REAL HYPERSURFACES OF A COMPLEX PROJECTIVE SPACE

M. KIMURA

We study real hypersurfaces M of a complex projective space and show that a condition on the derivative of the Ricci Tensor of M implies M is locally homogeneous with two or three principal curvatures.

0. Introduction.

Let $P^n(\mathbb{C})$ be an n-dimensional complex projective space with Fubini-Study metric of constant holomorphic sectional curvature 4. We consider a real hypersurface M of $P^n(\mathbb{C})$. Let (ϕ, ξ, η, g) be an almost contact metric structure induced from the complex structure on $P^n(\mathbb{C})$ (§1). If the Ricci transformation of M satisfies

\[S\xi = a\xi + b\eta(X)\xi, \]

where a and b are constant, we call M a pseudo-Einstein hypersurface [3]. Pseudo-Einstein real hypersurfaces in $P^n(\mathbb{C})$ are completely classified by Kon [3] (see [4]). This result shows that if the Ricci tensor of M has a nice form, then M is determined (see [5]). In this paper, we consider the following problem: If the derivative of the Ricci tensor of M has a nice form, what can we say about M?

Received 6 August 1985. The author would like to express his thanks to Professor K. Ogiue and Professor N. Ejiri for valuable suggestions.
We have the following

THEOREM 1. Let M be a real hypersurface of $P^n(\mathbb{C})$. If the Ricci transformation S of M satisfies

$$(0.2) \quad (\nabla^S_X Y) = c\{g(AX, Y)\xi + \eta(Y)\phi AX\},$$

where c is a non-zero constant, and A denotes the shape operator ($\S1$). Then M is locally congruent to a homogeneous hypersurface with two or three distinct principal curvatures.

We note that pseudo-Einstein hypersurfaces satisfy (0.2). Moreover,

THEOREM 2. There are no real hypersurfaces with parallel Ricci tensor on which ξ is principal.

1. Preliminaries.

Let M be a real hypersurface of $P^n(\mathbb{C})$. In a neighbourhood of each point, we choose a unit normal vector field N in $P^n(\mathbb{C})$. The Riemannian connections ∇ in $P^n(\mathbb{C})$ and ∇ in M are related by the following formulas for arbitrary vector fields X and Y on M:

$$(1.1) \quad \nabla^N_X Y = \nabla_X Y + g(AX, Y)N,$$

$$(1.2) \quad \nabla^N_X N = -AX,$$

where g denotes the Riemannian metric on M induced from the Fubini-Study metric \bar{g} on $P^n(\mathbb{C})$ and A is the shape operator of M in $P^n(\mathbb{C})$.

An eigenvector X of the shape operator A is called a principal curvature vector. Also an eigenvalue λ of A is called a principal curvature.

It is known that M has an almost contact metric structure induced from the complex structure J on $P^n(\mathbb{C})$, (see [6]), that is, we define a tensor field ϕ of type $(1,1)$, a vector field ξ and a 1-form η on M by

$$g(\phi X, Y) = \bar{g}(JX, Y) \quad \text{and} \quad g(\xi, X) = \eta(X) = \bar{g}(JX, N).$$

Then we have

$$(1.3) \quad \phi^2 X = -X + \eta(X)\xi, \quad g(\xi, \xi) = 1, \quad \phi\xi = 0.$$
From (1.1), we easily have

\[(\nabla_X^\phi)Y = n(Y)AX - g(AX, Y)\xi , \]

\[(\nabla_X^\phi)Y = \phi AX . \]

Let \(\overline{R} \) and \(R \) be the curvature tensors of \(F^N(\mathcal{C}) \) and \(M \) respectively. Since the curvature tensor \(\overline{R} \) has a nice form, we have the following Gauss and Codazzi equations.

\[g(R(X, Y)Z, W) = g(Y, Z)g(X, W) - g(X, Z)g(Y, W) \]
\[+ g(\phi Y, Z)g(\phi X, W) - g(\phi X, Z)g(\phi Y, Z) - 2g(\phi X, Y)g(\phi Z, W) + g(AY, Z)g(AX, W) - g(AX, Z)g(AY, W) \]

and

\[g(\nabla_X^\phi)Y - g(\nabla_Y^\phi)X = n(X)\phi Y - n(Y)\phi X - 2g(\phi X, Y)\xi . \]

Using (1.3), (1.5), (1.6) and (1.7), we get

\[SX = (2n+1)X - 3n(X)\xi + hAX - A^2X , \]
\[(\nabla_X^S)Y = -3\{g(\phi AX, Y)\xi + n(Y)\phi AX\} + (Xh)AY + (h - A)(\nabla_X^A)Y - (\nabla_X^A)AY , \]

where \(h = \text{trace } A \) and \(S \) denotes the Ricci tensor on \(M \).

