THE LEAST COMMUTATIVE CONGRUENCE ON A SIMPLE REGULAR ω -SEMIGROUP[†]

by C. BONZINI, A. CHERUBINI and B. PIOCHI

(Received 22 March, 1988; revised 17 October, 1988)

Introduction. Piochi in [10] gives a description of the least commutative congruence λ of an inverse semigroup in terms of congruence pairs and generalizes to inverse semigroups the notion of solvability. The object of this paper is to give an explicit construction of λ for simple regular ω -semigroups exploiting the work of Baird on congruences on such semigroups. Moreover the connection between the solvability classes of simple regular ω -semigroups is studied.

As usual σ indicates the least group congruence. \mathbb{H} and \mathbb{D} the Green's relations, \mathbb{N} the set of non negative integers, \mathbb{Z} the additive group of the integers. For notations and definitions not given in this paper the reader is referred to [9].

1. Preliminary results.

DEFINITION 1. An ω -semigroup S is a semigroup whose set E of idempotents form an ω -chain

$$e_0 > e_1 > \ldots > e_n > \ldots$$

under the natural order defined on E by the rule $e \ge f$ if and only if ef = f = fe.

For a regular ω -semigroup. Munn in [6] proved the following result.

THEOREM A. Let S be a regular ω -semigroup.

If S has no kernel, then it is the union of an ω -chain of groups.

If the kernel of S coincides with S, then S is a simple regular ω -semigroup.

If S has a proper kernel, then S is a (retract) ideal extension of a simple regular ω -semigroup K by a finite chain of groups with 0 adjoined H^0 . Moreover this extension is determined by means of a homomorphism of H into the group of units of K.

Piochi in [10] characterized (by means of congruence pairs) the least commutative congruence of an inverse semigroup, proving

THEOREM B ([10], Th. 2.4 and Th. 2.6). Let S be an inverse semigroup and E its semilattice of idempotents. Define on E the relation $e \sim f$ if and only if there exist a, $b \in S$ such that $e = abb^{-1}a^{-1}$, $f = baa^{-1}b^{-1}$ and denote by λ_E the transitive closure of \sim . Denote by S' the subsemigroup of S generated by the elements $[a, b] = aba^{-1}b^{-1}$ with $a, b \in S$ and put

$$\partial(S) = \{a \in S \mid a^{-1}a\lambda_E e \text{ for some } e \in E \text{ and } ae \in S'\}.$$

Then $(\lambda_E, \partial(S))$ is a congruence pair and the congruence associated with it is the least commutative congruence on S.

Henceforward the least commutative congruence on a semigroup S will be denoted by λ_S (or simply by λ). We remark that the congruence λ is denoted γ in [10]; here we changed notation, in order to avoid confusion with the mappings γ_i of Theorem C below.

† Work supported by M.P.I.

Glasgow Math. J. 32 (1990) 13-23.

The main aim of this paper is to give an explicit construction of λ for a simple regular ω -semigroup. The construction of λ for the non-simple case is a result of a routine nature but adds to the technical problems, hence here is deleted; however it can be found in [4].

2. The least commutative congruence on a simple regular ω -semigroup. Several authors, e.g. Kocin [5] and Munn [6], gave structure theorems for simple regular ω -semigroups. The one given by Munn is the following

THEOREM C. Let d be a positive integer and let $\{G_i \mid i = 0, ..., d-1\}$ be a set of d pairwise disjoint groups. Let γ_{d-1} be a homomorphism of G_{d-1} into G_0 and, if d > 1, let γ_i be a homomorphism of G_i into G_{i+1} (i = 0, ..., d-2). For every $n \in \mathbb{N}$ let \bar{n} denote the integer equivalent to n modulo d, belonging to \mathbb{N} and less than d and let $\gamma_n = \gamma_{\bar{n}}$. For m, $n \in \mathbb{N}$ and m < n write

$$\alpha_{m,n} = \gamma_m \gamma_{m+1} \dots \gamma_{n-1}$$

and for all $n \in \mathbb{N}$ let $\alpha_{n,n}$ denote the identity automorphism of $G_{\bar{n}}$. Let S be the set of the ordered triples (m, a_i, n) , where $m, n \in \mathbb{N}$, $0 \le i \le d - 1$ and $a_i \in G_i$. Define a multiplication in S by the rule that

$$(m, a_i, n)(p, b_j, q) = (m + p - r, (a_i \alpha_{u,w})(b_j \alpha_{v,w}), n + q - r)$$

where $r = \min\{n, p\}$, u = nd + i, v = pd + j and $w = \max\{u, v\}$. Denote the so formed groupoid by $S(d, G_i, \gamma_i)$. Then $S(d, G_i, \gamma_i)$ is a simple regular ω -semigroup with exactly d \mathbb{D} -classes and any simple regular ω -semigroup is isomorphic to a semigroup $S(d, G_i, \gamma_i)$. For $n \in \mathbb{N}$ and $i = 0, \ldots, d - 1$ write $e_i^n = (n, e_i, n)$, where e_i is the identity of the group G_i . The elements e_i^n are the idempotents of $S(d, G_i, \gamma_i)$ and we have

$$e_0^0 > e_1^0 > \ldots > e_{d-1}^0 > e_0^1 > \ldots > e_{d-1}^1 > e_0^2 > \ldots$$

NOTATION. In the remainder of the paper \bar{n} will denote, as in previous theorem, the integer equivalent to *n* modulo *d*, belonging to \mathbb{N} and less than *d*, and, for every $i \in \mathbb{N}$, the endomorphism $\alpha_{i,i+d}$ of $G_{\bar{i}}$ will be indicated by α_i .

