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Examples of linear multi-box splines

Abdellatif Bettayeb

Abstract

Let S1 = S1(v0, . . . , vr+1) be the space of compactly supported C0 piecewise linear functions on
a mesh M of lines through Z2 in directions v0, . . . , vr+1, possibly satisfying some restrictions on
the jumps of the first order derivative. A sequence φ= (φ1, . . . , φr) of elements of S1 is called a
multi-box spline if every element of S1 is a finite linear combination of shifts of (the components
of) φ. We give some examples for multi-box splines and show that they are stable. It is further
shown that any multi-box spline is not always symmetric

1. Introduction

Multi-box splines were introduced by Goodman [2, 3, 5]. They are C0 piecewise polynomials
of degree n= 1, which, unlike box splines, allow both stability and reproduction of arbitrary
polynomials of degree n= 1.

We shall first define the multi-box splines. Let r > 1 and v0, . . . , vr+1 be pairwise linearly
independent vectors in Z2, where without loss of generality we suppose that for j = 0, . . . , r + 1,
the components of vj are coprime. We shall denote by S1 = S1(v0, . . . , vr+1) the space of all
functions f : R2→ R with continuous Fourier transforms of form

f̂(u) =

∑
|α|=r−1 Pα(e−iu)uα

(iuv0) . . . (iuvr+1)
, u ∈ R2, (1.1)

where for any multi-index α ∈ N2 of order |α|= r − 1, Pα is a Laurent polynomial with real
coefficients [4, 5]. Here and elsewhere, for u, v ∈ R2, uv denotes their scalar product.

Before giving some properties, we discuss the possible symmetry of multi-box splines φ for
all r > 1. We say that φ= (φ1, . . . , φr) is symmetric if for j = 1, . . . , r, there are σj =±1, that
is, φj is even or odd about 1

2αj , αj ∈ {0, 1}
2, with

φj(−·) = σjφj(·+ αj). (1.2)

Theorem 1 [2]. In (1.1), let

Pα(z) =
∑
j∈Z2

cj,αz
j .

Let V denote the set of all non-zero coefficients cj,α, |α|= r − 1. Then if f is a spline function
with compact support and is given by (1.1), it has a support in the convex hull of V . Conversely
if f in S1 has its support in a convex closed region R and W denotes R intersection with Z2

(that is all integer points in R), then f has the form (1.1) with the set V of non-zero coefficients
lying in W .

Theorem 2 [5]. A function f lies in S1 if and only if it is a C0 spline function of degree
1 over M(v0, . . . , vr+1) with compact support such that the jump of any first order derivative
across any line in M =M(v0, . . . , vr+1) can change only at points of Z2.
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Figure 1. The symmetric hexagonal mesh of the multi-box spline.

For many choices of v0, . . . , vr+1, Theorem 2 is automatically satisfied and so S1 comprises
all C0 spline functions of 1st degree n= 1, over M with compact support.

Theorem 3 [5]. If at most two lines in M(v0, . . . , vr+1) intersect at points not in Z2, then
Sn(v0, . . . , vr+1) comprises all C0 spline functions of degree n= 1 over M(v0, . . . , vr+1) with
compact support.

Now we want to show when, and for which conditions, ψ ∈ Sr1 can be a local generator for
S1, where Sr1 denotes all row vectors comprising r elements of S1. So we shall introduce the
following theorem.

Theorem 4 [5]. The space S1 = S1(v0, . . . , vr+1) has a local generator φ= (φ1, . . . , φr).
Moreover ψ = (ψ1, . . . , ψr) ∈ Sr1 is local generator for S1 if and only if

ψ̂(u) =
ũM(e−iu)

(iuv0) . . . (iuvr+1)
, u ∈ R2, (1.3)

where ũ := (ur−1
1 , ur−2

1 u2, . . . , u
r−1
2 ) and M is an r × r matrix of Laurent polynomials with:

det M(z) = czk
r+1∏
j=0

(1− zvj ), z = (z, ω) ∈ (C\{0})2, (1.4)

for some k = (k1, k2) ∈ Z2, c ∈ R, c 6= 0, where zk = zk1ωk2 .

For the case r = 1, Theorem 4 states that the function ψ is a local generator for S1 and
therefore it is a shift of a multiple of the box spline B1 (see [5]). For this reason any local
generator φ for S1(v0, . . . , vr+1) is called a multi-box spline for the case r = 2 and extended
to r > 2 in [5].

For r > 2 the generator is not unique, because there are many choices of M in (1.4).
The following theorem gives us the conditions of one of the most important properties of the

multi-box spline, the stability.

Theorem 5 [4, 5]. For the space S1 = S1(v0, . . . , vr+1) the following are equivalent.
(a) There is a stable local generator φ= (φ1, . . . , φr) of S1.
(b) Every local generator φ= (φ1, . . . , φr) of S1 is stable.
(c) At most r lines in the mesh M(v0, . . . , vr+1) intersect except at points in Z2.
(d) For each u ∈ R2\2πZ2, there are at most r vectors vj in {v0, . . . , vr+1} with eiuvj = 1.

In Section 2 we will construct some linear multi-box spline functions on a six-direction
hexagonal mesh as illustrated in [1, p. 101] and as shown in Figure 1. We study the main
properties of these newly created functions.
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(–1, 0)

(0, –1)

Figure 2. The six-direction mesh of the multi-box spline.