2. Proof of Theorems.

First, we determine the hypersurface \(M \) satisfying (0.2). Using (1.9), we see that (0.2) is equivalent to

\[(\sigma + 3)\{n(W)g(\phi AX, Y) + n(Y)g(\phi AX, W)\} - (Xh)g(AY, W) \]
\[+ g((A - h)(\nabla_X^A)Y + (\nabla_X^A)AY, W) = 0 . \]

Contraction with respect to \(Y \) and \(W \), together with (1.3), yields

\[-(Xh)h + \text{trace}(\nabla_X^A)(2A - h) = 0 . \]

It follows that \(h^2 - \text{trace } A^2 \) is constant. Next, using (1.7), we see that (2.1) becomes
(2.3) $$(c+3)(\eta(W)g(\phi AX, Y) + \eta(Y)g(\phi AX, W)) - (Xh)g(AY, W)$$
$$+ g((\nabla_X A)X + \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi, (A - h)W)$$
$$+ g((\nabla_{A\xi} A)X + \eta(X)\phi AY - \eta(AY)\phi X - 2g(\phi X, AY)\xi, W) = 0.$$

Contraction with respect to X and W yields

(2.4) $$ (c+3)g(\phi A\xi, Y) - (AY)h + \text{trace}(A - h)(\nabla_X A) + \eta((A - h)\phi Y)$$
$$+ 2g(\phi Y, (A - h)\xi) + \text{trace}(\nabla_{A\xi} A) + 3\eta(\phi AY) = 0. $$

since ϕ and ϕA are skew-symmetric. (1.3) and commutativity of contraction and covariant differentiation imply

(2.5) $$-c\eta(A\xi, \phi Y) + \text{trace}(\nabla_X A)A - h \text{trace}(\nabla_X A) = 0.$$

and

(2.6) $$-c\eta(A\xi, \phi Y) + \frac{1}{2}Y(\text{trace} A^2 - h^2) = 0.$$

so that $g(A\xi, \phi Y) = 0$. Consequently, ξ is principal. Let $A\xi = \mu\xi$.

Then Lemma 2.4 of [5] implies μ is locally constant. If we replace Y by ξ, (2.1) becomes

(2.7) $$(c+3)\phi A\xi - (Xh)A\xi + (A - h + \mu)(\nabla_X A)\xi = 0.$$

by (1.3). From (1.5), we have $$(\nabla_X A)\xi = \nabla_X (A\xi) - A\nabla_X \xi = (\mu - A)\phi AX. $$

Then (2.7) gives

(2.8) $$((A - h + \mu)(\mu - A) + (c + 3))\phi AX - \mu(Xh)\xi = 0.$$

Since $A\phi(T_x M)$ is orthogonal to ξ, both first term and second term are zero, so that $\mu(Xh) = 0$.

Let X be a principal vector with principal curvature λ, which is orthogonal to ξ. Then Lemma 2.2 of [5] implies that ϕX is a principal vector with principal curvature $$(\lambda + 2)/(2\lambda - \mu),$$ and $2\lambda - \mu \neq 0$. Hence (2.8) gives

(2.9) $$\lambda\{(\frac{\lambda\mu + 2}{2\lambda - \mu} - h + \mu)(\mu - \frac{\lambda\mu + 2}{2\lambda - \mu} + c + 3) = 0. $$

If $\mu = 0$, then $\lambda \neq 0$, $A\phi X = \lambda^{-1}\phi X$ and $(\lambda h - 1) + \lambda^2(c + 3) = 0$.

Let A_0 be the restriction of A to the orthogonal complement
Hypersurfaces of a Projective Space

$\xi_1 \ (= \phi T_x M)$ of ξ. Then A_0 has at most two distinct eigenvalues, so that M has at most three distinct principal curvatures. From the proof of Theorem 4 of [1], M is a homogeneous hypersurface with 2 or 3 distinct principal curvatures.

If $\mu \neq 0$, then h is constant. From (2.9), A_0 has at most three distinct constant eigenvalues so that M has at most four distinct constant principal curvatures. Since ξ is principal, Theorem 1 and Theorem 4 in [2] implies that M is a homogeneous hypersurface with 2 or 3 distinct principal curvatures. Thus Theorem 1 is proved.

The same argument implies that if M has parallel Ricci tensor and ξ is principal, then M is a homogeneous hypersurface with 2 or 3 distinct principal curvatures. But there is no homogeneous hypersurface with parallel Ricci tensor. Hence Theorem 2 is proved.

References

Department of Mathematics,
Tokyo Metropolitan University,
Setagayaku, Tokyo 158,
Japan.