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Random Numbers from Astronomical Imaging
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Abstract: This article describes a method to turn astronomical imaging into a random number generator by
using the positions of incident cosmic rays and hot pixels to generate bit streams. We subject the resultant bit
streams to a battery of standard benchmark statistical tests for randomness and show that these bit streams are
statistically the same as a perfect random bit stream. Strategies for improving and building upon this method

are outlined.
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1 Introduction

Random numbers are of importance to many sub-fields of
science. In observational astrophysics they are required
for diverse uses (Meurers 1969) such as testing for
sub-structure in galaxy clusters (Dressler & Shectman
1988) and Monte Carlo background correction tech-
niques (Pimbblet et al. 2002). In cryptography, the gen-
eration of secure passwords and cryptographic keys is
paramount to communication being immune from eaves-
dropping. They are also used in selecting winning num-
bers for lotteries including the selection of Premium
Bonds in the United Kingdom (www.nsandi.com/
products/pb/). Large Monte Carlo computations,
however, remain the primary driver of intensive searches
for truly random number generators (e.g. Ferrenberg,
Landau, & Wong 1992; James 1990).

For many purposes we would essentially like to have
a long bit stream consisting of 1s and Os. Each bit in
the stream should be independently generated with equal
probability of being a 1 or 0. Therefore as the length of the
stream, n, tends toward infinity, the expectation value of
any individual bit being either 1 or 0 is 1/2. The traditional
method of obtaining such a stream is to use a pseudo-
random number generator (PRNG; e.g. Press et al. 1992).
PRNGs typically rely upon the input of a ‘seed’ quan-
tity which is then processed using numerical and logical
operations to give a stream of random bits. Whilst such
PRNGs are probably sufficient for most (minor) types of
applications, they are clearly predictable if the initial seed
is known. This makes PRNGs highly inappropriate for
Monte Carlo-like calculations (Gonzalez & Pino 1999).

A truly random number generator (RNG) should pos-
sess qualities that make the bits unpredictable. The
obvious sources of RNGs are those that possess large
amounts of entropy or chaos (Vavriv 2003; Gleeson 2002;
Gonzélez & Pino 1999). Examples include radioactively
decaying sources (e.g. HotBits; www . fourmilab.ch/
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hotbits/),electrical noise from a semiconductor diode,
and thermal noise.

An overlooked and potentially large source of ran-
dom numbers is to be found in astronomical imaging.
Imaging at a telescope will inevitably produce unwanted
cosmetic features such as cosmic ray events, satellite trails,
and seeing effects — blurring due to the movement of
the atmosphere (in the case of ground-based telescopes).
It is precisely these features (and in particular cosmic
rays) which potentially make astronomical imaging a
good RNG.

This article presents an assessment of astronomical
imaging data as a source for a RNG. In Section 2, we
demonstrate how it is possible to generate a stream of ran-
dom bits from a single astronomical image. Examples of
such bit streams are examined in Section 3 using a bat-
tery of statistical tests to evaluate their randomness. Our
findings are summarised in Section 4.

2 Generating Random Bits

Assuming that one is in possession of a sample of astro-
nomical images that possess cosmic ray events we can
proceed to obtain a bit stream from them by following the
procedure outlined in Figure 1. We detail the individual
steps below.

Our aim is to detect the locations of any cosmic ray or
‘hot spot’ (pixel values that are significantly greater than
their local neighbours) in the pixel distribution. For this
experiment, we use single-shot exposures of 300 to 600 s
from non-overlapping wide-field observations consisting
of 2 x 4k pixels from Pimbblet and Drinkwater (2004) and
their on-going follow-up observations!. Firstly, we use
the IRAF (iraf.noao.edu/) task COSMICRAYS with

