 2.7, v<p = b*aei> + "+ti"+\ where s is given by (2.7).
Similarly, u><p = bs a 'i+ + '»+1, where s' is given by

(4.2) s' = max (5,-, -tv + s,-<, . . . , -£,- tv + sr).
\ 1 1 2 1 n—1 n/

Since v ~ u> is balanced, we have

> s'.Therefore, since v<p ^ uxp, we have 5 7̂  s'. By symmetry we may assume that
Therefore there exists 1 < j < n such that, for all 1 < j ' < n

(4.3)

Let j 6 / l t , that is, t(Vj) — xk for some 1 < k < t. Then (4.3) is satisfied for all
j ' € JH. With j e IH and j ' e JXt we have from (2.6) that j,- = st = s,-, since
then X-, = xA = xr • Therefore (4.3) yields £, H h £,- > t,. -) h £, ' for all
y € 7Vl. Since

and

]<r<t

we see that X| = £ , , . . . , x, = £, is a solution of the system (L/) given by (3.5).
Therefore the face of (3.3) given by (3.5) is nonempty.

To prove the converse, we may by symmetry assume that there exists 1 < j' < n
such that the system (Lj) given by (3.5) has a solution in the rationals. Then (3.5) has
an integral solution, say X| = t\, . . . , x, = £,. For r ^ k we choose sr = 0 if tr > 0
and sr — —tr otherwise. Thus in any case, tr + sr = 0 and sr > 0 for all r ^ k. We
next choose sk such that lk + sk > 0 and

sk > max ((€„ + • • • + «,- ) - (ir +••• + I,; ) + sr,) .
\<j'<n \ ' ' I -' I I

Then (4.3) holds true for all 1 < j ' < n, j ' & JH. Since for / e JH we have that
i'j. = k = ij and (lu ..., £,) is a solution of (3.5), we have that (4.3) is also satisfied
for all / 6 7,,. Thus (4.3) is satisfied for all 1 < / < n. If we now define 5
by (2.7) and s' by (4.2) we have that 5 > s'. With the substitution (p given as in
(2.6), v<p = bsat'<+'"+l'*+s j^ bs'a'''i+'"+t''''+s' = wcp. Therefore v % w is not satisfied
in BC. O
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REMARK 4.2. The statement of Theorem 4.1 deals more with the way the cones
(3.3) and (3.4) are presented, rather than with their inherent geometric properties.
Thus, the condition formulated in that statement requires that for all 1 < k < t and
j € IXk, either the matrix \j — W^ has a zero row, or the cone (v, — W, ( ) ' does not
have a f-dimensional face, and likewise, for all / e JXt, the matrix wr - Vt, either
has a zero row, or the cone (w;< - V*,)* does not have a f-dimensional face.

If one wants to verify whether a given balanced identity v % w of length n is
satisfied in BC, then the condition of Theorem 4.1 requires us to investigate In
systems of strict inequalities. We can in practice dismiss many of the cases to be
investigated. A system (3.5) or (3.6) does not have a solution if its coefficient matrix
has a zero row. For systems (Lj) given by (3.5) this is the case if and only if
j € JXt and Vj ~ Wj is balanced, and likewise for the systems (Rj) given by (3.6).
If v = uiuu2, w = U\u'u2, i(u\) — p, t(u) = l(u') = q, and t(u2) = r, then
the coefficient matrices of the systems (Lj) and (Rj) each contain a zero row for
j = l,...,p,p + q + l,...,p + q + r, and they need not be investigated further.
The greater the common prefix and suffix of v and w, the less work remains to be
done.

There is yet another way which allows us to economize on the number of cases
to investigate. Suppose that v contains a block of consecutive equal variables, say
xip. ..xip+q, with Xip = ••• = xip+q = xk. We claim that, after investigating (Llp)
and (Lip+q), there is no need to investigate the intermediate cases (Lip+t), i < i < q.
Indeed, assume that the system (Lip+I), 1 < / < q has a solution (£t, . . . , I,). If
lk > 0, then (iu ...,£,) is also a solution of (Lip), and if lk < 0, then ( £ , , . . . , (.,) is
also a solution of (Lip+q).

EXAMPLE 4.3. We would like to verify whether the identity v ~ w given by

xyx xy xykx « xyx yx xykx,

with k > 1, is satisfied in BC. The cone (v4 - W*)* is the convex hull of ( - 1 , 1) and
(—1, 2). Therefore the identity v « w is not satisfied in BC. So by Corollary 2.5,
every simple semigroup in the variety determined by v s» w is completely simple.

EXAMPLE 4.4. We would like to know for which values of i, j , k, I with 0 < 1 <
j < t and k > 1, the identity v ~ w given by

xyxx'yxt~'ykx « xyx x'yxl~jykx

is satisfied in BC.
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The system (L4+/), where xk = x, can be written as follows:

(/ + l)x + y < 0

x > 0

(I - i)x + y > 0

(i-i)\ + ky > 0

and one verifies directly that this system has a solution unless (k + 1)(/ + 1) >
£ + 1. Similarly, (L5+;) has no solution if and only if this condition is satisfied, and
both (R}+j) and (/?.»+;) have no solution if and only if I > 2j + \. It follows from
Remark 4.2 that no other systems of strict inequalities need to be investigated.

We conclude that the given v ~ w is satisfied in BC if and only if (k + \)(i + 1) >
t+\ > 2(y + 1).

From Theorem 4.1 we can clearly see that the equational theory of BC is closed
for deletions. Indeed, let v ~ w be satisfied in BC, \c(v)\ > 2, x e c(v) — c(w),
and v % w be obtained from u ~ u; by deleting all occurrences of x. Then, since the
systems (3.5) and (3.6) have no solutions, they certainly have no solutions that belong
to the hyperplane x = 0, and so v % w is satisfied in BC. One cannot expect that
the converse is true; even if all the identities obtained from v ~ w by proper deletion
are satisfied in BC, then it might still be so that v ~ w is not satisfied in BC as it is
quite conceivable that one of the faces given by (3.5) or (3.6) is nonempty and disjoint
from the hyperplanes x = 0, x e c(v) = c(w). The statement of Theorem 4.1 has
its left-right dual version where suffixes of v and w are used instead of prefixes. That
this left-right dual version is equivalent to the statement of Theorem 4.1 is true, but
not immediately obvious.

There exist some interesting ways to rephrase the statement of Theorem 4.1.