REMARK 2.1. For every $i, j \in \mathbb{N}$ with i < j we have obviously $\alpha_i = \alpha_{\overline{i}}$ and, putting $i = md + \overline{i}, j = nd + \overline{j}, \alpha_{i,j} = \alpha_{\overline{i},\overline{j}}\alpha_j^{n-m}$ if $\overline{i} \le \overline{j}$ and $\alpha_{i,j} = \alpha_{\overline{i},\overline{j}+d}\alpha_{\overline{i}}^{n-m-1}$ if $\overline{i} > \overline{j}$.

REMARK 2.2. For fixed *i* satisfying $0 \le i \le d - 1$, put

 $S_i = \{ (m, a_i, n) \mid m, n \in \mathbb{N}, a_i \in G_i \}.$

Then S_i is a bisimple inverse semigroup of S ([2], p. 462) and the Reilly multiplication ([7], formula (1)) applies with $\alpha = \alpha_i$.

LEMMA 2.3. Let $S = S(d, G_i, \gamma_i)$ be a simple regular ω -semigroup. Then its least commutative congruence λ is a group congruence contained in $\sigma \vee \mathbb{H}$.

Proof. First we recall that the congruence λ_E defined in Th. B is, by Th. 2.2 of [3], a uniform congruence of E. Moreover, for every $m, n \in \mathbb{N}$ and for every i such that $0 \le i \le d-1$, we have $e_i^m \lambda_E e_i^n$. In fact, putting $a = (m, e_i, n)$, $b = (n, e_i, m)$ we have $e_i^m = abb^{-1}a^{-1}$ and $e_i^n = baa^{-1}b^{-1}$. Hence, by the remarks preceding Lemma 2.1 of [3], we immediately deduce that λ_E is the universal congruence ω_E on E, hence λ is a group

congruence. Finally we remark that, since $S/\sigma \vee \mathbb{H} \cong \mathbb{Z}$ (see [2], Corollary 3.1), $\sigma \vee \mathbb{H}$ is a commutative congruence; so λ is contained in $\sigma \vee \mathbb{H}$.

COROLLARY 2.4. If ρ is a commutative congruence on $S = S(d, G_i, \gamma_i)$, then ρ is a group congruence.

DEFINITION 2.5 ([2], p. 463). Let $S = S(d, G_i, \gamma_i)$. A subset A of $G = G_0 \times G_1 \times \ldots \times G_{d-1}$ which satisfies the conditions

(i) $A = A_0 \times A_1 \times \ldots \times A_{d-1}$ for some $A_i \subseteq G_i$, $i = 0, \ldots, d-1$,

(ii) $A_i \trianglelefteq G_i, i = 0, ..., d-1,$

(iii) $A_{d-1}\gamma_{d-1} \subseteq A_0$ and $A_i\gamma_i \subseteq A_{i+1}$, $i = 0, \ldots, d-2$,

is called a γ -admissible subset of G.

 Γ^* denotes the set of the γ -admissible subsets of G satisfying the condition (iv) rad A = A where rad $A = \operatorname{rad} A_0 \times \ldots \times \operatorname{rad} A_{d-1}$ and

rad $A_i = \{a_i \in G_i \mid a_i \alpha_i^n \in A_i \text{ for some nonnegative integer } n\}$.

LEMMA 2.6 ([2], Lemma 3.2, Lemma 3.4 and Lemma 3.5). Let $S = S(d, G_i, \gamma_i)$ and let ρ be a congruence on S such that $\rho \in [\sigma, \sigma \vee \mathbb{H}]$. Put $A^{\rho} = A_0^{\rho} \times \ldots \times A_{d-1}^{\rho}$ where $A_i^{\rho} = \{a_i \in G_i \mid (0, a_i, 0) \in \ker \rho\}$. Then the following conditions hold.

(i) $A^{\rho} \in \Gamma^*$.

(ii) ker $\rho = \{(m, a_i, m) \mid m \in \mathbb{N}, a_i \in A_i^{\rho}, i = 0, ..., d-1\}.$

(iii) Let $x = (m, g_i, n)$, $y = (p, h_j, q)$ be two elements of S, then we have $x \rho y$ if and only if m - n = p - q and $(g_i \alpha_{u,w})(h_j^{-1} \alpha_{v,w}) \in A_k^{\rho}$ where u = nd + i, v = qd + j, $w = \max\{u, v\}, k = \bar{w}$.

Conversely, for every $A \in \Gamma^*$, the relation ρ defined by (iii) is a congruence on S belonging to $[\sigma, \sigma \lor \mathbb{H}]$ such that $A^{\rho} = A$.