Section 3 illustrates one example of a linear multi-box spline in a different mesh as shown in
Figure 7 and then studies its main properties.

2. Some linear multi-box splines on a hexagonal mesh

Take r = 4, and the pairwise linearly independent vectors v0 = (1, 0), v1 = (0, 1), v2 = (1, 1),
v3 = (1,−1), v4 = (2, 1), v5 = (1, 2).

In this section, we consider two meshes (the six-direction mesh with two coordinate directions
as shown in Figure 2, and a symmetric six-direction mesh as seen in Figure 1) obtained from
each other by the linear transformation of the plane as in equation (2.3).

Based on Theorem 1, every function f of the space S1 = S1(v0, . . . , v5) in the first mesh is
to be determined by its continuous Fourier transform f̂ which is defined by equation (1.1).
That is

f̂(u, v) =
u3P (z, ω) + u2vQ(z, ω) + uv2R(z, ω) + v3S(z, ω)

uv(u+ v)(u− v)(u+ 2v)(2u+ v)
. (2.1)

We now define four generators f1, . . . , f4 on the six-direction mesh and their counterparts
g1, . . . , g4 on the hexagonal mesh. Their supports are shown in Figures 3 and 4, respectively.

For the first function and because

[v(u+ v)(u− v), uv(u+ v), u(u+ 2v)(u+ v), uv(2u+ v)] = [u3, u2v, uv2, v3] ∗M,

where M is the 4× 4 matrix and the determinant of M = 1 6= 0, we can replace the numerator
of f̂ to give f̂1 as follows:

f̂1(u, v) =
v(u+ v)(u− v)P (u, v) + uv(u+ v)Q(u, v)

uv(u+ v)(u− v)(u+ 2v)(2u+ v)

+
u(u+ v)(u+ 2v)R(u, v) + uv(2u+ v)S(u, v)

uv(u+ v)(u− v)(u+ 2v)(2u+ v)
, (2.2)

where z = e−iu, ω = e−iv. Here P, Q, R and S are Laurent polynomials with real coefficients,
defined by

P (z, ω) = a+ a1z + a2zω + a3ω + a4z
−1 + a5z

−1ω−1 + a6ω
−1,

Q(z, ω) = b+ b1z + b2zω + b3ω + b4z
−1 + b5z

−1ω−1 + b6ω
−1,

https://doi.org/10.1112/S1461157012001167 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001167


EXAMPLES OF LINEAR MULTI-BOX SPLINES 447

O O

OO

(a)

(c)

(b)

(d)

Figure 3. Supports of the functions fi, i= 1, . . . , 4.
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Figure 4. Supports of the functions gi, i= 1, . . . , 4.

R(z, ω) = c+ c1z + c2zω + c3ω + c4z
−1 + c5z

−1ω−1 + c6ω
−1,

S(z, ω) = d+ d1z + d2zω + d3ω + d4z
−1 + d5z

−1ω−1 + d6ω
−1.

The coefficients a, a1, . . . , a6, b, b1, . . . , b6, c, c1, . . . , c6, d, d1, . . . , d6 will be determined later.
In order to have the function g1 in the symmetric hexagonal mesh as in Figure 1, we use the
following transformation

g1(x, y) = f1(x+ y/
√

3, 2y/
√

3),

and by taking the Fourier transform, we find that

ĝ1(u, v) = f̂1(u,
√

3v/2− u/2). (2.3)
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By substituting the new values of u, v from (2.3) for f̂1(u, v) in (2.2), we get

ĝ1(u, v) =
(
√

3v − u)(
√

3v + u)(
√

3u− v)P (u, v)
uv(
√

3v − u)(
√

3v + u)(
√

3u− v)(
√

3u+ v)

+
u(
√

3v − u)(
√

3v + u)Q(u, v)
uv(
√

3v − u)(
√

3v + u)(
√

3u− v)(
√

3u+ v)

+
uv(
√

3v + u)R(u, v)
uv(
√

3v − u)(
√

3v + u)(
√

3u− v)(
√

3u+ v)

+
u(
√

3v − u)(
√

3u+ v)S(u, v)
uv(
√

3v − u)(
√

3v + u)(
√

3u− v)(
√

3u+ v)
, (2.4)

where P takes the following forms in the hexagonal mesh

P (u, v) = a+
6∑
j=1

aj e
−iu pj ,

with similar formulas for Q(u, v), R(u, v) and S(u, v).
Here and throughout this section, we write u= (u, v) and pj as defined in [1] as follows:

pj =
(

cos(j − 1)π/3
sin(j − 1)π/3

)
,

for j = 1, . . . , 6.
We follow the same steps to construct the second function, to give

f̂2(u, v) =
uv(u+ v)P (z, w) + v(u+ v)(u+ 2v)Q(z, w) + u(u− v)(2u+ v)R(z, w)

uv(u+ v)(u− v)(u+ 2v)(2u+ v)

+
(u− v)(u+ 2v)(2u+ v)S(z, w)
uv(u+ v)(u− v)(u+ 2v)(2u+ v)

. (2.5)

By setting
g2(x, y) = f2(x+ y/

√
3, 2y/

√
3),

we get

ĝ2(u, v) =
u(
√

3v − u)(
√

3v + u)P (u, v)
uv(
√

3v − u)(
√

3v + u)(
√

3u− v)(
√

3u+ v)