!t is also unnecessary to pre-process these images with flat fields, for
example, as all we are interested in are the locations of hot pixels. Indeed,
our testing has shown that a raw image produces just an equally random
bit stream as a post-processed one does. One problem that is encountered
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Figure 1 Overview of the processes required to generate a ran-
dom bit stream from an initial astronomical image. Using a Dell
Precision workstation 530 machine for analysing an initial image
of 2 x 4k pixels, the generation of an initial bit stream takes about
50s whilst the de-skewing requires about 30s (for either the von
Neumann or deliminator method). The average rate of random bit
production is approximately 2500 bits per second (bps). Depending
upon the amount of discarded bits, this figure can range from as low
as 1000 bps up to 4000 bps.

default parameters to remove the cosmic rays from the
original image. Then, using IMARITH, we subtract the
cosmic ray free imaging from the original to create a dif-
ference image in which there should be only cosmic rays
(Figure 2). Inevitably, this technique will identify not only
true cosmic rays but also anomalously hot pixels from the
distribution. To turn the difference image into a bit stream,
we sequentially examine the contents of each pixel in turn,
row by row, column by column. Pixels with a value of zero
in the difference image translate into a O for the bit stream
whilst those with values greater than zero (the hot pixels)
become 1.

The fraction of pixels identified as cosmic rays (and
hot pixels) using this method is typically 2-3% for our
exposures. Clearly, there exist more Os in the bit stream
than there are 1s. Moreover, there are distinct ‘holes’ in the
hot pixel distribution of the difference image where legiti-
mate objects occurred in the original image (the galaxy in
Figure 2). So, whilst there are random events in our bit
stream, it is highly skewed toward Os.

2.1 De-skewing

To turn our bit stream into a uniformly random distribu-
tion, it is necessary to de-skew it (an ‘entropy distillation
process’; Rukhin et al. 2001). Here we adopt and inves-
tigate two common methods of de-skewing. The first is

is the presence of bad pixels, which always occur in the same place on a
CCD. These should be removed with the FIXPIX (or similar) task before
proceeding.
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Figure 2 Example of the image processing method. Top: a sub-
section of the original image measuring 613 x 480 pixels. Middle:
the cosmic ray rejected version of the image. Bottom: the difference
image. Note how the obvious cosmic ray (left of centre) is rejected
along with a host of other relatively ‘hot’ pixels. Real objects, mean-
while, leave an obvious hole in the difference image which requires
de-skewing to generate a random bit stream.

that of von Neumann (1963). We read the bit stream gen-
erated from the imaging as a sequence of non-overlapping
pairs. The pairs are then transformed into a new bit stream
according to the scheme presented in Table 1. This scheme
removes all biases in the original bit stream at the expense
of drastically reducing the overall size of the original,
as it removes the long sequences of Os associated with
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legitimate objects (Table 2). The typical reduction for our
imaging is in the range 85-98%, although this is a highly
variable parameter.

The second method is to use the hot pixels (or groups of
hot pixels; 1s) as deliminators between long streams of
0s. The length of non-overlapping pairs of long streams
of Os are then compared to each other to generate a 1
or a 0, depending if the first stream is longer than the
second or vice versa. If the lengths are equal, nothing is
appended to the new bit stream. An example of how both
of these methods work is illustrated in Table 2. The clear
disadvantage of the delimination method is that a much
smaller bit stream is produced than for the von Neumann
method.

3 Evaluating the Randomness

In truly random bit stream, each bit should be generated
with probability 1/2 of producing either a O or 1. Further,
each bit should be generated independently of any other
bit in the bit stream. One should not, therefore, be able to
predict the value of a given bit by examining the values
of the bits generated prior to it in the bit stream. These
conditions define an ideal, truly random bit stream, and
we will use them to test our random bits against.

To evaluate the randomness of our bit stream, we sub-
ject it to a battery of benchmark statistical tests. The tests
we use are a selection of those devised by Random Number
Generation and Testing collaboration of the National Insti-
tute of Standards and Technology (NIST; Gaithersburg,
MD, USA; csrc.nist.gov/rng/index.html).