REMARK 2.7. By Lemma 2.6 it follows that a group congruence ρ contained in $\sigma \vee \mathbb{H}$ is completely determined by the subset A^{ρ} of G. Hence, by Lemma 2.3, λ can be described by means of A^{λ} .

REMARK 2.8. We recall that for every two congruences ρ and τ on an inverse semigroup, we have $\rho \leq \tau$ if and only if $\operatorname{tr} \rho \leq \operatorname{tr} \tau$ and $\ker \rho \subseteq \ker \tau$. Hence, if $S = S(d, G_i, \gamma_i)$ and $\rho, \tau \in [\sigma, \sigma \vee \mathbb{H}]$ then $\rho \leq \tau$ if and only if $A^{\rho} \subseteq A^{\tau}$.

DEFINITION 2.9. Let H be a group and ϕ an endomorphism of H. For every $a, b \in H$ we call

 $(a\phi^r)(b\phi^s)(a^{-1}\phi^t)(b^{-1}\phi^u) \qquad (r, s, t, u \in \mathbb{N})$

a ϕ -commutator of a and b, and, if it is unambiguous, we put

$$(a\phi')(b\phi^s)(a^{-1}\phi')(b^{-1}\phi^u) = [a, b]_{\phi}.$$

We denote by H'_{ϕ} the subgroup of H generated by the ϕ -commutators of H and we call it the ϕ -derivate of H.

LEMMA 2.10. The following properties hold.

- (i) $H'_{\phi} \supseteq H'$ where H' indicates the derivate of the group H.
- (ii) If $g\phi^k \in H'_{\phi}$ for some non negative integer k, then $g \in H'_{\phi}$.

(iii) $H'_{\phi} \trianglelefteq H$.

Proof. Property (i) is obvious, property (ii) easily follows because $g(g^{-1}\phi^k)$ is a ϕ -commutator of g and of the identity of H. To prove property (iii), let $a, b, g \in H$ and consider a ϕ -commutator

$$[a, b]_{\phi} = (a\phi^{r})(b\phi^{s})(a^{-1}\phi^{t})(b^{-1}\phi^{u}).$$

If t < r,

$$g[a, b]_{\phi}g^{-1} = g((a\phi')\phi'^{-\prime})g^{-1}(a^{-1}\phi')(a\phi')g(b\phi^s)gg^{-1}(a^{-1}\phi')g^{-1}(b^{-1}\phi^s)(b\phi^s)g(b^{-1}\phi'')g^{-1}(b^{-1}\phi')g^{-1}(b^{-1}\phi')g^{-1}(b^{-1}\phi'')g^{-1}(b^{$$

If, on the contrary $t \ge r_{t}$,

$$g[a, b]_{\phi}g^{-1} = g(a\phi^{r})(b\phi^{s})((a^{-1}\phi^{r})\phi^{t-r})(g^{-1}\phi^{t-r})b^{-1}b(g\phi^{t-r})(b^{-1}\phi^{u})g^{-1}$$

= [g(a\phi^{r}), b]_{\phi}[b, g]_{\phi}.

LEMMA 2.11. Let $S = S(d, G_i, \gamma_i)$ and λ its least commutative congruence. Then $A^{\lambda} = G'_{\alpha}$ where $G'_{\alpha} = (G_0)'_{\alpha_0} \times \ldots \times (G_{d-1})'_{\alpha_{d-1}}$.

Proof. First we prove that $G'_{\alpha} \in \Gamma^*$. In fact condition (i) of Definition 2.5 obviously holds; conditions (ii) and (iv) follow by Lemma 2.10. Moreover $\alpha_i \gamma_i = \gamma_i \alpha_{i+1}$ for every $i = 0, \ldots, d-2, \alpha_{d-1}\gamma_{d-1} = \gamma_{d-1}\alpha_0$. Let $0 \le j \le d-1$. For every $a_j, b_j \in G_j$ and for every α_j -commutator of a_j, b_j we have

$$[a_{d-1}, b_{d-1}]_{\alpha_{d-1}} \gamma_{d-1} = [a_{d-1}\gamma_{d-1}, b_{d-1}\gamma_{d-1}]_{\alpha_0}$$

and $[a_j, b_j]_{\alpha_j} \gamma_j = [a_j \gamma_j, b_j \gamma_j]_{\alpha_{j+1}}$ with $j \le d-2$, i.e. condition (iii) of Definition 2.5 holds. Now, let ρ be the group congruence induced by G'_{α} following Lemma 2.6. We will show that ρ is commutative, i.e. that for every $x, y \in S$ we have $xy \rho yx$. Put

 $x = (m, g_i, n),$ $y = (p, h_j, q), (g_i \in G_i, h_j \in G_j; 0 \le i, j \le d - 1; m, n, p, q \in \mathbb{N}),$ then

 $xy = (m + p - r, (g_i \alpha_{u,w})(h_j \alpha_{v,w}), q + n - r)$

and

$$yx = (p + m - s, (h_j\alpha_{a,c})(g_i\alpha_{b,c}), q + n - s)$$

where $r = \min\{n, p\}$, $s = \min\{q, m\}$, u = nd + i, v = pd + j, $w = \max\{u, v\}$, a = qd + j, b = md + i, $c = \max\{a, b\}$.