+
v(
√

3v − u)(
√

3v + u)Q(u, v)
uv(
√

3v − u)(
√

3v + u)(
√

3u− v)(
√

3u+ v)

+
u(
√

3u+ v)(
√

3u− v)R(u, v)
uv(
√

3v − u)(
√

3v + u)(
√

3u− v)(
√

3u+ v)

+
v(
√

3u+ v)(
√

3u− v)S(u, v)
uv(
√

3v − u)(
√

3v + u)(
√

3u− v)(
√

3u+ v)
. (2.6)

2.1. First function

The function g1 is symmetric as in

g1(x, y) = g1(x/2−
√

3y/2,
√

3x/2 + y/2),

and by using the Fourier transform

ĝ1(u, v) = ĝ1(u/2−
√

3v/2,
√

3u/2 + v/2).
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Now by using the above transformation and by replacing the values u, v in (2.4), we get

ĝ1(u, v) =
uv(u+

√
3v)P̃ (u, v)

uv(
√

3v − u)(
√

3v + u)(
√

3u− v)(
√

3u+ v)

+
u(u−

√
3v)(u+

√
3v)Q̃(u, v)

uv(
√

3v − u)(
√

3v + u)(
√

3u− v)(
√

3u+ v)

+
u(u−

√
3v)(
√

3u+ v)R̃(u, v)
uv(
√

3v − u)(
√

3v + u)(
√

3u− v)(
√

3u+ v)

+
(u−

√
3v)(u+

√
3v)(
√

3u− v)S̃(u, v)
uv(
√

3v − u)(
√

3v + u)(
√

3u− v)(
√

3u+ v)
, (2.7)

where

P̃ (u, v) = a+
6∑
j=1

aje
−iu pj−1 = a+

5∑
j=0

aj+1e
−iu pj ,

and similarly Q̃(u, v), R̃(u, v) and S̃(u, v).
By comparing (2.4) and (2.7) we get{

P =−S̃, Q=−Q̃,
R=−P̃ , S =−R̃.

We solve in turn each of the above equations.
We shall now apply the continuity conditions for ĝ1(u, v) in (2.4), which means if the

denominator of the fraction is zero, then the numerator must be zero. By applying this
observation, we get the following.

– Condition 1: a3 =−a2.
This is obtained using the fact that P (0, v) = 0 (for all v 6= 0).

– Condition 2: 3a1 + 2b1 − 6a2 = 0.
This is obtained using the fact that 3P (u, 0) + 2Q(u, 0) + 6S(u, 0) = 0.

Now a1 and a2 can be chosen arbitrarily. If we take a1 =−a2 = 1 then this leads to a particularly
simple formula for ĝ1, and b1 =−9/2.

Considering all the previous results we find that P =R= S and

Q=−(9/2)P.

Finally by substituting the values of P, R, S and Q in (2.4), we find the first multi-box spline
in the hexagonal support as

ĝ1(u, v) =
2P1(u, v)

u(
√

3v − u)(
√

3v + u)
, (2.8)

where P1 takes the following form:

P1(u, v) = e−iu − e−i(u/2+
√

3v/2) + e−i(−u/2+
√

3v/2) − eiu + e−i(−u/2−
√

3v/2) − e−i(u/2−
√

3v/2).

By changing variables z = e−iu, w = e−iv and a simple calculation, we obtain

f̂1(u, v) =
z−1ω−1(1− z)(1− ω)(1− zω)

uv(u+ v)
. (2.9)

2.2. Second function

The function g2 is symmetric as in

g2(x, y) = g2(x,−y), g2(x, y) = g2(1− x, y),
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and by using the Fourier transform

ĝ2(u, v) = ĝ2(u,−v), ĝ2(u, v) = e−iuĝ2(−u, v).

Similar to in the previous section, we find g2(u, v) as follows:

ĝ2(u, v) =
u R(u, v) +

√
3v S(u, v)

uv(
√

3v − u)(u+
√

3v)
, (2.10)

where

R(u, v) = e−i(u/2+
√

3v/2) − e−i(u/2−
√

3v/2), S(u, v) = 1− e−iu.

Then

f̂2(u, v) =
u(zω − ω−1) + (u+ 2v)(1− z)

uv(u+ v)(u+ 2v)
. (2.11)

2.3. Third function

The third function, f3, is defined by its Fourier transform f̂3, as follows

f3(x, y) = f2(y, y − x).

Now we calculate the function f3, and by normalization, we get

f̂3(u, v) =
(u+ v)(ω − z)− (u− v)(1− zω)

uv(u+ v)(u− v)
. (2.12)

2.4. Fourth function

The function f4 is defined by

f4(x, y) = f2(y − x,−x).

