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Abstract

Applying Ekeland's variational principle in this paper, we obtain a maximum principle for
optimal control for a class of two-point boundary value controlled systems. The control
domain need not be convex. For a special case, that is the so called LQ-type problem,
we obtain the optimal control in the closed loop form and a corresponding Riccati type
differential equation.

1. Introduction

In this paper we discuss an optimal control problem: minimize the cost function

/(«(•), *(0)) = h(x(0)) + y(x(T))

subject to the system

*(0 = /(*(», v(0)

with initial and terminal state constraints G0(x(0)) = 0 and Gi(x(T)) = 0 respect-
ively, where u(-) is the control function mapping into a subset of Rk and *(•) is the
state of the system. We call the above system a two-point boundary value controlled
system. Our objective is to obtain a necessary condition, called a maximum principle,
for an optimal control of the problem.

The paper is motivated by Pontryagin et al. [4]. Applying a convex cone method
in the celebrated book, Pontryagin discussed an optimal control problem with initial
and endpoint state constraints. In this paper we obtain a maximum principle by using
Ekeland's variational principle [3], where the transversality conditions are in a more
precise form. (See (14) and (16) for details.)
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[2] A maximum principle for optimal control 173

We may sometimes allow the initial state to vary in some given range. Rehbock
et al. [5] studied the sensitivity of the optimum cost with respect to changes in
the coefficient vector, especially in the initial state of the dynamical system. They
formulated a new cost function by penalizing the sensitivity of the original objective
functional and solved the problem by using the control parameterization technique
[6]. See [5] for further details.

Only necessary conditions for the optimal control are discussed. We do not incor-
porate the existence problem. Some results in this field can be found in Ahmed [1,
2].

The problem is stated in detail in Section 2 and the maximum principle derived
for the optimal control in Section 3. In Section 4, we consider a specific LQ-type
problem and obtain the optimal control in the closed loop form and a corresponding
Riccati type differential equation. We give a brief conclusion in the last section.

2. Statement of the problem

Let / , Go, Gu h and y be given maps such that / : R" x Rk -^ R"; Go : / ? " - >
Rn\ n0 < n; G, : R" -+ /?"',«, < n; h : Rn -+ R] and y : R" -> R1. We assume

(HI) / is continuous with respect to (x, v) and continuously differentiable with
respect to x\

(H2) Go, G\,h and y are continuously differentiable.

Let U be a nonempty closed subset of Rk. Define the set %ad of admissable controls
as

<%ad = {«(•) G L°°(0, T; Rk) : v(t) € U, a.e. f g [ 0 J ] } ,

where L°°(0, T; Rk) denotes the Banach space of all essentially bounded measurable
functions from [0, T] to Rk.

We consider the controlled system

x(t) = f(x(t), v(/)), GO(JC(O)) = 0, G,(*(r)) = 0, (1)

where Go(*(O)) = 0 and Gi(x(T)) = 0 are initial and terminal state constraints
respectively. For any x(0) e [x : G00O = 0} and u() 6 ^ad, the solution x(-) =
x(-\ u(), JC(O)) of the system (1) is called a trajectory corresponding to (v(), x(0))
if it satisfies the terminal state constraints. For any x(0) € [x : G0(x) = 0} and
v(-) e fyad, define the cost function

it ^ ^ f/K*(0)) + y(*(r;v(),x(0)), if the trajectory* (•; v(-),x(0)) exists,
I +oo, otherwise. ^
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The optimal control problem is to find a pair (v(), JC(O)) € %ad x {x : G0(x) = 0}
minimizing the cost function (2).

If («(•), *o) € %d x {x : G0(x) = 0} attains the minimum of J(v(-), x(0)), x^ is
called an optimal initial state and «(•) is called an optimal control corresponding to
x0.

3. The maximum principle

In this section, we first introduce the variational equation and derive the variational
inequality. Then we apply Ekeland's principle to obtain the maximum principle.