THEOREM 4.5. A balanced identity v % w is satisfied in the bicyclic semigroup BC
if and only if, with the notation of Section 3, for every 1 < k < t, j 6 / „ , / € /„.,

(i) (0, . . . , 0) is a linear combination, with nonnegative coefficients not all zero,
of the rows of the matrix v; — Wl(, and

(ii) (0, . . . , 0) is a linear combination, with nonnegative coefficients not all zero,
of the rows of the matrix w, — V u .

PROOF. From Theorem 4.1 it follows that the balanced identity v ~ w is satisfied
in BC if and only if the systems (3.5) and (3.6) of strict inequalities are inconsistent.
The above are merely reformulations of the consistency criterion found in [7] (see
also [9, Theorem 6 and Corollary 5]). •
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We would also like to draw the reader's attention to an inconsistency criterion due
to Motzkin [17] (see also [9, Theorem 11, and subsequent remark]):

THEOREM 4.6. A balanced identity v « w is satisfied in the bicyclic semigroup BC
if and only if, with the notation of Section 3, for every 1 < k < t, j e / u , j ' € JXt,
the matrices v,- — W^ and v/y — \Xt each satisfy the following condition: the matrix
has a zero row, or one can find q linearly dependent rows in the matrix which contain
aq x (q - 1) submatrix B, such that (det Bt) (det BM) <Q for all 1 < t < q - 1,
where Bt, 1 < I < q, is the matrix obtained from B by deleting its l-th row.

PROOF. The proof follows immediately from Theorem 4.1 and the results mentioned
just before the statement of the theorem. •

COROLLARY 4.7. It is decidable whether or not, for a given balanced identity
v ~ w, the semigroup variety determined by v ~ us contains a (0-)simple semigroup
which is not completely (0-)simple.

PROOF. This follows immediately from Corollary 2.5 and either one of Theo-
rems 4.1, 4.5 or 4.6. •

At this point the reader may ask why we have expressed the condition stated in
Theorem 4.1 in the language of polyhedral convex cones. After all, the conditions
stated in Theorems 4.1, 4.5, and 4.6 only concern systems of strict inequalities.
It will become apparent that for varieties other than the one generated by BC the
consideration of the entire face structure of the polyhedral convex cones is necessary.
As we shall see later, this will be the case, in particular, for the variety generated by
E. Meanwhile we have the following result which will be used later.

THEOREM 4.8. Let v ~ w be an identity which is satisfied in BC. Then, with the
notation of Section 3,

(i) for every 1 < k < t and j e IXt, the polyhedral convex cones (\j — W n )* and
(\j — \Xt)* coincide, and

(ii) for every 1 < k < t and j ' e JXt, the polyhedral convex cones (w7 — \Xt)*
and (yvj> — WJ()* coincide.

P R O O F . Let ( £ , , . . . , € , ) be in the cone (v; - V,,)*. Thus,

(4.4) €,-, + ••• . < * . •

for all r e IXk. For i ^ k we choose s, such that s,- > 0 and £, + s, > 0. We next
choose sk such that sk > 0, lk + sk > 0 and

(4.5) sk = max (-£,-, *,•„_, + s,m) + £ , , + . . . + I- .
m&I
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Since si/ — sk — sir for all r e / „ , it follows from (4.4) that

(4.6) - £ „ £,•., + s,- > max (—€,-, *,-,_, + s,-p)
re/,,

and so from (4.5) and (4.6) we obtain that

-£,-, £,,_, + 5,-; = max (s,,, . . . , -£ , , £,•„_, + sin).

Let <p be the substitution by elements of BC, given by Xj<p = bSlat:+h, 1 < / < n.
Since v % w is satisfied in BC we have by Lemma 2.7 that u<p = iu<p = bs af+s,
where £ = 5ZK(-<, «*, (v) £/, and .v = -£, , - • • • - ^ , + sir Again by Lemma 2.7,

s = max (iv. . . . , —If — • • • — ij> + s:').
\ I 1 n—1 n /

In particular, -£,-, £,; , + i,; > -£, ; £,-, ( + s,-, for every r' e 7V(. Since
5,-; = st — sr, for every r' e JH, it follows that £ , ,+ • • • + £ , , < £ , ; + ••• + £,', for
every r' e 7,,. Therefore ( £ , , . . . . £,) is in the cone (v7 — W<()*. In a similar way we
can prove that for / e /V(, the cone (w7- — W u )* is contained in the cone (v/y — V,,)*.

Conversely, let (£, , £,) be in the cone (v; - Wlt)*. Thus,

(4.7) £ , ,+• • • + I,,., £ £,; + • • • + £,;, ,

for all r' 6 7,,. Since u ~ w is satisfied in BC we have from Theorem 4.1 that the
system (Lj) given by (3.5) does not have a solution. Therefore there exists j ' e Jxt

such that

(4.8) £(1 + . - . + £,j_i = £ , ; + . . . + £ , > _ | .

From (4.7) and (4.8) we have that £,; H \- £r, t < £,•; H 1- £,;, ] for all r' € Jxt.
However, then ( £ , , . . . , £,) is in the cone (w;- — WVt)*, and so by the first part of the
proof, also in the cone (wy — Vl()*. Thus

for all r € /,(. Hence (£ x, ...,(.,) is in the cone (vy- — V.t,)*. In a similar way we prove
that for / € 7,,, the cone (w7- — V,t)* is contained in the cone (w;- — W,J*. D

REMARK 4.9. It is in Theorem 4.8 that for a given word v the associated matrices
\j — V,, make their first appearance; these matrices are constructed solely in terms
of v. Therefore Theorem 4.8 could be the starting point for determining directly,
for a given v, the words w where v % w is satisfied in BC, or, more modestly, for
determining directly which words v are isoterms in the equational theory of BC. We
shall not pursue such an ambitious program here. Suffice it to add the following
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remark. The matrices v,- — Vt, all have a zero row. Suppose that v ~ w is satisfied in
BC. Of course v, — Wx, need not have a zero row. If however the cone (v; — Vtt)*
has a f-dimensional face, then it follows from Theorems 4.1 and 4.8 and Remark 4.2
that \j — W u has a zero row, that is, both v and w have xk in the y-th position, and
moreover, Vj « Wj is balanced.

In the following we give a sufficient condition for our identity to be satisfied in BC.
This sufficient condition proves to be very useful for generating many examples of
identities v ^ w which are satisfied in BC. In the spirit of Theorem 4.8, this sufficient
condition deals with the words v and w separately. To the knowledge of the author,
all the concrete examples of identities which are satisfied in BC and have appeared in
the literature satisfy this sufficient condition.