Obviously condition

$$(m+p-r) - (q+n-r) = (p+m-s) - (q+n-s)$$
(1)

holds. Now consider the element

$$g = (((g_i \alpha_{u,w})(h_j \alpha_{v,w})) \alpha_{l,t})(((h_j \alpha_{a,c})(g_i \alpha_{b,c}))^{-1} \alpha_{k,t})$$

with

$$l = (n + q - r)d + \bar{w}, \qquad k = (q + n - s)d + \bar{c}, \qquad t = \max\{l, k\}.$$

We have

$$g = ((g_i \alpha_{u,w}) \alpha_{l,t})((h_j \alpha_{v,w}) \alpha_{l,t})((g_i^{-1} \alpha_{b,c}) \alpha_{k,t})((h_j^{-1} \alpha_{a,c}) \alpha_{k,t})$$

= $((g_i \alpha_{i,z}) \alpha_z^{i_1})((h_j \alpha_{j,z}) \alpha_z^{i_2})((g_i \alpha_{i,z})^{-1} \alpha_z^{i_3})((h_j \alpha_{j,z})^{-1}) \alpha_z^{i_4})$ (2)

where, if $\bar{i} \ge \max\{i, j\}$, $z = \bar{i}$, otherwise $z = \bar{i} + d$ and i_1 , i_2 , i_3 , i_4 are suitable non negative integers (Remark 2.1). By (2) it follows that $g \in (G_{\bar{i}})'_{\alpha\bar{i}}$; hence by (1) and by condition (iii) of Lemma 2.6, $xy \rho yx$.

Now, let τ be a commutative congruence on S; we shall prove that $\rho \leq \tau$. The congruence $\tau' = \tau \land (\sigma \lor \mathbb{H})$ is commutative; hence it is a group congruence by Corollary 2.4. Let $A^{\tau'}$ be the γ -admissible subgroup of G induced by τ' following Lemma 2.6 and let

$$(g_i\alpha_i^p)(h_i\alpha_i^n)(g_i^{-1}\alpha_i^q)(h_i^{-1}\alpha_i^m) \quad (i=0,\ldots,d-1;g_i,h_i\in G_i;p,n,q,m\in\mathbb{N})$$

be an α_i -commutator of G_i . Put $x = (m + k, g_i, n + k)$, $y = (p + k, h_i, q + k)$ where $k = \min\{r, s\}$, $r = \min\{p, n\}$, $s = \min\{q, m\}$. Since τ' is a commutative congruence we have $xy \tau' yx$, hence recalling condition (iii) of Lemma 2.6 and Remark 2.2 it follows that

$$[(g_i\alpha_i^{p+k-i})(h_i\alpha_i^{n+k-i})]\alpha_{u,w}[(g_i^{-1}\alpha_i^{q+k-j})(h_i^{-1}\alpha_i^{m+k-j})]\alpha_{v,w}\in A_i^{\tau}$$

where $t = \min\{n + k, p + k\}$, $j = \min\{q + k, m + k\}$, u = (n + q + 2k - t)d + i, v = (n + q + 2k - j)d + j and $w = \max\{u, v\}$, whence

$$(g_i\alpha_i^p)(h_i\alpha_i^n)(g_i^{-1}\alpha_i^q)(h_i^{-1}\alpha_i^m) \in A_i^{\tau'};$$

thus $(G_i)'_{\alpha_i} \subseteq A_i^{\tau'}$ and $G'_{\alpha} \subseteq A^{\tau'}$. So $\rho \le \tau' \le \tau$, hence $\rho = \lambda$.

By previous Lemmas we can deduce the following description of the least commutative congruence for a simple regular ω -semigroup.

THEOREM 2.12. Let $S = S(d, G_i, \gamma_i)$ be a simple regular ω -semigroup and λ its least commutative congruence. Then

 $(m, g_i, n) \lambda(p, h_i, q)$ if and only if m - n = p - q

and

$$(g_i\alpha_{u,w})(h_j^{-1}\alpha_{v,w})\in (G_z)'_{\alpha_2}$$

with

$$u = nd + i$$
, $v = qd + j$, $w = \max\{u, v\}$, $z = \overline{w}$

REMARK 2.13. λ is a group congruence such that

 $\ker \lambda = \{ (m, g_i, m) \mid m \in \mathbb{N}, g_i \in (G_i)'_{\alpha_i}; i = 0, ..., d - 1 \}.$

Clearly ker λ is an ω -chain of groups.