Therefore, we find the Fourier transform of f4 by normalization as follows:

f̂4(u, v) =
−v(z−1 − zω) + (2u+ v)(1− ω)

uv(u+ v)(2u+ v)
. (2.13)

2.5. Summary

We may write f̂ = (f̂1, f̂2, f̂3, f̂4) in the following matrix form:
f̂1(u, v)

f̂2(u, v)

f̂3(u, v)

f̂4(u, v)

=M(z, ω)×


λ1

λ2

λ3

λ4

× 1
uv(u+ v)(u− v)(u+ 2v)(2u+ v)

,

where 
λ1

λ2

λ3

λ4

=


(u− v)(u+ 2v)(2u+ v)
u(u− v)(2u+ v)
(u+ v)(u+ 2v)(2u+ v)
v(u− v)(u+ 2v)

 ,

and

M(z, ω) =


(z − 1)(ω − 1)(zω − 1) 0 0 0
1− z zω − ω−1 0 0
zω − 1 0 ω − z 0
1− ω 0 0 zω − z−1

 .
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Figure 5. The jump of the derivative of the function in the hexagonal mesh.

Now we calculate the determinant of M which takes the following form:

detM(z, ω) = z−2ω−1(1− z)(1− ω)(1− zω)(1− zω2)(1− zω−1)(1− zω2).

By Theorem 4, the function f is a multi-box spline if the determinant of M(z, w) is in the
following form:

det M(z) = czk
r+1∏
j=0

(1− zvj ), z ∈ (C\{0})2,

for some k ∈ Z2, c ∈ R, c 6= 0. By comparing our determinant with the above form we find that
c= 1, k = (−2,−1). So f is a multi-box spline.

Note that three lines in the mesh M =M(v0, . . . , v5) intersect at a point in R2\Z2. Now
Theorem 3 says that if at most n+ 1 = 2 lines in the mesh M =M(v0, . . . , v5) intersect other
than in Z2, then the space S1 = S1(v0, . . . , v5) comprises all of the continuous linear splines over
M =M(v0, . . . , v5) with compact support. Since this condition is not satisfied, S1 comprises
those continuous linear splines which satisfy the condition that the jump of Df across any line
in M =M(v0, . . . , v5) is constant, at any point where three lines in M intersect. See Theorem 2
for the special case of n= 1.

In order to derive this jump condition, it will be more convenient to work with the hexagonal
mesh. A typical triangle is illustrated in Figure 5, where the jump condition is at the centroid
A. The values of the function at the given points A, B, . . . , G are denoted by a, b, . . . , g.

The value of the jump at the point A is given by this equation:

3a= 2g + 2e+ 2c− (b+ f + d).

Now we have to explain where the above condition comes from. Here the jump condition is on
the first order derivatives.

We take the triangle4 AGF with vertices A(0,
√

3/3), F (−1/2,
√

3/2), G(−1/4,
√

3/4), with
the corresponding values of our function at these being a, f, g.

Let the direction vector V = (1/2,
√

3/2), which is parallel to the segment [BD], be defined
in terms of the two vectors GA and GF as follows:

v1 = αGA+ βGF,

where

GA= (1/4,
√

3/12), GF = (−1/4,
√

3/4).
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By resolving the above equation, we find that

α= 3, β = 1,

and then
v1 = 3GA+GF.

This is equal to
v1 = 3(A−G) + (F −G).

So

Dvf = 3(a− g) + (f − g) = 3a− 4g + f. (2.14)

Similarly on the triangle 4 AFE with vertices A(0,
√

3/3), F (−1/2,
√

3/2), E(0,
√

3/2), and
the corresponding values of our function at these being a, f, e, we find that

D′vf = 3(e− a) + (e− f) =−3a+ 4e− f. (2.15)

So the jump is

Dvf −D′vf = 3a− 4g + f − (3a− 4g + f) = 6a− 4g + 2f − 4e. (2.16)

Similarly on the triangles 4 ABC and 4 ACD, we find the jump is

2(c− b)− 2(d− c) = 4c− 2b− 2d. (2.17)

By comparing (2.16) and (2.17), we get

6a− 4g + 2f − 4e= 4c− 2b− 2d.

This implies that
3a= 2(g + e+ c)− (b+ f + d).

By the symmetry of this condition, we will get the same result for the jump condition across
the other two mesh lines.

Theorem 5 says that if at most r = 4 lines in the mesh M =M(v0, . . . , v5) intersect except
at points in Z2, then f is a stable local generator. Since only three lines in the mesh M intersect
other than in Z2, then f is stable.

The equation (1.2) which defines the symmetry of any function f = (f1, f2, f3, f4) is satisfied
and f is symmetric about (0,0), (1,0), (1,1) and (0,1) respectively, therefore the multi-box spline
f is symmetric too.

We can see from (2.9), that the piecewise linear function f1 is a particular box-spline, that
coincides with a hat function known in the finite element method.

The first function f1 can be replaced by another function ψ1 which is defined in a smaller
support as follows: (see Figure 6)

ψ1(x, y) = f1(x, y) + f2(x, y) + f2((x, y) + (1, 0)), (x, y) ∈ R2.

By taking the Fourier transform of the above equation, we get the following:

ψ̂1(u, v) =
z−1ω−1 + ω − ω−1 − zω

uv(u+ v)
+
zω − ω−1 + ω − z−1ω−1

v(u+ v)(u+ 2v)
. (2.18)

We can easily prove that the function ψ = (ψ1, f2, f3, f4) is a multi-box spline and a local
generator for S1 according to Theorem 4.

3. Linear multi-box splines on another mesh

Take n= 1, r = 4, and the pairwise linearly independent vectors v0 = (1, 0), v1 = (0, 1), v2 =
(2, 1), v3 = (1, 2), v4 = (2,−1), v5 = (1,−2), see Figure 7.
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O

Figure 6. The support of ψ1 in the new rectangular mesh.