Let v ~ w be a balanced identity, v = u{uu2, w = uiu'u2, i("\) = P, ^(«) =
t(u') = q, and t(u2) — r. With the notation of Section 3, for 1 < k < t, j e IXk,
p<j<p + q,we let (L'j) be the system of strict inequalities

(4.9) (L'j): <

\<i<t

for £ e lXk, 1 <t<p,p + q + \ <L<p + q + r. L i k e w i s e , for 1 < k < t, / e JXt,
p < j ' < p + <?, we let (R'r) be the system of strict inequalities

(4.10) (/?;,) : Yl n*,(«>/-i)x; < ^ nx, (u;r_,)x,,
I <i <r I <i• <r

for I' 6 Jxt, 1 < t < p, p + q + 1 < V < p + q + r.

THEOREM 4.10. Let v ~ w be a balanced identity, v = U\uu2, w = U\u'u2,
l(u\) = p,t{u) = l(u') = q, and t(u2) = r. If, with the notation of Section 3, for
1 <k <t, j € lXk, j ' e JXk, p < ;", / < p + q, the systems (L'j) and (R'r) given by
(4.9) and (4.10), respectively, are inconsistent, then v ~ w is satisfied in BC.

PROOF. In view of Theorem 4.1 and Remark 4.2, in order to verify that v % w is
satisfied in BC, it suffices to verify that for all 1 < k < t, j e lXk, j ' € Jxt, p < j ,
j ' < p + q, the systems (Lj) and (Rj) given by (3.5) and (3.6), respectively, are
inconsistent. One readily sees that for such j (j') the strict inequalities which feature
in (L'j) ((R'J,)), also feature in (Lj) ((Rj')). Therefore if (L'j) is inconsistent, then so
is (Lj), and if (R'j,) is inconsistent, then so is (Rj). •

EXAMPLE 4.11. The identity B ^ I D given by xyx xy yxAy ~ xyx yx yxAy is
satisfied in BC. To see this it suffices to verify that the systems (L\), (L'5), (R'4),
and (R'5) are inconsistent. For instance (L'5) is inconsistent because it contains the
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inequalities 3x + y < x and 3x + y < 7x + 3y. This identity is somewhat remarkable
because it is a shortest nontrivial identity satisfied in BC where one of the variables
occurs only four times in each side.

The identity v % w given by xyyx xy xyyx % xyyx yx xyyx is a shortest
nontrivial identity satisfied in BC [23]. This identity, which appeared in [1], was
the first nontrivial identity found to be satisfied in BC. One readily verifies that the
systems (L'5), (L'6), (R'5), and (R'6) are inconsistent.

EXAMPLE 4.12. Let un — JC, •••xn, with xu...,xn distinct variables. If \/f is
a permutation of {1, . . . , «}, then by u* we mean x^ • • -xn$. Let y^ and ^2 be
permutations of { 1 , . . . , « } , and v % w the balanced identity which is of the form

(4.11) xu*'ununx unx xuniinit*
2x % xu*luniinx xun xununu*2x.

We can say that (4.11) is obtained from

(4.12) xy^x yx xy^x % xy^x xy xy^x

via a 'scrambled' substitution. Using the sufficient condition of Theorem 4.10 it is just
as easy to verify that the scrambled version (4.11) is satisfied in BC as it is to verify
that (4.12) is satisfied in BC. For instance, for (4.12), (R'-,) contains the inequalities
3x + 3y < x + y and 3x + 3y < 4x + 4y and so (R'7) is inconsistent. Correspondingly,
for (4.11), (/?3/1+3+/), 1 < / < n, contains the inequalities

3x + 3(x,H h x J + XiH hx,_, < x + (x,H h

and

and so (/?3n+3+/) is inconsistent.
For n even and iJ/\ and \j/2 such that

(x\ ' ' ' xn) = xnxn-\ ' ' ' X\,

(X\ • • ' xn)V~ = X2xi - - ' xn X\X7, ' ' ' xn-\,

the identities (4.11) are precisely the cleverly constructed identities considered in [24].
It was proved there that every basis of the equational theory of BC must contain the
identities (4.11), with n even and Vi and ^2 as in (4.13).

This example shows that the sufficient condition of Theorem 4.10 together with the
device of 'scrambled' substitutions allows us to generate many sophisticated identities
which are satisfied in BC. That identities obtained by judiciously using scrambled
substitutions may not be derivable, in the usual sense, from other identities that are
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satisfied in BC, follows from the above mentioned result of [24]. In the next section
we shall use scrambled substitutions and the sufficient condition of Theorem 4.10 to
find yet another infinite family of identities satisfied in BC, which are present in every
basis of the equational theory of BC.

EXAMPLE 4.13. As can be expected, the sufficient condition of Theorem 4.10 is
not a necessary condition. To see this, consider the identity v % w given by

xyx yx2n+{ y2n+lx % xyx x>y x2n+]-j y2n+h,

with 1 < j < n. By Example 4.4 this identity is satisfied in BC. However, while
the system (/?y+4) is inconsistent, (R'J+i) is not. It remains to be seen whether the
equational theory of BC contains a basis consisting of identities which satisfy the
sufficient condition of Theorem 4.10.

In order to demonstrate the full power of the sufficient condition of Theorem 4.10,
we give the following theorem. Many variants are possible, including a generalization
to identities in more than two variables.

THEOREM 4.14. Let u ^ u' be any balanced identity involving the variables x and
y only. Then for sufficiently large positive integers k\,k2 and £3, the identity v % w
given by xyxu xklyklxky s» xyxu' xklyk2xk} is satisfied in the bicyclic semigroup BC.

PROOF. We put 1 + nx(u) = 1 + nx{u') = m and 1 + ny(u) = 1 + ny(u') = n.
With total disregard for efficiency, we put

*, = {m + 2)\n-{m + 1),

k2 = (m + 2)!(n + \)\n- 1,

k3 = (m + 2)!(n + \)\mn - (m + 2)\n.

We shall verify that for such choices of ku k2 and &3 the systems (L'i+J) and (R'3+j),
3 < j < m+n + l, are inconsistent. Hence by the sufficient condition of Theorem 4.10
it will follow that the identity v « w is satisfied in BC. We shall deal with the systems
(L'3+j) only, the systems (R'i+j) can be dealt with in the same way.