Let (u(-), x0, x(-)) be an optimal solution to the optimal control problem (1) and
(2). Define the variational control

\u(t), otherwise,

where v e U, x e [0, T) and e > 0 is sufficiently small.
Let us consider a variational form of (1) with initial state perturbation

x(t) = f(x(t),v(t)), x(0)=x<) + $, (3)

where § e R" and u(-) € ^a<t- Denote the solution of (3) as x(t; v(-), £) and
xe(-) = x{-\ M € ( ) , e£) with an arbitrarily given £ e R". For convenience, we use the
following notation:

f(u) = f(x(t), «(0), f(u() = f(x(t), u(

and introducing the variational equation

i. = /,(«)*. + f(u() - /(«),
(4)

JC,(O) = €$,

we have the following result.

LEMMA 1. Suppose (HI) holds. For X], we have the estimation

xe(t) = x(t)+xdt) + o(€), V r e [ 0 , T ] . (5)

PROOF. From (3) and (4)

xe{t) -x(t) - JC,(O = [ [f(x\ue) - f(u<) - fx{u)xx]ds
J
[
o

= I \j Mx+k(xt-x),ut)dk(xt-x)-Mu)xl'\ds.
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It follows that

< f \fAu)\-\x((s)-x(s)-xi(s)\ds \[
Jo vo

with

= I (/,(* + Hx* - x), ue) - fx{x, «)) dk.
Jo

One can prove that xe (t)—x(t) = O(e), Vr e [0, T]. Applying Gronwall's inequality
(see [7]) to the above relation, we have

\x'(t) - *(/) - x,(OI < C • \ Ae(x'(s) - x(s)) ds = o(€), Vf e [0, T],

with C = eh |/*(u)l<i'. This completes the proof.

We apply Ekeland's variational principle to solve our problem. Define a metric in
ad x R"; for («,(•), f), (v2(-), ij) e ^ a d x /?", let

e [0, 7] : u(t) ^ v(t)}
(=1

where ^ = (§,, • • • , £n) r € ^?", rj = (??!,••• , ??M)r € /?" and meas is the Lebesgue
measure. We can follow Ekeland [3] to prove that (?tiad x R", d(-, •)) is a complete
metric space.

For (v( ) , £) 6 ^ d x R", consider the following cost function

) , | ) = \\Go(xo + f )|2 + |G,(JC(7; w(-), l ) ) |

; u(-), $)) - h(x(0)) - y(x(T)) + €?}U2.

It can be proved that Fe : ^/ad x /?"->/? ' is continuous and

F£(u(-),£)>0, Fe(«(.), 0) = e.

Obviously

Fe(M(-),0)< inf F«(w(-),f) +
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From Ekeland's variational principle, there exists (u((•), £f) e %j x R" such that

(i) *•«(««(•),&) <Fe(«(•),0) = e,

(ii) <*( (««( • ) ,&) , («(• ) , 0 ) ) < V i ,

(iii) F ( ( ) H) > ^ ( ( ) fc) V^d({() ? ) ( ( ) & ) )

V(u;(•),£) e %„ x fl".

Define a spike variation

[«e(O, otherwise,

with v e U and an initial state perturbation £? = £e + /o|o with an arbitrarily given
§o € R". It can be seen that (wf (•), I /) G ^ x 7?" and

d((«f (•),?/), <««(•), I,)) < d + l?ol)P.

where | • | represents the Euclidean norm on R".
Then it follows from (7)(iii) that

0. (8)

note x£(t) = x(t\ u?(-), ff
p) and

). Let jcie(r) be the solution of
For notational simplification, denote x£(t) = x(t\ u?(-), ff

p) and x((t) = jc(r; ue(•),

e, UP
() - f(xe, U(),

The estimation

jcf(r) = JC€(O + JCu(O + o(p), V̂  € [0, T] (9)

is obtained from Lemma 1. From the assumption (H2) and (9), we can derive that

= 2(GOx(xo + &)p«b. Go(xo + &)> + 2(Gl lfc(r))x1 ((7), G,(x

€> + o(p).