O

Figure 7. Mesh M(v0, . . . , v5) on [−1, 1]2.

In this case, we firstly need to construct the support of the linear multi-box spline, then form
the linear multi-box spline inside it, and show it is a multi-box spline.

By Theorem 4, we have to find generators with good properties like stability and symmetry.

3.1. The construction algorithm

We choose five different functions φ1, φ2, ψ, ψ1 and ψ2 plus the combination of all of them, this
will give us the four functions which form our multi-box spline. Each of the functions φ1, φ2

and ψ take the value zero on Z2, while ψ1 and ψ2 are 6= 0 on some points in Z2.
The combination of ψ1 and ψ2 gives us a new function Φ which is zero on Z2. The function

Φ is defined as

Φ = ψ1 + ψ1(· − (1, 0))− ψ2 − ψ2(· − (0, 1)).

The function Φ is symmetric under the following conditions

Φ(1− x, y) = Φ(x, y), Φ(x, 1− y) = Φ(x, y), Φ(x, y) =−Φ(y, x).

We want to express Φ in terms of shifts of φ1, φ2 and ψ, by some unknowns a, b and c, as it
will be explained in Step 6. By comparing the two expressions of Φ, we can find the coefficients
a, b and c, and then we may write Φ in terms of shifts of φ1, φ2, ψ. Then we will construct
another function φ3 as a combination of ψ1 and shifts of ψ, and then the function φ4 as a
linear combination of ψ2 and shifts of ψ, in such a way that ψ lies in the span of the shifts
of φ1, φ2, φ3, φ4. So φ1, φ2, φ3, φ4 can be a generator and a multi-box spline for the space S1,
which will be proved later by referring to Theorem 3.

https://doi.org/10.1112/S1461157012001167 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001167


454 A. BETTAYEB
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Figure 8. (a) The support of φ1. (b) The support of φ2.

3.2. Constructing the linear multi-box spline φ

Step 1. In order to construct the first generator φ1, we choose the support of φ1 as illustrated
in Figure 8(a). Let φ1 be defined by its Fourier transform as

φ̂1(u, v) =
(2u+ v)P1(z, ω) + (2u− v)Q1(z, ω)

uv(2u− v)(2u+ v)
, (3.1)

where z = e−iu, ω = e−iv. Here P1 and Q1 are Laurent polynomials with real coefficients,
defined by

P1(z, ω) = a+ a1z + a2zω + a3ω + a4z
−1ω + a5z

−1,

Q1(z, ω) = b+ b1z + b2zω + b3ω + b4z
−1ω + b5z

−1.

We require that the function φ1 is symmetric as in

φ1(x, y) = φ1(−x, y), φ1(x, y) = φ1(x,−y + 1),

and by using the Fourier transform, we get

φ̂1(u, v) = φ̂1(−u, v), φ̂1(u, v) = e−ivφ̂1(u,−v). (3.2)

In order to find the coefficients a, ai, b, bi, we study the continuity conditions as in the
previous section, and by taking a1 =−1, then

P1(z, ω) =−z + ωz−1, Q1(z, ω) = zω − z−1, R1(z, ω) = 0, S1(z, ω) = 0.

Thus

φ̂1(u, v) =
(2u+ v)(ωz−1 − z) + (2u− v)(zω − z−1)

uv(2u− v)(2u+ v)
. (3.3)

We may write φ̂1 in the following matrix form:

(φ̂1(u, v)) =M1(z, ω)×


λ1

λ2

λ3

λ4

× 1
uv(u+ v)(u− v)(u+ 2v)(2u+ v)

,

where 
λ1

λ2

λ3

λ4

=


(u− v)(u+ 2v)(2u+ v)
u(u− v)(2u+ v)
(u+ v)(u+ 2v)(2u+ v)
v(u− v)(u+ 2v)

 ,
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and
M1(z, w) =

(
P1(z, ω) Q1(z, ω) R1(z, ω) S1(z, ω)

)
,

and also

P1(z, ω) = 4ωz−1(1− z2ω−1),
Q1(z, ω) = −4z−1(1− z2ω),
R1(z, ω) = 0,
S1(z, ω) = 0.

Step 2. The function φ2 is the transformed image of φ1 by an angle of 90 degrees clockwise,

φ2(x, y) = φ1(−y, x),

by taking the Fourier transform
φ̂2(u, v) = φ̂1(−v, u).

Hence

φ̂2(u, v) =
(u− 2v)(zω − ω−1) + (u+ 2v)(ω − zω−1)

uv(u+ 2v)(u− 2v)
, (3.4)

see Figure 8(b).
We may write φ̂2 in the following matrix form

(φ̂2(u, v)) =M2(z, ω)×


λ1

λ2

λ3

λ4

× 1
uv(u+ v)(u− v)(u+ 2v)(2u+ v)

,

where 
λ1

λ2

λ3

λ4

=


(u− v)(u+ 2v)(2u+ v)
u(u− v)(2u+ v)
(u+ v)(u+ 2v)(2u+ v)
v(u− v)(u+ 2v)

 ,

and

M2(z, w) = (P2(z, ω) Q2(z, ω) R2(z, ω) S2(z, ω)),

and also

P2(z, ω) = 0,

Q2(z, ω) = 0,

R2(z, ω) = −4ω−1(1− zω2),

S2(z, ω) = −4zω−1(1− z−1ω2).