We first assume that the prefix v3+j ends in the variable y. Then the system ( i 3 + J )
contains the strict inequalities

(4.14) (2 + nx(uj-i)) x + (1 + « V ( M ; _ , ) ) y < X,

(4.15) (2 + nx(uj-i)) x + (1 + nv(«;-i)) y < (m + *, + l)x + (n + l)y

forallO < I < k2. IfwepuU = (m + l+ki)/(2+nx(uj-i)), then t is a positive integer
such that t > n, and so there exists 0 < t < k2 such that t — (1 + nv(My-_i))r - n.
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With this choice of £, (4.15) becomes

(2 + nx(Uj-i)) x + (1 + /iv(K;-i)) y < t ((2 + n,(«y_,))x + (1 + nT(ii;_,))y),

which is equivalent to

(4.16) (2 + nx(Uj-t)) x + (1 + ny(Uj.x)) y > 0.

On the other hand, from (4.14), it follows that

(4.17) (1 +nx(Uj-i)) x + (l +nv(My_,))y < 0

is a consequence of the system (L'i+J).
From (4.15) and (4.16) we have that

(4.18) (m + kx + \)x + (n + £)y > 0, 0 < £ < k2

is a consequence of the system (L'3+.).
We now let £ — (m + kt)n. Then 0 < £ < k2 and

^ + £ = (m + / t+ l)n > (m + k+ 1)(« - 1),

whence

Therefore, from (4.17) it follows that

(4.19) (m + kx + l)x + (« + £)y < 0

is a consequence of (^3+7) for this value of I. Confronting (4.18) with (4.19), we see
that (L'i+j) is inconsistent.

We next assume that the prefix v3+; of v ends in x. Then the system (L'3+J) contains
the strict inequalities

(4.20) (2 + nx(uj-i))x + (1 + n.v(«,-_,))y < 0,

(4.21) (2 + H.V(MJ_I))X + (1 +nv(M,-_1))y < ( m + < : , + £ + l)x + (« + k2)y,

for all 0 < t < kj. We let s = (k2 + n)/(\ + nv(«j_i)). Then 5 is a positive integer,
and we choose £ such that £ = s(2 + /!,(«;_,)) - (/n + /t, + 1). Then 0 < £ < kit

and for this choice of £, (4.21) can be rewritten as

(4.22) (2 ; 7 ; _ 7

Confronting (4.20) with (4.22), we see that (£',+,-) is inconsistent. D
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In the remainder of this section we shall establish some general features of identities
that are satisfied by BC.

The first part of the following lemma is well-known. We include it for the sake of
completeness.

LEMMA 4.15. Let v ~ w be a balanced identity involving the variables x and v

only.

(i) If v »s w is satisfied in BC, then h(v) = h(w).

(ii) If v = xpyqx v', w = xpyrx w', with p > 0 and 0 < q < r, then v % w is
not satisfied in BC.

PROOF, (i) If h(v) ^ h(w), then by symmetry we may assume that v = xpy v' and
w = yqx w' for some p, q > 0 and some v' and w'. Then the system (Lp+\) has a
solution x = — 1 and y sufficiently large and positive. Therefore v ~ w is not satisfied
in BC by Theorem 4.1.

(ii) Let v «s w be as in the statement above. Then the system (Rr+r) has a solution
y = — 1 and x sufficiently large positive. Therefore v % w is not satisfied in BC by
Theorem 4.1. •

The condition of Lemma 4.15 (ii) will prove to be very useful when considering
also identities in more than two variables that are satisfied in BC in view of the fact
that the equational theory of BC is closed for deletion.

Let E be an equational theory consisting of balanced identities only. Following
[13] we say that S is left \-hereditary if for every v ~ w of £ , the following condition
is satisfied: if z e c(v) = c(w) and v = V\ZVi, w = wtzw2, with z & c(v\) U c(wt),
and i>i or wt nonempty, then vl ~ wi is in £ . The notion of right \-hereditary
equational theories is defined in a dual way.

It was already shown in [24, Lemma 2] that the equational theory of BC is left
and right 1-hereditary. We shall give a short proof for this in the following theorem;
it again follows directly from Theorem 4.1. In [20] it was found that the greatest
equational theory which consists of only balanced identities and which is both left
and right 1-hereditary, is precisely the equational theory which consists of all the
balanced identities which are satisfied in all the orthogroups over abelian groups. This
result, together with the result of [24] then yielded the consequence that the variety
generated by BC contains all orthogroups with abelian maximal subgroups, and thus
in particular, all bands.

THEOREM 4.16 ([24]). The equational theory ofBC is both left and right 1 -heredi-
tary.
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PROOF. Let v % w be any identity satisfied in BC, z 6 c(v) — c(w), v = Vizv2,
w = W[Zw2, with z t c(v\) U c{w\). Using deletion and Lemma 4.15 (ii), we have
that V[ % u>i is balanced or both u, and W\ are empty. Let I — i(v\) = £(wi) > 0.

With the notation of Section 3, let 1 < k < t, j e / „ , j < t. The system of
inequalities

(4.23) ^T nXi(vHl)\i < ^ «.C|(u;;-._i)x;i / e / v j ' < t.

is contained in the system (L;) . Moreover, nz{Vj-\) — n.{wy_\) = 0 for all j ' e
•Ac / < (•• Therefore, if (4.23) has a solution, then so has (L7) for z sufficiently
large positive. This however is not the case, by Theorem 4.1 and since v % w is
satisfied in BC. Thus the system (4.23) does not have a solution. By symmetry we
may now conclude from Theorem 4.1 that V\ ~ w{ is satisfied in BC. •

We are now in the position to compare the variety HSP(BC) with the semigroup
varieties minimal for not satisfying [J = T>].