THEOREM 2.14. Let $S = S(d, G_i, \gamma_i)$ be a simple regular ω -semigroup. Denote by \mathscr{G} the direct product $G_0/(G_0)'_{\alpha_0} \times \ldots \times G_{d-1}/(G_{d-1})'_{\alpha_{d-1}}$ and consider the subgroup K of \mathscr{G} defined by

 $\mathcal{H} = \{ (g_i \alpha_{i,d} (G_0)'_{\alpha_0}, \dots, g_i \alpha_{i,d+s} (G_s)'_{\alpha_i}, \dots, g_i \alpha_{i,2d-1} (G_{d-1})'_{\alpha_{d-1}}) \mid g_i \in G_i; i, s = 0, \dots, d-1 \}.$ The mapping f of S/λ onto $\mathcal{H} \times \mathbb{Z}$ defined by

$$f:(m, g_i, n)\lambda \rightarrow ((g_i\alpha_{i,d}(G_0)'_{\alpha_0}, \ldots, g_i\alpha_{i,2d-1}(G_{d-1})'_{\alpha_{d-1}}), m-n)$$

is an isomorphism.

Proof. Consider $(p, h_i, q)\lambda \in S/\lambda$ and its image

$$((h_j\alpha_{j,d}(G_0)'_{\alpha_0},\ldots,h_j\alpha_{j,2d-1}(G_{d-1})'_{\alpha_{d-1}}), p-q).$$

First we prove that $(m, g_i, n)\lambda = (p, h_j, q)\lambda$ iff

$$((g_i\alpha_{i,d}(G_0)'_{\alpha_0},\ldots,g_i\alpha_{i,2d-1}(G_{d-1})'_{\alpha_{d-1}}), m-n) = ((h_j\alpha_{j,d}(G_0)'_{\alpha_0},\ldots,h_j\alpha_{j,2d-1}(G_{d-1})'_{\alpha_{d-1}}), p-q).$$

In fact suppose $(m, g_i, n)\lambda(p, h_j, q)$; then from Theorem 2.12 it follows that m - n = p - q and $g_i \alpha_{u,w} h_j^{-1} \alpha_{v,w} \in (G_{\bar{w}})'_{\alpha_{\bar{w}}}$ with u = nd + i, v = qd + j and $w = \max\{u, v\}$. Hence, by Remark 2.1 $(g_i \alpha_{i,\bar{w}+d}) \alpha_{w}^{i_1} (h_j^{-1} \alpha_{j,\bar{w}+d}) \alpha_{w}^{i_2} \in (G_{\bar{w}})'_{\alpha_{\bar{w}}}$ for some nonnegative integers i_1 , i_2 and, since we have

$$(g_i\alpha_{i,\bar{w}+d})\alpha_{\bar{w}}^{i_1}(h_j^{-1}\alpha_{j,\bar{w}+d})\alpha_{\bar{w}}^{i_2}(g_i^{-1}\alpha_{i,\bar{w}+d})(h_j\alpha_{j,\bar{w}+d})\in (G_{\bar{w}})'_{\alpha_i}$$

we deduce $(g_i^{-1}\alpha_{i,\bar{w}+d})(h_i\alpha_{j,\bar{w}+d}) \in (G_{\bar{w}})'_{\alpha_{\bar{w}'}}$. Hence for every nonnegative integer k

$$[(g_i^{-1}\alpha_{i,\bar{w}+d})(h_j\alpha_{j,\bar{w}+d})]\alpha_{\bar{w}+d,\bar{w}+\bar{k}+d} \in (G_{\bar{w}})'_{\alpha_{\bar{w}}}\alpha_{\bar{w}+d,\bar{w}+\bar{k}+d} \subseteq (G_{\overline{w+k}})'_{\alpha_{\overline{w+k}}}$$

and, by Remark 2.1,

$$[(g_i^{-1}\alpha_{i,\overline{w+k}+d})(h_j\alpha_{j,\overline{w+k}+d})]\alpha_{\overline{w+k}+d}^{i_3} \in (G_{\overline{w+k}})'_{\alpha_{\overline{w+k}}}$$

for some nonnegative integer i_3 . So (ii) of Lemma 2.10 gives

$$(g_i^{-1}\alpha_{i,\overline{w+k}+d})(h_j\alpha_{j,\overline{w+k}+d}) \in (G_{\overline{w+k}})'_{\alpha_{\overline{w+k}}}$$

whence, since k is an arbitrary nonnegative integer, $(g_i^{-1}\alpha_{i,t+d})(h_j\alpha_{j,t+d}) \in (G_t)'_{\alpha_t}$ for every integer t with $0 \le t \le d-1$. Thus, we deduce that $(m, g_i, n)\lambda(p, h_j, q)$ implies $h_j\alpha_{j,t+d} \in g_i\alpha_{i,t+d}(G_t)'_{\alpha_t}$ for every $t = 0, \ldots, d-1$ and m-n = p-q whence

$$((g_i\alpha_{i,d}(G_0)'_{\alpha_0},\ldots,g_i\alpha_{i,2d-1}(G_{d-1})'_{\alpha_{d-1}}), m-n) = ((h_j\alpha_{j,d}(G_0)'_{\alpha_0},\ldots,h_j\alpha_{j,2d-1}(G_{d-1})'_{\alpha_{d-1}}), p-q).$$

Conversely, let

$$((g_i\alpha_{i,d}(G_0)'_{\alpha_0},\ldots,g_i\alpha_{i,2d-1}(G_{d-1})'_{\alpha_{d-1}}), m-n) = ((h_j\alpha_{j,d}(G_0)'_{\alpha_0},\ldots,h_j\alpha_{j,2d-1}(G_{d-1})'_{\alpha_{d-1}}), p-q).$$