Table 1. Scheme for the von Neumann (1963)
de-skewing method. The original bit stream
from the imaging is read in as a sequence of
non-overlapping pairs (‘Input Pair’ column).
The output for the new bit stream is then given in
the ‘Output’ column. Where ‘Null’ is indicated,
nothing is appended to the new bit stream

Input pair Output
00 Null
11 Null
01 0
10 1

The NIST statistical test suite source code is freely
available from their web site.

For each test, the software formulates a specific null
hypothesis (Hp) and alternative hypothesis (H;). We will
specify that Hy is the hypothesis that our bit stream is
random and that H is the hypothesis that it is non-random.
To accept or reject Hy, one determines a test statistic and
compares it to a critical value chosen to be in the tails of a
theoretical reference distribution of the test statistic. The
possible outcomes of the statistical testing are illustrated
in Table 3. The probability of obtaining a Type I error is
therefore the level of significance of a test (see Rukhin
et al. 2001), which we set at a level of 0.01 for this work.

The software determines a P-value for each test: the
probability that a perfect RNG would produce a bit stream
that is less random than the bit stream that we test (i.e. a
P-value of zero denotes a bit stream that is certainly non-
random). Therefore to reject the null hypothesis Hp (and
hence fail the test) at a 99% confidence level would require
a P-value <0.01. Clearly, the P-value only assesses the
relative incidence of Type I errors. What it does not
describe is the probability that a non-random number gen-
erator could produce a sequence of numbers at least as
random as our bit stream that is being tested (a Type II
error; Rukhin et al. 2001).

Here, we briefly describe each test (the tests and the
statistics behind them are described in much more detail
in Rukhin et al. 2001) and summarise the results in Table 4.

If our bit stream is random, then the number of 1s and
Os overall and in any part (i.e. any sub-sequence) of it
should be approximately the same. Therefore the first test
is to examine the frequency of 1s and Os in the bit stream.
In the second test, these frequencies are re-computed for
sub-sequence blocks of length M (see also Knuth 1981;
Pitman 1993).

Table 3. Possible configuration of the conclu-
sions of any of the given statistical hypothesis tests
(Rukhin et al. 2001)

True Result
situation

Accept Hy Reject Hy
Hy true Correct Type I error
Hj true Type 1I error Correct

Table 2. A comparison of how the de-skewed bit stream is generated using the von Neumann

(1963) and deliminator methods

Bit stream

Pixel distribution

von Neumann pairings
von Neumann de-skewed

Deliminator pairings
Deliminator de-skewed
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Next, we test the number of runs in the sequence, where
arun is defined as an uninterrupted sequence of identical
bits. This tests if the bit stream oscillates with sufficient
celerity between Is and Os. We follow this test by a similar
one that evaluates the longest run of 1s in the sequence to
determine if it is the same as would be expected for a ran-
dom distribution. If there is an irregularity in the longest
run length of 1s, then this will also be reflected in the
longest run length of Os; hence we only test the longest
run length of 1s.

Table 4. The proportion of 100 bit streams of length n = 106

that passed each statistical test (critical P-value 0.01). The

minimum pass rate in order for our sequence to be consid-

ered random is approximately 0.96 for each statistical test
(see Rukhin et al. 2001)

Test Proportion passed Notes
von Neumann Deliminator

Frequency 0.98 1.00

Block frequency 0.98 1.00 M =1000
Runs 0.97 0.99

Longest run 0.99 0.97

Rank 1.00 0.99

Cusum 0.97 0.99

DFT 1.00 1.00
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To test for any linear dependence of sub-strings of fixed
length within the original sequence, the rank of disjoint
sub-matrices is examined. This method is described in
more detail by Marsaglia in the DIEHARD statistical tests
(stat.fsu.edu/~geo/diehard.html).

We can also consider the bit stream as a random walk
and hence test the maximal excursion from zero for the
cumulative sum (cusum) of adjusted digits (+1, —1) in
our bit stream or sub-sequence therein (Revesz 1990). For
a random sequence, cusum should be near zero. Finally,
by performing a discrete Fourier transform (DFT), we can
look for periodic features in our bit stream that would
indicate a lack of randomness.

