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NUMERICAL STUDY OF A PROBLEM IN THE COMBUSTION OF A
POROUS MEDIUM
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Abstract

A spectral method is used to consider the porous medium combustion in an infinite slab. The
infinite system of ordinary differential equations for the amplitude functions is truncated
and comparisons are made for different numbers of modes included in the numerical
computation. It is shown that the qualitative behaviour of the solution is captured by
the first eigenmode. Dependence of the solution on initial data and a parameter is also
considered.

1. Introduction

A model for porous medium combustion was proposed by Norbury and Stuart in 1987
[4]. The governing equations are

da
j;=-lr, (1)

dz
di

dz
r

= u — w,

ar

= H(a- aa)H(u - uc)^
/2gf(w).

(3)

(4)

(5)with

The nondimensionalised quantities a, u, and w are the heat capacity of the solid,
the solid temperature and the gas temperature, respectively, g is proportional to the
product of oxygen concentration and gas temperature, t is the time variable and z
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is the space variable. H(£) = 0 i f £ < 0 and //(£) = 1 otherwise. The function
f(w) is usually taken to be proportional to w2. The parameter \i is proportional to the
inlet gas velocity while the parameter A. is linearly related to the specific heat of the
combustible solid. The parameter aa satisfies 0 < oa < 1 and uc denotes the critical
switching temperature related to the burning zone, that is, a region in the z -plane
where r > 0.

In [7], Tam considered the combustion of a porous slab occupying 0 < z < 1,
using the initial and boundary conditions

a(z,oo) = oa, (6)

u(0,t) = «(1,0 = 0, u(z,O) = uo(z), (7)

w(0, t) = 0, (8)

g(0,t) = ga, (9)

where u and w have been scaled such that the ambient temperature is zero. The
reaction rate r in (5) was also replaced by

r = {a - aa)^l2gw2. (10)

To simplify the problem, Tam [7] used a modified Oseen-type linearization to derive
an ordinary differential equation from (1) to (5). It was argued that the information
regarding the ignition and the qualitative dependence of the solution on the parameters
can be deduced from the ordinary differential equation.

In this paper we study this problem further by expanding the solution in a series
of eigenfunctions. The time-dependent coefficients of the eigenfunctions are then
governed by an infinite system of ordinary differential equations. To study this
system numerically, it must be reduced to a finite system, and we do this simply
by using n-term truncation. In the next section, are carried out some preliminary
manipulations so that only two dependent variables have to be expanded. In Section 3
we focus on the isolated fundamental mode, giving some analysis regarding the initial
data dependence of the solution. In Section 4, numerical solutions for the truncated
multi-mode systems are obtained and it is shown that results confirm the validity of
the qualitative behaviour derived from using a single mode.

To lessen the complexity of the problem we shall take d = 0.

2. Solution by eigenfunction expansion

Let x = <* — oa- Using (10) and integrating (4) with respect to z, we have

t)w2(s,t)ds\. (11)f X(s,
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From (3), we obtain

, 0 = -<Tz / M [ u(s, t)eslllds.
M Jo

w(z, 0 = -<Tz/M [ u(s, t)eslllds. (12)
M Jo

Thus if we solve for u and x, the above results give g and w.
Let {(pn} = {V2 sinrnzz) be a set of normalized eigenfunctions corresponding to

eigenvalues {yn} = {n2n2 : n is a natural number }. Expand u and y in terms of [<pn]
as

z), (13)

z). (14)

Using the notation

<Pn(z)= fZ<Pn(s)ds, (15)
Jo

<Pn(z)= f (Pn(s)e^ds (16)

and substituting (13) and (14) into (1) and (2), yields

kvlXjUkUl

'iXjUM, (17)

- HtfViUi + tL-'e-^VMUi - VMU, - I"1 E,^X;, (18)

where Sn denotes E"z~.
Multiplying (17) and (18) by cpn and integrating from 0 to 1 with respect to z, yields

X'n = - vrWkg.VjV&XjUM f tpjwspne-wdz
Jo

iUjVtW.XjUnU, I VMvmW^dz, (19)
Jo

I <pi<pJ<pndz =
Jo

Jo
-Un- \~xX'n. (20)
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Equations (19) and (20) constitute an infinite-dimensional dynamical system.
While it is not possible to solve such a system in general, a great deal of effort
has gone into its study. (See, for example, [1], [2], [8].) To reduce it to a finite-
dimensional system such that at least some numerical work can be done, simplifying
assumptions must be made which usually depend on some knowlegde of the under-
lying problem. In the present case, experience in dealing with this type of problem
suggests that the first eigenmode is dominant. We therefore adopt truncation and con-
sider only the interaction of the first N modes, discarding all terms involving modes
of order (N + 1) and higher. The case of N = 1 is studied both analytically and
numerically. Numerical work on N = 3, 5, 9, 13 is carried out and the result lends
support to the conjecture of the first-mode dominance.