This implies m - n = p - q and $g_i^{-1} \alpha_{i,\bar{k}+d} h_j \alpha_{j,\bar{k}+d} \in (G_{\bar{k}})'_{\alpha_{\bar{k}}}$ for every nonnegative integer k whence

$$(g_i\alpha_{i,\bar{k}+d})\alpha_{\bar{k}}^{j_1}(h_j^{-1}\alpha_{j,\bar{k}+d})\alpha_{\bar{k}}^{j_2}\in (G_{\bar{k}})'_{\alpha_{\bar{k}}}$$

for every nonnegative integers j_1 , j_2 . Let u = nd + i, v = qd + j and $w = \max\{u, v\}$. Then for every j_1 , j_2 such that

$$\min\{\bar{k} + (j_1 + n + 1)d, \, \bar{k} + (j_2 + q + 1)d\} \ge w,$$

we have

$$\alpha_{i,\bar{k}+d}\alpha_{\bar{k}}^{j_{1}} = \alpha_{i,\bar{k}+(1+j_{1})d} = \alpha_{u,\bar{k}+(j_{1}+n+1)d} = \alpha_{u,w}\alpha_{w,\bar{k}+(j_{1}+n+1)d}$$

and

$$\alpha_{j,\bar{k}+d}\alpha_{\bar{k}}^{j_{2}} = \alpha_{v,\bar{k}+(j_{2}+q+1)d} = \alpha_{v,w}\alpha_{w,\bar{k}+(j_{2}+q+1)d}$$

Now let $w = \bar{w} + td$; if $n \ge q$, choosing $\bar{k} = \bar{w}$ and $j_1 = t$, $j_2 = t + n - q$, we have

$$\bar{k} + (j_1 + n + 1)d = \bar{w} + td + nd + d = w + (n + 1)d = \bar{k} + (j_2 + q + 1)d$$

18

Hence, by Remark 2.1, $(g_i \alpha_{u,w} h_i^{-1} \alpha_{v,w}) \alpha_{\tilde{w}}^{n+1} \in (G_{\tilde{w}})'_{\alpha_{\tilde{w}}}$. Analogously, if n < q, putting $j_1 = t + q - n$, $j_2 = t$, we obtain

$$(g_i\alpha_{u,w}h_j^{-1}\alpha_{v,w})\alpha_{\bar{w}}^{q+1}\in (G_{\bar{w}})'_{\alpha_{\bar{w}}},$$

In both the cases from (ii) of Lemma 2.10 it follows that $(g_i \alpha_{u,w} h_j^{-1} \alpha_{v,w}) \in (G_{\bar{w}})'_{\alpha_{\bar{w}}}$ with u = nd + i, v = qd + j and $w = \max\{u, v\}$, so we have $(m, g_i, n)\lambda = (p, h_i, q)\lambda$. Thus f is well defined and injective.

The mapping f is obviously onto and finally it is a homomorphism; in fact consider

$$[(m, g_i, n)\lambda][(p, h_j, q)\lambda] = (m+p-r, (g_i\alpha_{nd+i,w})(h_j\alpha_{pd+i,w}), n+q-r)\lambda$$

with $w = \max(nd + i, pd + j), r = \min(n, p)$.

- - -

$$f((m + p - r, (g_i \alpha_{nd+i,w})(h_j \alpha_{pd+j,w}), n + q - r)\lambda) = (((g_i \alpha_{nd+i,w} h_j \alpha_{pd+j,w}) \alpha_{\bar{w},d} (G_0)'_{\alpha_0}, \dots, (g_i \alpha_{nd+i,w} h_j \alpha_{pd+j,w}) \alpha_{\bar{w},2d-1} (G_{d-1})'_{\alpha_{d-1}}), m + p - n - q).$$

Also

$$((g_i\alpha_{i,d}(G_0)'_{\alpha_0},\ldots,g_i\alpha_{i,2d-1}(G_{d-1})'_{\alpha_{d-1}},m-n)((h_j\alpha_{j,d}(G_0)'_{\alpha_0},\ldots,h_j\alpha_{j,2d-1}(G_{d-1})'_{\alpha_{d-1}}),p-q) = ((g_i\alpha_{i,d}h_j\alpha_{j,d}(G_0)'_{\alpha_0},\ldots,g_i\alpha_{i,2d-1}h_j\alpha_{j,2d-1}(G_{d-1})'_{\alpha_{d-1}}),m-n+p-q).$$