LEMMA 4.17. Let V be the variety determined by all the balanced identities v ~ w
where nx(v) = nx(w) — 0 or nx(v) — nx(w) > 2 for all x e X, and where
h(v) = h(w), t(v) — t(w). Then V contains all the varieties minimal for not
satisfying [J = V\

PROOF. This follows immediately from [19, Theorems5.1,5.4,5.13, and 5.34]. •

COROLLARY 4.18. The variety HSP(BC) properly contains the join of the varieties
minimal for not satisfying \J — T>\

PROOF. It suffices to prove that HSP(BC) properly contains the variety V of the
statement of Lemma 4.17. Let v ~ w be an identity satisfied in BC. We give a
proof by induction on the length I of this identity. If £ = 1, then the identity is
trivial and thus satisfied in V. Let I > 2. If there exists no variable z such that
nz{v) — nz(w) = 1, then i; % w is satisfied in V by Lemma 4.15 (i). Otherwise,
i; — vtzv2 and w = w\zw2, where nz(v) = n.(w) = 1. By Lemma 4.15, V\ ~ wt and
v2 ~ w2 are satisfied in BC, and by the induction hypothesis they are also satisfied
in V. Therefore, again, v ~ w is also satisfied in V. Clearly V is then properly
contained in HSP(fiC) since x2y2x ~ xy2x2 is satisfied in V but not in BC. •

REMARK 4.19. Corollary 4.18 shows that a semigroup variety may well not satisfy
[J = V], while all its (O-)simple semigroups are (O-)bisimple. If a semigroup in this
variety has a j7"-class that is not a X>-class, then the principal factor corresponding to
this ^7-class cannot be simple or 0-simple. The semigroups J, K, S ( / J ) , p prime,
constructed in [19, Section 5], provide examples for this situation.

https://doi.org/10.1017/S1446788700014646 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014646


86 F. Pastijn [24]

It may be of interest to verify directly that in the variety V of Lemma 4.17 all simple
semigroups are completely simple. Indeed, let S be a simple semigroup of V, and
a e S. Then a — ca2d for some c, d e S1 and so, since 5 satisfies the identities of
Lemma 4.17, a = ca2d = c2a2dad = c3a2dadad = ca2dac2dad = a2c2dad. From
this and its dual, it follows that a is a group element of S. Therefore 5 is completely
simple.

5. The axiomatic rank of the variety generated by

It was shown by Shneerson [24] that the variety generated by BC is of infinite
axiomatic rank. He proved this fact by showing that every basis for the equational
theory of BC needs to contain the identities (4.11) of Example 4.12, with \J/X and \j/2 as
in (4.13). We shall prove the same, but using another family of identities. The reason
why we use another family of identities is that ours has the additional nice feature that
for every k > 3, there is an infinity of identities in the family which involve precisely
k variables.

We consider the balanced identities

( 5 . 1 ) xy{ • • • y k x y x - - - y k x x 2 y x • • • y k y n
k ' 2 y"kZ

2 • • • y " ~ 2 y \ • • • y k x

^xyy- y k x xyx--- y k x 2 y { • • • y k y"k~
2 y n

k l ] • • • y " ' 2 y , • • • y k x , n > 3 .

We can see that there are two parameters attached to such identities, namely k and n.
For k = 1 and n > 3 this identity is satisfied in BC by Example 4.4. The identities
(5.1) are, for n > 3, all 'scrambled' substitutions of this simple case and the verification
that they are satisfied in BC is essentially as easy.

LEMMA 5.1. The identities (5.1) are satisfied in BC for all k > 1 and all n > 3.

PROOF. We use the sufficient condition of Theorem 4.10. The system (L'2+k+l),
1 < I < k, entails the inequalities

x + (y, + • • • + yk) < 0,

3x + (y, + • • • + yk) > 0,

3x + n(y, + --- + yt) > 0,

whence x > 0 and x < —(yx + • • • + yn) < (3/n)x, and so (L'2+k+t) has no solution

since n > 3. (£^+3) n a s n 0 solution for the same reason.
The systems (R'k+?) and (R'i+k+t), 1 < I < k, each contain two inequalities which

respectively entail 2x + (y! H \-yk) > 0 and 2x + (y, + • • • + y*) < 0. Therefore
these systems have no solution. •
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LEMMA 5.2. Forn > 3, 1 < j < n - 1, the identities

(5.2) x yiy2x xyiy2 x2yiy2y2~2 y"~2 y\y2* ~ xyty2x u x2yl
2yxy"2~

x~1 y"~2y\y2x,

with u = XV1.V2 or u — \\xy2 or it — y\\2x, are not satisfied in BC.

PROOF. The system (Rw+j) has the solution x = 1 — n, y, = n — j , y2 = — 1.
Therefore the identities (5.2) are not satisfied in BC by Theorem 4.10. •

LEMMA 5.3. For n > 3 and words U\ and u2 over [yu y2] such that nyi(u\) =
«V,(MI) — «y, ("2) = n?,(n2) = n, the identities

(5.3) xy\\2x y\y2x x2uxx % xy\y2x y\xy2 x2u2x

are not satisfied in BC.

PROOF, X = —1, y, = - 4 , y2 — 4 is a solution for the system (R6). Therefore the
identities (5.3) are not satisfied in BC by Theorem 4.10. D

LEMMA 5.4. Let k > 2 andn > 3, and let v % w be the identity (5.1). Ifv^w' is
a nontrivial identity which is satisfied in BC, then w = w'.

PROOF. We first consider the case k — 2. Let v « w' be_ obtained from u ~ w'
by deleting all the occurrences of the variable x, and v ~ w' obtained from 1; ~ w'
by deleting all the occurrences of the variable y2. Then v ~ w' and v % w' are
satisfied in BC. Then v = xytx y]xx2y"x, and it follows from Lemma 4.15 (ii) and
its dual that w' has the prefix xy\x and the suffix xy"x. From Example 4.4 we then
have that w' — v or w' = xy\x xy\ x2y"x. In any case we see that w' has the suffix
x2y"x. By symmetry we conclude that w' has a suffix of the form x2u2x, where
nyi(u2) — ny,(u2) = n. Since ii has the prefix y1.y2.y1> so has w' by Lemma 4.15 (ii).
By symmetry we have that w' has the prefix xyiy2x.

By Lemma 4.15 (ii), both v and w' have the suffix y2 y"~'y2, and therefore u2 =
V2 viy" ' ^ y"~2.Viy2 for some 0 < j < n — 1. By Lemmas 5.1 and 5.2, we need
j = 0. Therefore w' has the suffix x2 V1.V2.V2~2 y" 2 yiy2^- Whence v = w'. Since the
identity v % w is nontrivial, we have from Lemma 5.3 that w — w'.

We next consider the general case where k > 2. Let 1 < / < j < k. The identity
obtained from v % w by deleting all but the variables x, y, and y7 must be either trivial
or of the form (5.1) by the first part of the proof. Since this holds true for all such i
and j , and since v = w' is itself nontrivial, we conclude that w — w'. •

THEOREM 5.5. Every basis of the equational theory of BC contains the identities
(5.1) for all k > 2 andn > 3.
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PROOF. Let £ be a basis for the equational theory of BC. Let k > 2, n > 3 and let
v ~ w be the identity given by (5.1). By Lemma 5.4, there exists an identity p ~ q
of E, a substitution a, and words u\, u2 such that v = u\(po) u2 and w = U\{qo)u2.