3. The isolated fundamental mode

Let Xn and Un equal zero for n > 2. From (19) and (20), dropping the subscript 1
on X) and U\, we obtain

X' = -ix-^XgaCt^XU2 - fM-5/2aC2(fi)X'XU2, (21)

{oa + C3QJL)X)U' = - ( 1 + n2)U + u.-lC^n)U - k-'X', (22)

where

C,(M)= f tffie-Wodz, (23)
Jo

[ Vitftfe'^dz, (24)
o

= f <f\dz,
Jo

\ (25)

/ (26)
o

From (21) we have

= \gaCx(n)XU2

H^ + an^dQDXU2' l '

Substituting (27) into (22), then yields

} {oa + C3(n)X} U' =

U [aQi) {1 + ix-5l2aC2^)XU2} + gaCx{n)XU], (28)
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where

Since C4(/*) = [2/X4TT2(1 + e'1^) + fi(l + H2TT2)](1 + fi27i2)-2, it is not difficult to
show that for fi > 0, we have a(fx) < 0.

Critical values for U are obtained from the equation

U[a(ix)[l + iM-5/2aC2(lJ-)XU2} + gaC\{ix)XU] = 0, (30)

which gives

Uw = 0, (31)

Since a(/n) < 0 for /x > 0, the critical values t/(2i3) are both positive provided

(33)

The integrals in (23) and (24) are evaluated to obtain

Cdn) = f <p2tfe-2z'»dz
Jo
7T V ( l - e-2/») 32n V7(l + g~'^) fi2(fi27T2 + 3)

+ + 2(1 + 7T V ) 2

and

)

!

4(1

(1 + 7T2/Ll2)2 I 4(1 + 7T2At2) (4 + 7T2Al2)(4 + 97T V )

3

+9TT2AA2) + ( 1 + 7 V ) 2 ( 1 1 6 2 2 ) 1 ~

2 1
( )

4 V V f 3 J TT
+ 7T(1 + 7T2/A2)

Since (27) implies that X(t) is a strictly decreasing function of time, it is clear that
if X(t) is sufficiently small, £/(2>3) become complex conjugates and (30) has only the
real solution f/(l). Writing

- _
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we see that if X(0) < X, U{t) has only one critical value U = 0. Thus, no matter
how large £/(0) is, Uif) decreases to zero as t increases, indicating a diffusion type
process.

ForX(O) > X, let U,{t) and Ur(t), denote Ui2-3)(t), where U,(t) < Ur(t). Suppose
we start with £/(0) such that U,(0) < U(0) < Ur(0). Then ^ ( 0 ) > 0 and U(t)
increases toward Ur(t). Meanwhile X(f) is decreasing until at some /, say t = t0,
X(t0) = X and £/,(f0) and Ur(t0) coalesce. For t > t0, U

m is the only critical point
and so U(t) decreases to zero as t increases. This proccess is typical of ignition,
where the temperature of the medium increases to attain a maximum value and then
decreases to zero due to the depletion of the medium.

Again, for X(0) > X, if £/(0) < £//(0), then U(t) is monotonically decreasing
to zero. If U(0) > £/r(0), U(t) decreases to Ur(t) while Ur(t) decreases and C//(f)
increases. After some time t, say t > t0, Ur{t) and Ut{t) become complex and U(t)
decreases to zero. In the first case, the initial temperature is too low to start an ignition.
In the latter, the initial temperature is already high enough such that the burning of
the medium does not have a boosting effect on the temperature. Both processes are
of the diffusion type.

Taken together, the above results show that the value t//(0) serves as a critical
initial condition below which ignition cannot occur. This notion of a critical initial
condition for combustion problems has been investigated by Tarn [5,6], and Gray and
Wake [3], among others.

0.061
0.065
0.100
0.150
0.200
0.250
0.300
0.400

f/,(0)
6.015879
4.785600
3.217676
2.832364
2.808177
2.916313
3.093761
3.567547

f/r(0)
6.602364
8.591181
16.530145
25.425909
33.551855
41.309390
48.851314
63.556698

X
8.983714
8.274488
4.911744
3.247801
2.566538
2.218138
2.017109
1.812289

TABLE 1. t/;(0), Ur(0), and X for different values of /*.