Step 3. The function ψ1 is to be defined by its Fourier transform as shown in Figure 9(a).
We may replace f̂(u, v) in (2.1) to give ψ̂1 as follows:

ψ̂1(u, v) =
(2u+ v)(u− 2v)(2u− v)P (z, ω) + (u+ 2v)(u− 2v)(2u− v)Q(z, ω)

uv(u+ 2v)(u− 2v)(2u− v)(2u+ v)
,

+
(u+ 2v)(2u+ v)(2u− v)R(z, ω) + (u+ 2v)(2u+ v)(u− 2v)S(z, ω)

uv(u+ 2v)(u− 2v)(2u− v)(2u+ v)
, (3.5)
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Figure 9. (a) The support of ψ1. (b) The support of ψ2.

where z = e−iu, ω = e−iv. Here P, Q, R and S are Laurent polynomials with real coefficients,
defined by

P (z, ω) = a0 + a1z + a2zω + a3ω
2 + a4z

−1ω + a5z
−1 + a6ω

−1,

and similarly for Q(z, ω), R(z, ω) and S(z, ω).
The function ψ1 is symmetric as in

ψ1(−x, y) = ψ1(x, y), ψ1(x, y) = ψ(x, 1− y),

by taking the Fourier transform

ψ̂1(−u, v) = ψ̂1(u, v), ψ̂1(u, v) = evψ̂(u,−v).

By applying the continuity conditions, and by taking a3 = 1 and b2 = 1, P, Q, R and S will be
defined as

P (z, ω) = zω + ω2 − z−1 − ω−1, Q(z, ω) = zω − z−1,

R(z, ω) = ω2 + z−1ω − ω−1 − z, S(z, ω) =−z + z−1ω.

So ψ1 is defined as

ψ̂1(u, v) =
zω + ω2 − z−1 − ω−1

uv(u+ 2v)
+

zω − z−1

uv(2u+ v)

+
ω2 + z−1ω − ω−1 − z

uv(u− 2v)
+

z−1ω − z
uv(2u− v)

. (3.6)

Step 4. Now we calculate the function ψ2, which represents the rotated image of ψ1 by an angle
of 90 degrees clockwise, that is

ψ2(x, y) = ψ1(y, x),

by taking the Fourier transform of this equation

ψ̂2(u, v) = ψ̂1(v, u).

We find

ψ̂2(u, v) =
zω + z2 − ω−1 − z−1

uv(2u+ v)
+

zω − ω−1

uv(u+ 2v)

+
−z2 − zω−1 + z−1 + ω

uv(2u− v)
+

ω − zω−1

uv(u− 2v)
, (3.7)

see Figure 9(b).
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Figure 10. The support of ψ.

Step 5. We may define ψ as in (3.5), and by its Fourier transform ψ̂:

ψ̂(u, v) =
P (z, ω)

uv(u+ 2v)
+

Q(z, ω)
uv(u− 2v)

+
R(z, ω)

uv(2u− v)
+

S(z, ω)
uv(2u+ v)

. (3.8)

Here P, Q, R and S are Laurent polynomials with real coefficients, defined by

P (z, ω) = a0 + a1z + a2zω + a3ω + a4z
−1ω + a5z

−1 + a6z
−1ω−1 + a7ω

−1 + a8zω
−1,

and similarly for Q, R and S, see Figure 10.
The function ψ is symmetric as in

ψ(−x, y) =−ψ(x, y), ψ(x,−y) =−ψ(x, y), ψ(x, y) =−ψ(y, x),

by taking the Fourier transform

ψ̂(−u, v) =−ψ̂(u, v), ψ̂(u,−v) =−ψ̂(u, v), ψ̂(u, v) =−ψ̂(v, u).

By studying the above, and also the continuity conditions for ψ̂(u, v) in (3.8), and by taking
a2 = 1, ψ̂(u, v) has the following form:

ψ̂(u, v) =
(z−1 + z−1ω − z − zω−1)

uv(2u− v)

+
(z−1 + z−1ω−1 − z − zω)

uv(2u+ v)

+
(zω + ω − ω−1 − z−1ω−1)

uv(u+ 2v)

+
(ω−1 + zω−1 − ω − z−1ω)

uv(u− 2v)
. (3.9)

Step 6. Let

Φ(x, y) = ψ1(x, y) + ψ1(x− 1, y)− ψ2(x, y)− ψ2(x, y − 1).