Since

Ft(«f (•), f€
p) -»• Ft(ut(-), fe) and F€(«e(-), &) > 0,

https://doi.org/10.1017/S0334270000000564 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000564


[6] A maximum principle for optimal control 177

it follows from (8) and (10) that

(G0x(xo + k)p£o, hu) + (Gu(x((T))xu(T), h2() +

{hx(x0 + £f)pfo + Yxi*eiT))XleiT), hfe) + pV^O + |̂ ol) + ^(p) > 0,

with

h _ hjx0 + gt) + yjx((T)) - h(x0) - y(x(T)) + e
Ffiuf(-),l-f)

, _ GQ(X0 + t-()

Let p( be the solution of

ft(D = G*x(xAT))h2e

Then the inequality

(pe(0) + G*Ox(xo + £€) • hu + h*x(xQ + £=) • i

Jo

(12)

follows from (11), where H(x, v, p) = (p, f(x, v)) is the Hamiltonian function.
Multiplying both sides of (12) by 1/p and then letting p —> 0, yields

(p€(0) + G*Ox(xo + &) • *i« + A (̂Jto + ?«) • h^, fo> „

, w, ft) - //(jf€, ut, p() + V^d + Ifol) > 0.

Since ^ L o l^'«l2 = ^>tnere e x i s t s a convergent subsequence of {/j,-e} such that

hit^hh e ^ O , i = 0,1,2.

From (7)(ii), it follows that (ue(), ^€) -> («(•), 0) in (?%ad x /?", d) and xt(t) -*•
x(t), pe(O -*• pif), e ->• 0, Vr e [0, T], where /?(•) is the solution of the following
adjoint equation

—p = fr(x, u) • p,
' (14)

p{T) = G*x(x(T)) • h2 + Y*xixiT)) • ho.

https://doi.org/10.1017/S0334270000000564 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000564


178 Wensheng Xu [7]

Letting e —> 0 in (13), yields

(p(0) + G*x(x0) • h x + h*x(x0) • h 0 , £0> + H(x, v, p) - H(x, u,p)>0

and since £0 £ R" is arbitrary

H(x(t),v,p(t))>H(x(t),u(t),p(t)), VveU, a.e. t e [0, T], (15)

and

p(0) = -(G*Ox(xo) • hx + h*x(x0) • h0). (16)

THEOREM 1. Suppose (HI) and (H2) hold. Let (w(-), JC0, *(•)) be an optimal solution
to the problem (1) and (2), and p(-) the corresponding solution of the adjoint equation
(14) and (16). Then the maximum principle (15) holds.

4. A LQ-type optimal control problem

In this section, we discuss a specific LQ-type optimal control problem. First
consider two special cases of (1) and (2).

CASE 1. Minimize the cost function

J(v(-)) = h(y(O)) + y(.x(T)) (17)

subject to the controlled system

x = f{x,v), *0,
(lo)

y = g(x,y,v), y(T) =m(x(T)),

where u(-) € %d, f : R" x Rk -> R", g : R" x Rm x Rk -+ Rm, m : R" -* Rm,
h : Rm -+ Rl and y : R" -+ R1. Assume (HI), (H2) and an additional condition

(H3) g is continuous with respect to (x, y, v) and continuously differentiable with
respect to x, y; m is continuously differentiable.

The following result follows naturally from Theorem 1.

COROLLARY 1. Suppose (HI), (H2) and(E3) hold. Let (u(-),(x(-),y(-)) be an optimal
solution to the problem (17) and (18), and let (p(-),q(-)) be the corresponding solution
of the adjoint equation

-P = f*(x, u)- p + g*x(x, y, u) • q,

P(T) = YAx(T)) - m*x(x(T))q(T),

-q =g*y(x,y,u) q,

<7(0) = -hy(y(0)).
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Then the maximum principle

H(x(t), y(t), v, p(t), q{f)) > H(x(t), y(f), u(t), p(t), q(t)), Vu e U, a.e. t, (20)

holds, where H{x, y, v, p, q) = {p, f{x, v)) + (q, g{x, y, v)) is the Hamiltonian
function.

