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REAL HYPERSURFACES OF A COMPLEX

PROJECTIVE SPACE

M, KlMURA

We study real hypersurfaces M of a complex projective space

and show that a condition on the derivative of the Ricci Tensor

of M implies M is locally homogeneous with two or three

principal curvatures.

0. Introduction.

Let F (€) be an n-dimensional complex projective space with

Fubini-Study metric of constant holomorphic sectional curvature 4.

We consider a real hypersurface M of F (€) . Let ($, E,,r\,g) be an

almost contact metric structure induced from the complex structure on

F*1 (E) (SI) . If the Ricci transformation of M satisfies

(0.1) SX = aX + br\(X)£ .

where a and b are constant, we call M a pseudo-Einstein hyper-

surface [3]. Pseudo-Einstein real hypersurfaces in P (€) are completely

classified by Kon [3] (see 141). This result shows that if the Ricci

tensor of M has a nice form, then M is determined (see [5]). In

this paper, we consider the following problem: If the derivative of the

Ricci tensor of M has a nice form, what can we say about M?
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We have the following

THEOREM 1. Let M be a real hypersurfaae of p"fW . If the

Rtoci transformation S of M satisfies

(0.2) (V^)Y = c{g($AX, Y)g

where c is a non-zero constant, and A denotes the shape operator
(%1). Then M is locally congruent to a homogeneous hypersurface with
two or three distinct principal curvatures.

We no te t h a t p s e u d o - E i n s t e i n h y p e r s u r f a c e s s a t i s f y ( 0 . 2 ) , Moreover,

THEOREM 2. There are no real hypersurfaces with parallel Ricci
tensor on which t. is principal.

1. Preliminaries.

Let M be a real hypersurface of F (<L) . In a neighbourhood of

each point, we choose a unit normal vector field N in F (€) . The

Riemannian connections V in F (€) and V in M are related by the

following formulas for arbitrary vector fields X and Y on M :

(1.1) J^Y = V^ + g(AX3 Y)N ,

(1.2) v"^ = - AX ,

where g denotes the Riemannian metric on M induced from the Fubini-

Study metric g on P^(€) and A is the shape operator of M in P (£).

An eigenvector X of the shape operator A is called a principal

curvature vector. Also an eigenvalue X of A is called a principal

curvature.

It is known that M has an almost contact metric structure

induced from the complex structure J on P (Q) , (see [6 ]) , that is,

we define a tensor field <$> of type (1.1), a vector field 5 ar>d a

i-form n o n M by

g($X, Y) = ~g(JX, Y) and g(g, X) = r\(X) = 'gCJX, N).

Then we have

(1.3) i,2X = -X + nfflc, g(Z, V = 1, i>l = 0 .
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From (1.1), we easily have

(1.4) CV^JY = n(Y)AX - g(AX,

(1.5) lxl

Let R and R be the curvature tensors of P (€) and M

respectively. Since the curvature tensor R has a nice form, we have

the following Gauss and Codazzi equations.

(1.6) g(R(X, Y)Z, W) = g(Y} Z)g(X, W) - g(X, Z)g(Y, W)

)g($X, W) - g($X, Z)g($Y, Z)

, Y)g(<t>Z, W) + g(AY, Z)g(AX, W)

- g(AX, Z)g(AY, W)

and

(1.7) (V^Y - (V^AlX = n(X)<)>Y -

Using (1.3), (1.5), (1.6) and (1.7), we get

(1.8) SX = (2n+l)X - 3r\(X)g + hAX - A2X ,

(1.9) = -3{g(ipAX, Y)E, + i\(Y)$AX} + (Xh)AY + (h - A)(V]{A)Y

where h = trace A and 5 denotes the Ricci tensor on M .

2. Proof of Theorems.

First, we determine the hypersurface M satisfying (0.2). Using

(1.9), we see that (0.2) is equivalent to

(2.1) (c+3){r\(W)g(ifAX, Y) + r\(Y)g($AX, W) } - (Xh)g(AY, W)

+ g((A - h)(V^)Y + CvylMYj W) = 0 .

Contraction with respect to Y and W , together with (1.3), yields

(2.2) -(Xh)h + trace(V)(A)(2A - h) = 0 .

2 2
It follows that h - trace A is constant. Next, using (1.7), we

see that (2.1) becomes
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(2.3) (c+3){n(W)g($AX, Y) + n(Y)g(<f>AX} W)} - (Xh)g(AY, W)

(A - h)W)

$, W) = 0.

Contraction with respect to X and W yields

(2.4) (cH-3)g(U^s Y) - (AY)h + traceM - h)CV^A) + r\((A -

+ 2g($Y, (A - h)E.) + tracef7yi; + 3r\($AY) = 0 .

since ij> and §A are skew-symmetric. (1.3) and commutativity of

contraction and covariant differentiation imply

(2.5) -cg(A£3 $Y) + txace(VyA)A - h tracefV^4j = 0 .

and

(2.6) -eg(Ag} $Y) + |iTtrace A
2 - V?)= 0 .

so that g(A£, $Y) = 0 . Consequently, £ is principal. Let At, = yg.

Then Lemma 2.4 of [5] implies y is locally constant. If we replace

Y by £ , (2.1) becomes

(2.7) (o+Z)$AX - (Xh)AK + (A - h + u-JCV^j? = 0 .

by (1.3). From (1.5), we have (^]A^ = ^JAV - AV £ = (\i -

Then (2.7) gives

(2.8) {(A - h + M)(V - A) + (c + 3)}$AX - v(Xh)Z = 0 .

Since A$(T M) is orthogonal to £ , both first term and second term

are zero, so that ]i(Xh) = 0 .

Let X be a principal vector with principal curvature \ , which

is orthogonal to £ . Then Lemma 2.2 of [5] implies that §X is a

principal vector with principal curvature (\\i + 2)/(2X - \i) , and 2\

- v ¥ 0 . Hence (2.8) gives

(2.9)
Ci A — \X

If u = 0 , then \ J 0 , A$X = X~2^X and (Xh - 1) + X (c + 3) = 0 .

Let A- be the restriction of A to the orthogonal complement
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£, (= <f>T M) of £ . Then A. has at most two distinct eigenvalues, so

that M has at most three distinct principal curvalures. From the proof

of Theorem 4 of C U, M is a homogeneous hypersurface with 2 or 3

distinct principal curvatures.

If u ̂  0 , then h is constant. From (2.9), A has at most

three distinct constant eigenvalues so that M has at most four distinct

constant principal curvatures. Since £ is principal, Theorem 1 and

Theorem 4 in [Z] implies that M is a homogeneous hypersurface with 2

or 3 distinct principal curvatures. Thus Theorem 1 is proved.

The same argument implies that if M has parallel Ricci tensor

and £ is principal, then M is a homogeneous hypersurface with 2 or

3 distinct principal survatures. But there is no homogeneous hyper-

surface with parallel Ricci tensor. Hence Theorem 2 is proved.
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