Numerical results are obtained by taking a = 0.001, ga = 1.0, A. = 1.0, aa =
0.001, and X(0) = 20*/2/n. Table 1 shows U,(0), Ur(0) and X = 4aa2(M)C2(AI)
V~5/2{gaCi (n)}~2 for different values of /x.

For fi = 0.1, Figure 1 shows U(t) for U(0) = 2.0, 8.0, and 20.0. The initial
conditions are chosen to illustrate the three types of behaviour for U(t).
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S3 -
= 2.0

t/(0) = 8.0
t/(0) = 20.0

0.0 0.1 0.2 f O.3 0.4

FIGURE 1. 1/(0 as a function of t for U(Q) = 2.0, 8.0 and 20.0 with \i =0.1.
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U(0) - 2.0
t/(0) = 8.0
f/(0) = 20.0

1.0 1.50.5 t

FIGURE 2. X(t) as a function of r for £/(0) = 2.0, 8.0 and 20.0 with n =0.1.

In Figure 2, we present the graphs of X(t) for those values of £/(0) = 2.0, 8.0, and
20.0. It shows that a larger f/(0) gives rise to a smaller lim^oo X(t), suggesting more
complete burning of the medium.
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4. Numerical results for the truncated multi-mode system

We consider the truncated multi-mode system

E E E XJU'U' f
j=\ k=\ l=\ J°

N N N N »1

^ E E E E * - ' * ; ^ ' / 9i<PjVkV,<pne-2zhldz, (37)
1 = 1 y = l k=\ 1=\ JO

N N

°"U'n + E E X'UJ / <Pl
JOi = \ j = l

N rl

-Un-X~lX'n, (38)
;=i

where N = 3, 5, 9, and 13. Since computing time increases rapidly with increasing
N, computation is carried out for N = 13 only for a few values of the parameters.
These results are then compared with the results for N = 1.

In the following computations we have taken a = 0.001, ga = 1.0, A = 1.0, and
aa = 0.001. The initial value is taken as x(z, 0) = 10. By expanding x m a Fourier
sine series, is its ixh coefficient X,-(0) = 20v^/(i7r). We shall use these values of
X,(0) in the computation. We take first u(z, 0) = U(0)<pi(z).

Typical results are presented in Figures 3 and 4. For £7(0) = 2.0, u(z,t) is
monotonically decreasing to zero as t increases for N = 1,3, 5, and 9. This phe-
nomenon was predicted by the isolated fundamental-mode solution since 0.2 < £7/(0).
For £7(0) = 8.0, on the other hand, u(z, t) increases to its maximum value and then
decreases to zero as t increases. This was again predicted by the isolated fundamental-
mode solution since £7(0) = 8.0 is between £7,(0) and £7r(0). For £7(0) = 4.0 and
fx = 0.2, Figure 5 gives u(z, t) for N = 1, 3, 5 and 9. Since £7,(0) < 4.0 < £7r(0),
u(z, t) increases toward its maximum and then decreases to zero, as predicted by the
isolated fundamental-mode solution.

For ix = 0.1 and £7(0) = 4.0, we carry out a comparison of x( l /2 , t) for N =
1, 3, 5, 9 and 13. The results are presented in Figure 6.

Some of the above computations are then repeated using the initial condition
M(Z,0) = 8.0sin227rz, which is distinctly different from the first eigenfunction.
Figure 7 shows that except in the time interval 0 < t < 0.15, the first eigenmode
again captures the essential behaviour of the solution as given by the nine-mode
approximation.
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N = 5 " ^

FIGURE 3. «(z, /) with ix = 0.1 and t/(0) = 2.0 for N = 1, 3,5 and 9.

FIGURE 4. u(z,t) with/i =0.1 and U(0) = 8.0 for N = 1, 3,5 and 9.
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N = 1 N = 9

FIGURE 5. u(z, /) with fi = 0.2 and U(0) = 4.0 for N = 1, 3, 5 and 9.
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FIGURE 6. x(0.5, f) with £/(0) = 8.0 and n = 0.1 for N = 1,3, 5, and 9.
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N = 1

v.

FIGURE 7. «(z, 0 with/n =O.2and«(z,O) = 8.0sin227rz for Af = 1,3, 5, and 9.

5. Concluding remarks

We have used eigenfunction expansions to construct the solution to the model
problem of combustion of a porous slab. Computation using up to thirteen terms does
confirm the conjecture that the salient features are captured by using the fundamental
mode alone.
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