Moreover

$$g_i\alpha_{i,d+\bar{h}}h_j\alpha_{j,d+\bar{h}}(h_j^{-1}\alpha_{pd+j,w})\alpha_{\bar{w},d+\bar{h}}(g_i^{-1}\alpha_{nd+i,w})\alpha_{\bar{w},d+\bar{h}}\in (G_{\bar{h}})'_{\alpha_{\bar{h}}};$$

in fact, if w = pd + j, $(h_j \alpha_{pd+j,w}) \alpha_{\bar{w},d+\bar{h}} = h_j \alpha_{j,d+\bar{h}}$ and, by Remark 2.1, $g_i \alpha_{i,d+\bar{h}} (g_i^{-1} \alpha_{nd+i,w}) \alpha_{\bar{w},d+\bar{h}} \in (G_{\bar{h}})'_{\alpha_{\bar{h}}}$; if w = nd + i, $g_i \alpha_{i,d+\bar{h}} = (g_i \alpha_{nd+i,w}) \alpha_{\bar{w},d+\bar{h}}$ and by Remark 2.1, $h_j \alpha_{j,d+\bar{h}} (h_j^{-1} \alpha_{pd+j,w}) \alpha_{\bar{w},d+\bar{h}} \in (G_{\bar{h}})'_{\alpha_{\bar{k}}}$, hence the result follows because $(G_{\bar{h}})'_{\alpha_{\bar{h}}}$ is a normal subgroup of $G_{\bar{h}}$. Thus, we have

$$f([(m, g_i, n)\lambda](p, h_j, q)\lambda]) = f((m, g_i, n)\lambda)f((p, h_j, q)\lambda)$$

When d = 1, S is a bisimple ω -semigroup, usually denoted by $S = S(G, \alpha)$. Thus we have the following result.

COROLLARY 2.15. The kernel of the least commutative congruence λ on a bisimple ω -semigroup S is the commutator subsemigroup S', which is an ω -chain of groups S_i isomorphic to $(G')_{\alpha}$ for every integer i. The semigroup S/λ is a commutative group which is isomorphic to the direct product $G/(G')_{\alpha} \times \mathbb{Z}$.

Proof. Let x be an element of ker λ , thus from Remark 2.13 it follows that

$$x = (m, a\alpha^{r}b\alpha^{s}a^{-1}\alpha^{t}b^{-1}\alpha^{v}, m) = \{(m, a\alpha^{r}, m)(m, b\alpha^{s}, m)(m, a^{-1}\alpha^{r}, m)(m, b^{-1}\alpha^{s}, m)\}$$

. $\{(m, b\alpha^{s}, m)(m, a\alpha^{r}, m)(m, a^{-1}\alpha^{t}, m)(m, b^{-1}\alpha^{s}, m)\}\{(m, b\alpha^{s}, m)(m, b^{-1}\alpha^{v}, m)\}.$

Moreover, denoting by e the identity of G, for every $b \in G$ and s, v nonnegative integers, if $s \leq v$ we have

$$(m, b\alpha^{s}, m)(m, b^{-1}\alpha^{v}, m) = [(m, b\alpha^{s}, 0), (0, e, v - s)] \in S'$$

and if s > v we have

$$(m, b\alpha^{s}, m)(m, b^{-1}\alpha^{v}, m) = \{(m, b\alpha^{v}, m)(m, b^{-1}\alpha^{s}, m)\}^{-1} = [(m, b\alpha^{v}, 0), (0, e, s - v)]^{-1} \in S'.$$

Now, we consider

 $(m, b\alpha^s, m)(m, a\alpha^r, m)(m, a^{-1}\alpha^t, m)(m, b^{-1}\alpha^s, m) = (m, b\alpha^s a\alpha^r a^{-1}\alpha^t b^{-1}\alpha^s, m).$

If $r \leq t$, by a simple calculus, we have

$$(m, b\alpha^{s}a\alpha^{r}a^{-1}\alpha^{t}b^{-1}\alpha^{s}, m) = [(m, b\alpha^{s}a\alpha^{r}b^{-1}\alpha^{s}, 0), (0, b\alpha^{s}b^{-1}\alpha^{s+t-r}, t-r)]$$

.
$$(m, b\alpha^{s+m}b^{-1}\alpha^{s+m+t-r}, m)(m, b\alpha^{s+t-r}b^{-1}\alpha^{s}, m) \in S',$$

if r > t

$$(m, b\alpha^s a\alpha^r a^{-1}\alpha^r b^{-1}\alpha^s, m) = (m, b\alpha^s a\alpha^r a^{-1}\alpha^r b^{-1}\alpha^s, m)^{-1} \in S'$$

Hence $x \in S'$ and ker $\lambda = S'$, moreover, from Remark 2.13 it follows that S' is an ω -chain of groups S_i isomorphic to $(G')_{\alpha}$. Finally from Lemma 2.3 it follows that λ is a group congruence and from Theorem 2.14 we deduce that S/λ is isomorphic to the direct product $[G/(G')_{\alpha}] \times \mathbb{Z}$.

For a direct proof see [11], Theorem 2.5.

3. Solvability of simple regular ω -semigroups. In [10] the following definition was introduced for inverse semigroups:

DEFINITION 3.1. Let S be an inverse semigroup. Denote $\delta_0(S) = S$, $\lambda_0 = \omega_S$, the universal congruence on S, and for $i \ge 1$, let $\lambda_{i,S}$ (or simply λ_i) be the least commutative congruence on $\delta_{i-1}(S) = \ker \lambda_{i-1}$ (trivially $\lambda_1 = \gamma$). S is called *solvable of solvability class c* or c-solvable if c is the least index i such that $\lambda_c = \mathrm{id}_{\delta_{c-1}(S)}$, the identity map on $\delta_{c-1}(S)$.