If u sa a' is an identity that is satisfied in BC and such that u has the prefix
>>! ...ytjc>'i, then by Lemma 4.15 (ii) and Theorem 4.16, so has u. Therefore
by Lemma 5.4 the word v' obtained from v by deleting h(v) is an isoterm in the
equational theory of BC. Since v % w is a nontrivial identity it therefore follows that
u [ is empty.

If « % H' is an identity that is satisfied in BC and such that u has the suffix
yt • • • yk *

3yi • • • ykyl~2 • • • y"~2 y\ • • • yk, then by Theorem 4.16, and after using dele-
tion and Lemma 4.15 (ii), we see that u' has the suffix x3y, • • • yky"k~

2... y""2 y, • • • yk.
Therefore by Lemma 5.4 the word v" obtained from v by deleting t(v) is an isoterm
in the equational theory of BC. Since v % w is nontrivial, we have (hat u2 is empty.

We found that v = pa,w = qo and that v' and ti" are isoterms. Assume that there
existsz € c(p) = c{q) such that zo contains the subwordx2. Thenn,(p) = n-(q) = 1
and p = P\zp2, q = q\zq2 for some words p\, p2, q\, q2. From Theorem 4.16 it
follows that p\ = q\ is satisfied in BC if pt or qt is nonempty, and then pxo = qxu
since v" is an isoterm. Thus in any case {p\z)o = (q\z)o is a prefix common to v and
iti. This however is impossible since {p\z)o has the prefix xy\ • • • y^xyi • • • ykx

2 and
w has not. Hence there exists no variable z in p such that zo contains the subword
x1. Since v contains the subword x* it follows that c(p) — c(q) contains a variable
x' such that x'a — x, and then p = p\x'p'2 with p\a = xy{ • • • ykxy\ • • • ykx and

p'2(i =xyx--- ykyk'
2 • • • y"-2y\ • • • ykx.

We shall make use of the following remark:

(R) If z e c(p'2), then z e c{p\).

Indeed, if z e c{p'2), but z & c(p\), then we can write p = p\zp2, q = q\zp2 with
z & c(p\)Uc(qi), and by Theorem 4.16, pt = q\ is satisfied in BC. Then pxo — qxa
since v" is an isoterm. However pxa has the prefix p\o, whereas w has not.

Since p'2a contains the subword ykyk~
2 • • -y"~2yi, with n > 3, but p\o contains

neither of the subwords y\, ykyk-\, . . . , y2yi, y2, it follows from (R) that there exist
variables y\,..., y'k e c(p'2) such that y\a — yt, . . . , y'ko = yk and moreover each of
these variables occurs once or twice in p\.

Assume that for some 1 < / < k there exists y" 6 c(p) such that y- / y" and y"a
contains y,. By (R), y\ and y," each occur once in p\. Let p'[ be the shortest prefix
of p\ containing both y\ and y", and let q'[ be the prefix of q with l{p'[) = l(q'x').
By Theorem 4.16, pj' % g|' is satisfied in BC, and since v" is an isoterm we have
that p'[o — q'[o is a common prefix for i; and w. This, however, is impossible since
JC Vi • • • y**yi is a prefix of p"o, and w does not have such a prefix.

We found that if z 6 c{p) such that ZCT contains y,, 1 < i < i , then z — y\.
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Therefore i(za) = 1 for every ; e c(p). Let p ~ q be an identity obtained from

p ~ q by deleting all occurrences of y'2, • •.,}'[• Then pa = xvi-X'yix3)'"^ and

qa — JCV|.v2 Vi.v2yj'jc, where p ~ q is satisfied in B C and /? = JC,y'xX2y'xXj,x'xAy\"Xf,

for variables x, , . . . , ,v5, not necessarily distinct, such that x{a = x, for i = 1, . . . . 5.

Using Lemma 4.15 (ii) and deletions one verifies that p is an isoterm unless x, —

xi = • • • — x$ — x'. Since pa ^ qa, p is not an isoterm. Thus, if z e c(p) such that

za contains x, then z = x'.

We conclude that a is a bijection of c(p) = c{q) onto c(v) — c(w). Therefore £

contains v ~ w. D

COROLLARY 5.6. Every basis of the equational theory of BC contains, for every
k > 3, an infinity of identities involving precisely k variables.

COROLLARY 5.7 ([24]). The variety generated by BC has infinite axiomatic rank.

REMARK 5.8. Corollary 5.6 suggests that ther are several ways to introduce con-
ditions that are stronger than the requirement to be of infinite axiomatic rank. Such
distinctions are irrelevant however in the signature of monoids. In the equational
theory of a monoid every identity is a consequence of an identity involving more
variables. Therefore such an equational theory always has a basis, which for every
k > 1 has at most one identity involving k variables.

6. The equational theory of E

For a given identity v ~ w we shall decide whether or not v % w belongs to the
equational theory of E. That HSP(£) contains HSP(5C) properly can already be
seen from the following examples.

EXAMPLE 6.1. The identity xyx xy yx4 v ~ xyx yx yx4y of Example 4.11 is satis-
fied in BC, but not in E. The substitution <p by elements of E given by x<p = a and
yip := b yields (ab)2a* for the left-hand side and (ab)*ay for the right-hand side.

The identity jcyy.* xyxyyx ~ xyyx yx xyyx of Example 4.11 was shown in [1]
to be satisfied in BC. This identity is not satisfied in E since the substitution <p by
elements of E given by x<p — a and yep = b yields b(ab)a for the left-hand side and
b(ab)2a for the right-hand side.

EXAMPLE 6.2. Identities (5.1) are, for A; > 3andfc > 1, not satisfied in E. It suffices
to verify this statement for the consequence xykx ykx* yk"x ~ xykx2 ykx2 yknx of (5.1)
in this case. Indeed, the substitution <p by elements of E given by xtp = bk+la and
y<p = a2 yields bk+l(ab)a{2"-r>k~l for the left-hand side and bk+\ab)2 a(2n~X)M for
the right-hand side.
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Following [2, Theorem 2.10] we may expect that the variety HSP(BC) has infinitely
many covers. The following gives countably infinite concrete instances of such covers.

THEOREM 6.3. The interval [HSP(fiC), HSP(£)] in the lattice of semigroup
varieties is of the power of the continuum. The variety HSP(BC) has infinitely many
covers.