By taking the Fourier transform

Φ̂(u, v) = ψ̂1(u, v) + e−iuψ̂1(u, v)− ψ̂2(u, v)− e−ivψ̂2(u, v),

where z = e−iu and ω = e−iv, then

Φ̂(u, v) = ψ̂1(u, v) + zψ̂1(u, v)− ψ̂2(u, v)− ωψ̂2(u, v),
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Figure 11. The support of Φ.

by substituting the values of ψ̂1 and ψ̂2, we find that

Φ̂(u, v) =
z−1ω − z2 − zω2 + ω−1

uv(2u+ v)
+
ω2 − z−1 + z2ω − zω−1

uv(u+ 2v)

+
z−1ω − ω−1 + zω2 − z2

uv(u− 2v)
+
zω−1 − z−1 + z2ω − ω2

uv(2u− v)
, (3.10)

see Figure 11.
We now show that Φ can be written in the form

Φ(x, y) = aX + bY + cZ,

where

X(x, y) = φ1(x, y − 1) + φ1(x− 1, y − 1) + φ1(x, y + 1) + φ1(x− 1, y + 1)
− φ2(x+ 1, y)− φ2(x+ 1, y − 1)− φ2(x− 1, y)− φ2(x− 1, y − 1),

Y (x, y) = φ1(x, y) + φ1(x− 1, y)− φ2(x, y)− φ2(x, y − 1),
Z(x, y) = ψ(x, y)− ψ(x− 1, y)− ψ(x, y − 1) + ψ(x− 1, y − 1).

By taking the Fourier transform

Φ̂ = aX̂ + bŶ + cẐ, (3.11)

by substituting the values of X̂, Ŷ and Ẑ, we find that

Φ̂(u, v) =
(−a− c)(ω2 − z−1 + z2ω − zω−1) + (a− c)(z−1ω−1 − ω − z2ω2 + z)

uv(u+ 2v)

+
b(ω−1 − zω − zω2 + 1)

uv(u+ 2v)

+
(−a− c)(zω−1 − z−1 + z2ω − ω2) + (a− c)(z−1ω2 − zω + 1− z2ω−1)

uv(2u− v)

+
b(z−1ω − z + ω − z2)

uv(2u− v)
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+
(−a− c)(z−1ω − z2 − zω2 + ω−1) + (a− c)(z2ω2 − ω − z−1ω−1 + z)

uv(2u+ v)

+
b(−z−1 + z2ω − 1 + zω)

uv(2u+ v)

+
(−a− c)(z−1ω − ω−1 + zω2 − z2) + (a− c)(1− z−1ω2 − zω + z2ω−1)

uv(u− 2v)

+
b(zω−1 − ω − ω2 + z)

uv(u− 2v)
. (3.12)

By comparing Φ̂(u, v) in (3.10) and (3.12) term per term, we find the following equations:

−a− c= 1, a− c= 0, b= 0,

which give:

a= c=− 1
2 and b= 0.

Step 7. Let φ3 be defined as

φ3 = ψ1 +
3c
2
ψ − c

2
ψ(· − (0, 1)),

we had c=− 1
2 , so

φ3(x, y) = ψ1(x, y)− 3
4ψ(x, y) + 1

4ψ(x, y − 1). (3.13)

By taking the Fourier transform we have

φ̂3(u, v) = ψ̂1(u, v)− 3
4 ψ̂(u, v) + 1

4ωψ̂(u, v). (3.14)

By substituting the values of ψ̂1(u, v) and ψ̂(u, v), we get

φ̂3(u, v) =
zω + 5ω2 − 5z−1 − ω−1 − 3ω + 3z−1ω−1 − 1 + zω2

4uv(u+ 2v)

+
2z−1ω − 2z − 3z−1 + 3zω−1 − zω + z−1ω2

4uv(2u− v)

+
6zω − 6z−1 − 3z−1ω−1 + 3z + z−1ω − zω2

4uv(2u+ v)

+
3ω2 + 7z−1ω − 7ω−1 − 3z − 3zω−1 + 3ω + 1− z−1ω2

4uv(u− 2v)
. (3.15)

We may write φ̂3 in the following matrix form

(φ̂3(u, v)) =M3(z, ω)×


λ1

λ2

λ3

λ4

× 1
uv(u+ v)(u− v)(u+ 2v)(2u+ v)

,

where 
λ1

λ2

λ3

λ4

=


(u− v)(u+ 2v)(2u+ v)
u(u− v)(2u+ v)
(u+ v)(u+ 2v)(2u+ v)
v(u− v)(u+ 2v)

 ,

and

M3(z, w) =
(
P3(z, ω) Q3(z, ω) R3(z, ω) S3(z, ω)

)
,
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where

P3(z, ω) = (1− z2ω−1)(2z−1ω − 3z−1 + z−1ω2),
Q3(z, ω) = (1− z2ω)(z−1ω − 3z−1ω−1 − 6z−1),
R3(z, ω) = (1− zω2)(−5z−1 + 3z−1ω−1 − 1− ω−1),
S3(z, ω) = (1− z−1ω2)(−7ω−1 + 1− 3zω−1 − 3z).

Now we calculate φ̂4(u, v) such that

φ4(x, y) = φ3(y, x).

By taking the Fourier transform we have

φ̂4(u, v) = φ̂3(v, u).