CASE 2. Minimize the cost function

f
Jo

l(x,y,v)dt, (21)

subject to system (18). Assume that l(x, y, v) satisfies the conditions analoguous to
that g(x,y,v) satisfies in (H3).

Defining a new state z(t) = ft l(x, y, v) ds it is easily seen that the problem is in
the form of Case 1. We have the following result from Corollary 1.

COROLLARY 2. Suppose all the assumptions hold. Let (u(-), (x(-), y(-)) be an optimal
solution to the problem (21) and (IS), and let (p(-), <?(•)) be the corresponding solution
of the adjoint equation

-p = f*(x, u)-p + g*x(x, y,u)-q + /,(x, y, u),

P(T) = yx(x(T)) - m*x(x(T)) • q(T),

-q = g*y(x, y,u) q + ly{x, y, M),

= -hy(y(O))-

Then the maximum principle (20) holds, where the Hamiltonian function is

H(x, y, v, p, q) = (p, f(x, v)) + {q, g(x, y, v)) + l(x, y, v).

Let us now consider a LQ-type optimal control problem. The linear controlled
system is

x = Ax + Bv, x(0) = x0,

y = Cx + Dy + Ev, y(T) = Wx(T),

where v(-) e %ad, U = Rk,x e Rn andy e Rm. The objective is to find a «(•) e fyad

minimizing the quadratic cost function

= -x*(T)WiX(T) + -y*(0)W2y(0)
(24)

f
\

Jo
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where A € /?"*", B e Rnxk, C e Rmxn, D G Rmxm, E G /?mx*, W € Rmxn,
W] G /?nx", W2 G /?mxm, 7? G Rkxk, Q\ G fl"x" and Q2 e /?mxm are matrices with

/? > 0, W, > 0, W2> 0, (2i > 0, ^2 > 0.

Obviously, this problem is in the form of Case 2. Corollary 2 gives the optimal
control and the adjoint equation in the following form,

u = -R-i(B*p + E*q), (25)

and

= WlX(T)-Wq(T),

-q = D*q + Q2y, q(0) = -W2y(0).

Moreover, the optimal trajectory is the solution of the following system

x = Ax-BR-\B*p + E*q), x(V) = x0,

y = Cx + Dy- ER~l(B*p + E*q), y{T) = Wx(T).

Now we try to solve the dual equations (26) and (27). Letting p(t) = Fi(t)x(t),
q(t) = F2(t)x(t) and y(t) = F}{t)x(t), one can easily show that F,(f), F2(t) and
F3(O satisfy the following Riccati type differential equations

Ft + Ft A + A*Fi - FiBR-^B'F^ + E*F2) + C*F2 + g , = 0,

Fl(T) = Wl-WF2(T),

F2 + F2A + D*F2 - F2BR-\B*F, + E*F2) + Q2F3 = 0,

F2(0) = -W2F3(0),

F3 + F3A - DF3 - (F)B - E)R~l(B*Fi + E*F2) - C = 0,

F3(T) = W.

From (25) and (28), the optimal control is in the closed loop form

u(t) = -R-'iB'F^t) + E*F2(t))x(t), (29)

where *(•) is the corresponding optimal trajectory.

THEOREM 2. Let (w(-), x{-), >>(•)) be an optimal solution to the LQ-typeproblem (23)
and (24). Then, if the corresponding Riccati type equation (28) has some solution

•), F2(-), F3(-)), the optimal control u(-) is in the closed loop form (29).

https://doi.org/10.1017/S0334270000000564 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000564


[10] A maximum principle for optimal control 181

5. Conclusion

In this paper, we consider a class of optimal control problem (1) and (2) in which the
controlled dynamical system (1) is a two-point boundary value system. The objective
is to find a control which minimizes the cost function (2), where the initial state of the
system is treated as controls. To solve the problem, we apply Ekeland's variational
principle. The necessary condition (15) for the optimal control is derived. We note
that the corresponding adjoint equations (14) and (16) are a two-point boundary value
system. For the specific LQ-type problem (23) and (24), we obtain the optimal control
(29) in the closed loop form.
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