PROOF. Let A be the set of all identities of the form (5.1), with n > 3 and £ > 2.
For any subset B of A, let EB be the largest equational theory contained in the
equational theory of BC such that Efi does not contain the identities of B, and let VB

be the semigroup variety with equational theory HB. Then V0 = HSP(BC), and
\ A c HSP(£) by Example 6.2. By Theorem 5.5, the interval (V0, \A) consists of
the varieties \ B , B c A, and forms a lattice isomorphic to the lattice of all subsets
of A. •

Before we give examples of nontrivial identities satisfied in E, we want to charac-
terize the identities of the equational theory of BC that are satisfied in E.

THEOREM 6.4. A balanced identity v ~ wis satisfied in the semigroup E if and only
if it is satisfied in the bicyclic semigroup BC and, with the notation of Section 3,

(i) for every 1 < k < t and j e IXt, if (v; — Wx,)^ and (\j — VXl)g coincide
as nonempty faces of the polyhedral convex cones (\j — Wt,)* and (v; — \Xt)*, then
\A\ = \B\,

(ii) for every 1 < k < t and j ' e JXt, if(wr - \Xk)*A and (wv< - YfXi)*B coincide as
nonempty faces of the polyhedral convex cones (w; — \Xt)* and (w;- — Wt,)*, then
\A\ = \B\.

PROOF. In the following we shall assume that v « w is satisfied in BC. From
Theorem 4.8 it then follows that for all 1 < k < t and j e IXt, j ' e JXk, the cones
(\j — Wjj)* and (v; — V^)* coincide, and the cones (w;< — \xt)* and (Wj- — WXl)*
coincide.

Let us first assume that v « w is satisfied in E, and let 1 < k < t and j e lXt.
Let (\j — WXt)*A be a nonempty face of the cone (v, — VfXk)* and (v, — \Xt)B the
corresponding face in the cone (v; — \Xt)*; the faces (v; — WXk)A and (vy — \Xt)B

coincide. Let (it,..., lt) be a point in this face. For / / k we choose s, such that
Si > 0 and (., + s, > 0. We next choose sk such that

sk > 0 , £k + sk> 0 ,

(6.1) sk > max(-4 lim_t + s,J + th + • • • + £,-..,,

(6.2) sk > max (-£,-; lv + sr
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We put 5 — —£,, — • • • — th^ + s/j, where, of course, s^ = sk. Since ( £ , , . . . , £,)

belongs to (v; — \Xt)*B, we have

(6.3) £„ + • • • + £,,., < £ , - , + • • • + «,-,_,, A- e /,,

and thus, since s,; = s t = s,r for all r e / „ ,

(6.4) -£,-, £;j_, + s(.. > - £ „ £,v_, + sir, r € IXt,

hence s = max (.$,•,, . . . , - £ „ - • • • - £,B_t + s ,J .

We consider the substitution^ by elements of £ givenbyjc,^> = bSl ae'+Sl and we find

that v<p — w<p since v ~ if is satisfied in £ . Let Y — [j \ s = —£,, — • • • — £,; + s,-;}.

Then by (6.1), K c / l ( , and by (6.3) and (6.4), |K| = | / J - | B | , that ' is , the

number of equalities we find in the system (6.3). According to Lemma 2.8 we have

In a similar way we calculate w<p. Since (£i, . . . , £,) belongs to (vy — Wv,)^ we
have

(6.5) * / , + • • • + «/, , < £ , ; + • • • + «,-;.,.,, f e A,,

and so, since s/; = 5t — 5,-, for all _/' € / „ ,

(6.6) -£„ £,;_, + 5yj > -£,; £,-.,__ + 5,.,, / € 7,t.

In the system (6.6), precisely \JH \ — \A\ equalities occur, and since v % w is satisfied
in BC, we have \JXt\ - \A\ > 0 by Theorem 4.1. By (6.2), we thus have that

- £ , • ; £,-

Put 7 = {./' I .v = -£ , ; - . . . - £,., _ + Si'}. Then by (6.2), Y c yvt, hence

|7 | = |7,J - |/\|. According to Lemma 2.8, w<p = bs(ab)lJ^-w-1 ae'<+' +f'-+s. Since

v</) = itup and since \IXt\ — | / , J = nH(v) = n,,(u;), we thus have |A| = |B| , as

required. The symmetric statement can be shown in the same way.
We proceed to prove the converse. We assume that v % w is satisfied in BC and

that for every 1 < k < t and j e IXt, if the faces (v, - W,t)^ and (\j — \Xt)*B are
nonempty and coincide, then \A\ = \B\. Let <p be the substitution by elements of E
given by (2.8). Since v % w is satisfied in BC, and since (2.3) is a homomorphism
from £ onto BC, we have from Lemmas 2.7 and 2.8 that v<p — bs(ab)'" af+s and
wy = bs(ab)m' at+s, where

s =

= £ , , + . . . + £,._ = £ . , + . . . + £,, ,
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and m and m' are calculuated according to the statement of Lemma 2.8. It remains to
be shown that m = m'.

Let

Y = {j\s = ~th £,-,_, +Sil), r = min Y,

Y = {j'\s = -«,-; lvr_x + sr.}, r' = min F,

Y' = {j eY\ Si. ? 0, j > r},

F = { / e F | Sl> ^ 0 , / > r ' } .

For 1 < A: < t, let i* = Y nixt,Yk — F n 7Xt. Then K is the disjoint union of the
nonempty sets of the form Yk and Y the disjoint union of the sets of the form Yk. Let
\ < k <t, and assume that Yk ^ 0. For _/ e Yk we thus have that

(6.7) S = -*,-, €,-,_, + 5,'. > -€,-; £,•,, + 5,;,, / € 7,t,

thus, since sit = sk = s,-., for all / € 7Xt,

(6.8) € , - ,+• • •+ €f>1 < £,-; + • • • + €,-;,_,, / € 7Xt,

and ( £ i , . . . , €,) belongs to a face (vy - WXt)* of the cone (v7 - WJ()*. This face
must coincide with a nonempty face (v; — \Xt)*B of the cone (v7 — VX(.)* by our
assumption, and then \A\ = \B\. We have that |Kt| is the number of equalities in (6.7),
that is, the number of equalities in (6.8), that is, | / , J — \A\. Similarly, using the fact
that ( £ , , . . . , £,) belongs to (\j - \Xt)*B we have that |K*| = |/XJ - |fl|. Therefore
\Yk\ = \Yk\. By symmetry, we have that Yk ^ 0 if and only if Yk ^ 0, and then
mi = \Yk\.