By substituting the value of φ̂3 we get

φ̂4(u, v) =
zω + 5z2 − 5ω−1 − z−1 − 3z + 3ω−1z−1 − 1 + z2ω

4uv(2u+ v)

+
−2zω−1 + 2ω + 3ω−1 − 3z−1ω + zω − z2ω−1

4uv(u− 2v)

+
6zω − 6ω−1 − 3z−1ω−1 + 3ω + zω−1 − z2ω

4uv(u+ 2v)

+
−3z2 − 7zω−1 + 7z−1 + 3ω + 3z−1ω − 3z − 1 + z2ω−1

4uv(2u− v)
. (3.16)

We may write φ̂4 in the following matrix form

(
φ̂4(u, v)

)
=M4(z, ω)×


λ1

λ2

λ3

λ4

× 1
uv(u+ v)(u− v)(u+ 2v)(2u+ v)

,

where 
λ1

λ2

λ3

λ4

=


(u− v)(u+ 2v)(2u+ v)
u(u− v)(2u+ v)
(u+ v)(u+ 2v)(2u+ v)
v(u− v)(u+ 2v)

 ,

and
M4(z, w) = (P4(z, ω) Q4(z, ω) R4(z, ω) S4(z, ω)),

where

P4(z, ω) = (1− z2ω−1)(7z−1 − 1 + 3ω + 3z−1ω),
Q4(z, ω) = (1− z2ω)(−5ω−1 + 3z−1ω−1 − 1− z−1),
R4(z, ω) = (1− zω2)(−6ω−1 − 3z−1ω−1 + zω−1),
S4(z, ω) = (1− z−1ω2)(−z2ω−1 − 2zω−1 + 3ω−1).

We can confirm that

φ3 + φ3(· − (1, 0))− φ4 − φ4(· − (0, 1))
= Φ + 3cψ − cψ(· − (1, 1)) + cψ(· − (1, 0)) + cψ(· − (0, 1))
= aX + bY + 4cψ.
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So ψ is in the span of shifts of φ1, φ2, φ3 and φ4. This suggests that φ= (φ1, φ2, φ3, φ4) is a
multi-box spline.

3.3. Properties

Now we show that φ= (φ1, φ2, φ3, φ4) is a local generator, and study its properties.
We may write φ̂ in the following form

φ̂1(u, v)

φ̂2(u, v)

φ̂3(u, v)

φ̂4(u, v)

=M(z, ω)×


λ1

λ2

λ3

λ4

× 1
uv(u+ v)(u− v)(u+ 2v)(2u+ v)

,

where 
λ1

λ2

λ3

λ4

=


(u− v)(u+ 2v)(2u+ v)
u(u− v)(2u+ v)
(u+ v)(u+ 2v)(2u+ v)
v(u− v)(u+ 2v)

 ,

and

M(z, w) =


P1(z, ω) Q1(z, ω) R1(z, ω) S1(z, ω)
P2(z, ω) Q2(z, ω) R2(z, ω) S2(z, ω)
P3(z, ω) Q3(z, ω) R3(z, ω) S3(z, ω)
P4(z, ω) Q4(z, ω) R4(z, ω) S4(z, ω)

 ,

where φ̂1, φ̂2, φ̂3 and φ̂4 are defined as follows.
For φ̂1,

P1(z, ω) = 4ωz−1(1− z2ω−1),
Q1(z, ω) = −4z−1(1− z2ω),
R1(z, ω) = 0,
S1(z, ω) = 0.

For φ̂2,

P2(z, ω) = 0,
Q2(z, ω) = 0,
R2(z, ω) = −4ω−1(1− zω2),
S2(z, ω) = −4zω−1(1− z−1ω2).

For φ̂3,

P3(z, ω) = (1− z2ω−1)(2z−1ω − 3z−1 + z−1ω2),
Q3(z, ω) = (1− z2ω)(z−1ω − 3z−1ω−1 − 6z−1),
R3(z, ω) = (1− zω2)(−5z−1 + 3z−1ω−1 − 1− ω−1),
S3(z, ω) = (1− z−1ω2)(−7ω−1 + 1− 3zω−1 − 3z).

Finally for φ̂4,

P4(z, ω) = (1− z2ω−1)(7z−1 − 1 + 3ω + 3z−1ω),
Q4(z, ω) = (1− z2ω)(−5ω−1 + 3z−1ω−1 − 1− z−1),
R4(z, ω) = (1− zω2)(−6ω−1 − 3z−1ω−1 + zω−1),
S4(z, ω) = (1− z−1ω2)(−z2ω−1 − 2zω−1 + 3ω−1).
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After constructing M(z, ω), we find the determinant of M(z, ω) using Maple, as follows:

det M(z, ω) = −210z−2ω−2(1− z)(1− ω)
× (1− z2ω−1)(1− z2ω)(1− zω2)(1− z−1ω2).

By Theorem 4, the function φ is a multi-box spline if the determinant of M(z, w) is in the
following form

det M(z) = czk
n+r∏
j=0

(1− zvj ), z ∈ (C\{0})2,

for some k ∈ Z2, c ∈ R, c 6= 0. By comparing this determinant with the above, we find that
k = (−2,−2), c=−210 . So φ is a multi-box spline.

Note that only three lines in the mesh M =M(v0, . . . , v5) intersect other than in Z2. So the
conditions of Theorem 3 are not satisfied.

Since only three lines in M intersect other than in Z2, then φ is stable as in Theorem 5.
The equation (1.2), which defines the symmetry of any function fj , shows that φ1 and

φ2 are symmetric, however φ3 and φ4 are not symmetric, therefore the multi-box spline
φ= (φ1, φ2, φ3, φ4) is not symmetric.

Remark 1. We can see from this case that the multi-box spline is not necessarily symmetric.
Our experience suggests that it is not possible to construct a symmetric multi-box spline for
this space which, if true, would disprove the conjecture made by Goodman in [5] that any
space Sn = Sn(v0, . . . , vn+r) has a symmetric local generator.
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