Table 4 shows that both variants of the de-skewing
method are sufficient to pass all of the standard tests out-
lined above by at least the minimum pass rate (Rukhin
et al. 2001). We can further assess the validity of our
conclusion by examining the distribution of P-values,
which for a random sequence should be approximately
uniform. For this, we re-run our experiment but use 1000
bit streams of length 10° (since 100 bit streams com-
prise a relatively small sample). All the tests outlined
above (Table 4) are passed once again and we display the
distribution of P-values for these in Figure 3. All of the dis-
tributions of P-values approximate uniformity very well.
To test the uniformity of the distributions, we can use a
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Figure 3 Histograms of the P-value distributions arising from applying the seven statistical tests from Table 4 to 1000 bit
streams of length 10°. All of the distributions are approximately uniform.
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x? test and a determination of a P-value that corresponds
to the goodness-of-fit distributional test of the P-values
(a so-called ‘ P-value of P-values’; Rukhin et al. 2001).
The ¥ statistic is simply:

10

> (F; —100)*
=) 00 (1)
~ 100

where F; is the number of P-values in bin i of Figure 3. The
P-value of P-values is then the complemented incomplete
gamma function:

1—-TI(a,z) 2)

where we set a=9/2 and z= x2/2 (see Rukhin et al.
2001). This yields a mean x> value for the distributions
in Figure 3 of 9.9 £ 2.8 whilst 1 — I"(9/2, x?/2) =0.357.
Since 1 — I'(9/2, x?/2) is much larger than (say) 0.0001,
we can consider the distributions to be uniformly spread.

We note, however, that by altering the size of the bit
stream downward (say n = 10%), we have been able to
cause the von Neumann de-skewed variant to fail the runs
test. This emphasises the fact that these tests need to be
carried out on a large bit stream sample (at least n > 10°).

4 Summary

We have described how astronomical imaging can be used
as a true RNG by application of simple cosmic ray rejec-
tion algorithms. Although we throw away a large fraction
of our original data through the de-skewing methods, we
have shown that resultant bit stream is sufficiently random
to pass modern tests for randomness.

The tests that we applied are only a selection of the
NIST statistical test suite. There are more within this
suite and certainly more beyond (e.g. Tu & Fischbach
2003; Ballesteros & Martin-Mayor 1998; Knuth 1981).
We have therefore looked at applying more complex tests
for randomness, as detailed in the NIST test suite (e.g.
non-overlapping template matching, etc.). We find that
these additional tests are readily passed by both de-skewed
variants of our bit streams.

Several improvements to our methodology can poten-
tially be made. We are looking at different de-skewing
techniques to improve the test statistics. For example, the
von Neumann method can be used twice (or more) on
the bit stream generated from the image. The resulting
proportions of bit streams that pass the statistical tests in
Table 4 increases fractionally as a result, but not signifi-
cantly. Our next step is to attempt to create a web interface
where it will be possible to download random numbers in
real time using this method. This could be accomplished
by using the international network of continuous cameras
(concams; Nemiroff & Rafert 1999). The concams have
the virtues that one does not require the sky to be dark
locally and the images are freely available to the public.

The imaging used in this work is at optical wavelengths
(specifically B, V, R, and I-bands). It may be interesting

https://doi.org/10.1071/AS04043 Published online by Cambridge University Press

to examine how the test results varied with other parts
of the electromagnetic spectrum, if at all. The imaging
is also non-overlapping. If the concams constitute a valid
RNG, then it is worthwhile to confirm that images of the
same area of sky produce independent random bit streams,
which should be the case as we are only considering the
incidence of hot pixels (i.e. cosmic rays).

Accessory Materials

One sequence of 10° bits (von Neumann de-skewed;
approximately 1.1 Mb in size) is available from the author
or, until January 2010, from Publications of the Astro-
nomical Society of Australia. Please note that this bit
stream is only one small part of the much larger sample
used to generate the results presented in this work. Your
mileage may vary!
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