A s s u m e t h a t sir = 0 , w h e n c e s = —£,-, — . . . — £ i r i . I f r > 1, t h e n

for some m", with t = max($,-,,..., -£, , - • • • - l,r_2 + s,-r.,). Obviously £,-, H h
£,-,_, + f > 0, and since r = min Y, t < s. This, however, is a contradiction. Therefore
r > 1 is impossible and instead we have r = 1, 5 — 0, and then r' = 1 since
h(v) = h(w) by Lemma 4.15 (i). By symmetry we have that sir = 0 if and only
sr, = 0 and if this is the case then r = /•'. In this circumstance,

\<k<t
m=

Otherwise, sir ^ 0 ^ a,--, and

!<*<( \<k<t
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In any case, |K'| = |F ' | .
From Lemma 2.8, we thus find

\<k<t

Y'\ = ] T m v + \Y'\=m',

and we conclude that v ~ w is satisfied in E. •

EXAMPLE 6.5. In Example 6.2 we have seen that the identity v ^ w given by

xykx ykx\>knx % xykx2ykx2 yknx

is not satisfied in E. Without finding a substitution we could have found the same
by applying Theorem 6.4. The cones (wt+3 - V,)* and (wt+3 - W , ) ' coincide.
Their boundary consists of the point (0,0) only, and they furthermore have a 1-
dimensional face, namely the half line (—kt, 2t), t > 0. This half-line is given as a
face(wt+3-V.v)* = (w t + 3 -W,)* ,wi th | /4 | = 2, |B| = 3. Therefore by Theorem 6.4,
the identity is not satisfied in E.

REMARK 6.6. Let v % w be a balanced identity that is satisfied in BC and let
ii = U]Uu2, w = ii]u'u2, with t(ii\) = p, £(u) = i(u') = q, and l(u2) = r. We claim

that v % w is satisfied in E if and only if for every 1 < k < t, j e IXt, j ' 6 JIt, with
p < j < p + q and p < j ' < p + q, the conditions (i) and (ii) in the statement of
Theorem 6.4 are satisfied. This certainly reduces the number of cones to be examined.

To see that our claim holds true we must revisit the converse part of the proof of
Theorem 6.4. The crucial passage is the one where we prove that for 1 < k < t,
we need \Yk\ = \Yk\. If Yk contains a y e IXt such that p < j < p + q, then the
same argument gives \Yk\ = \Yk\. By symmetry, if Yk contains a j ' e JXt such that
p < j ' < p + q, then \Yk\ = \Yk\. It remains to consider the case where Yk and Yk are
subsets of {j | j < p or p + q < j}. In this case however Yk = Yk. So \Yk\ = \Yk\
in all possible situations.

We can repeat the observation made in Remark 4.2; the conditions of Theorem 6.4
deal not only with the inherent geometric properties of the cones under consideration,
but also with the way they are given.

Since there exists an antiautomorphism of £ , the equational theory of E is self-dual.
Thus, Theorem 6.4 has its left-right dual version where suffixes are used instead of
prefixes.
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COROLLARY 6.7. It is decidable whether or not, for a given balanced identity

v ~ w, the semigroup variety determined byv^w contains a (O-)simple idempotent-

free semigroup.

PROOF. This follows immediately from Corollary 2.3 and Theorem 6.4. •

We give a useful sufficient condition which will enable us to generate examples ad
libidum.

THEOREM 6.8. Let v % w be a balanced identity, v = u\uu2, w = u\u'u2, with
£(«,) = p. l(u) = £(u') = q, and l(u2) = r. If for all 1 < k < t, j e IXk, j ' e JH,
with p < j , j ' < p + q, the polyhedral convex cones (v7 — W,()* and (Wy — \Xt)*
each coincide with their boundary, then v ~ w is satisfied in E.

PROOF. Let v ~ w be an identity that satisfies the conditions of the statement of
the theorem. Then, from Theorem 4.1 and Remark 4.2, it follows that v % w is
satisfied in BC. Then by Theorem 4.8, for 1 < k < t and j e lXt, p < j < p + q,
the cones (v, - Wt t)* and (v, - V^)* coincide, and so they each coincide with their
boundary. So trivially, if (v7 - WJ t)^ and (v, - \It)*B are nonempty faces common
to these cones, then A = 0 = B. This, together with the symmetric argument means
that v «s w is satisfied in E by Theorem 6.4 and Remark 6.6 •

We use the sufficient condition of Theorem 6.8 to construct examples of identities
which are satisfied in E.

THEOREM 6.9. Let u, u' be words involving the variables x and y only, such that
I = t(u) = l{u') > 0. Let <p be the substitution given by x<p = xy, yep = yx. Then
the identity v ~ w given by

(6.9) xy2x(u(p)x2y3xy2x « xylx(u\p)x1yhxy1x

is satisfied in E.

PROOF. One verifies that for j e Ix, 5 < j < 4 + 21, the cones (v^ - W, ) ' each
reduce to {(0, 0)}, and similarly, for j e Iy, 5 < j <A + 2t, the cones (v,- - Wv)*
each reduce to {(0, 0)}. By symmetry and Theorem 6.8, the identity v % w is satisfied
in E. When considering the cones (v, — W^)* or (v;- — Wv)* one needs to distinguish
the cases where j is odd or j is even. Thus in all, we need to examine four cases. We
examine one case and leave the other three to the reader.
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Let j e Ix, 5 < j < 4 + 21 and j = 2k even. Then the system (v,- - W,)x < 0

entails the inequalities

(k+ \)x + (k + 2)y < x + 2y,

(k + l)x + (k + 2)y < (4 + £)x + (5 + £)y,

(* + l)x + (Jfc + 2)y < (5 + £)x + (7 + t)y,

for which only x = 0, y = 0 can be a solution. D

For u<p — xy and w'</> = yx we find an identity of length 15 of the form (6.9) which

is satisfied in E. Many variants of Theorem 6.9 are possible, including those involving

more than two variables. We note that E generates a proper semigroup variety.

PROBLEM 6.10. Does there exist a bisimple idempotent free semigroup (a congru-

ence free idempotent free semigroup) which generates a proper semigroup variety?

To put this question into perspective, we note that by [12] every idempotent free semi-

group, which is left simple or right simple, generates the variety of all semigroups;

furthermore, to this date we do not have any example of a bisimple idempotent free

semigroup which is neither left simple nor right simple (see the concluding research

problem of [5]).
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