LEMMA 3.2 ([10], 3.3). S is solvable of class c if and only if c is the least index i such that $\delta_{i-1}(S)$ is commutative.

Since any simple regular ω -semigroup is trivially inverse, it makes sense to ask about its solvability. We want to prove that there is a strict connection between the solvability of S and that of the groups G_i .

We remark that a simple regular ω -semigroup is a Bruck-Reilly semigroup over T where T is a chain $G_0 > G_1 > \ldots > G_{d-1}$ of groups [6, Structure Theorem], hence we state the result for Bruck-Reilly semigroups. We recall the following definition.

DEFINITION 3.3. Let T be a monoid, α be a homomorphism of T into its group of units. The Bruck-Reilly semigroup over T is the semigroup $B(T, \alpha)$ of the triplets (m, a, n): m, n are nonnegative integers, $a \in T$ and the multiplication is defined as follows:

$$(m, a, n)(p, b, q) = (m + p - r, (a\alpha^{p-r})(b\alpha^{n-r}), n + q - r),$$

where $r = \min(n, p)$ and α^0 is the identity map on T.

It is well-known (see [9], e.g.) that $B(T, \alpha)$ is a simple monoid for each T and α , and that it is inverse if and only if T is inverse.

THEOREM 3.4. Let $S = B(T, \alpha)$ be a Bruck-Reilly semigroup over an inverse monoid T. Then S is solvable if and only if T is solvable. If S is solvable of class n then T is solvable of class n or n - 1.

Proof. If S is a solvable semigroup of class n, then, by Theorem 3.5 of [10], T is immediately seen to be solvable, and its solvability class is less than or equal to n, since T is (isomorphic to) a subsemigroup of S.

To prove that the condition is sufficient, consider firstly a commutator of elements of S:

$$c = [(m, a, n), (p, b, q)].$$

Let $r = \min(n, p), t = \min(m, q), v = \min(n + q - r, n + q - t).$ Then
 $c = (m + p - r + n + q - t - v, (a^{-1}\alpha^{p-r}b^{-1}\alpha^{n-r})\alpha^{n+q-t-v}(a\alpha^{q-t}b\alpha^{m-t})\alpha^{n+q-r-v}, m$
 $+ p - t + n + q - r - v).$

Remark that:

$$n+q-r-t-v = \begin{cases} = -t \Leftrightarrow v = n+q-r \Leftrightarrow t \le r \Leftrightarrow t = \min(m, q) \le \min(n, p) \\ = -r \Leftrightarrow v = n+q-t \Leftrightarrow r \le t \Leftrightarrow r = \min(n, p) \le \min(m, q) \end{cases}$$

If we denote $k = \min(m, n, p, q)$, then we have proved that:

$$c = [(m, a, n), (p, b, q)] = (m + p - k, a\alpha^{p-k}b\alpha^{n-k}a^{-1}\alpha^{q-k}b^{-1}\alpha^{m-k}, m + p - k).$$

Since the product of two elements (m, a, m) and (p, b, p) is again of type (n, x, n) then:

$$(m, a, n) \in S'$$
 implies that $m = n$.

Let

$$(m, a, n)(p, e, p) = (m + p - \min(n, p), \dots, n + p - \min(n, p)),$$

where $(p, e, p) \in E_s$. Such a product belongs to S' only if $m + p - \min(n, p) = n + p - \min(n, p)$, i.e. only if m = n. Then

 $(m, a, n) \in \delta(S)$ implies that m = n.

Now, since $(m, a, m) \in \delta(S)$ implies trivially that $a \in T = \delta_0(T)$, suppose, by induction, that we have proved:

for
$$i \ge 2$$
, $(m, a, m) \in \delta_{i-1}(S)$ implies that $a \in \delta_{i-2}(T)$.
Consider $c = [(p, a, p), (q, b, q)] \in (\delta_{i-1}(S))'$; for $k = \min(p, q)$, one has:
 $c = (p+q-k, a\alpha^{q-k}b\alpha^{p-k}a^{-1}\alpha^{q-k}b^{-1}\alpha^{p-k}, p+q-k)$
 $= (p+q-k, [a\alpha^{q-k}, b\alpha^{p-k}], p+q-k).$

Since the commutator subsemigroup and the derivative of any inverse semigroup T are trivially closed with respect to powers of any endomorphism of T, then we get:

$$(m, a, m) \in (\delta_{i-1}(S))'$$
 implies that $a \in (\delta_{i-2}(T))'$. (3)

Let (m, e, m) and $(p, f, p) \in E_s$, and $(m, e, m)\lambda_{\delta_{i-1}(s)}(p, f, p)$. Then, there exists a sequence:

$$(n_0, a_0, n_0), (q_0, b_0, q_0), \ldots, (n_h, a_h, n_h), (q_h, b_h, q_h)$$

of elements of $\delta_{i-1}(S)$ such that

$$(m, e, m) = (n_0, a_0, n_0)(q_0, b_0, q_0)(q_0, b_0^{-1}, q_0)(n_0, a_0^{-1}, n_0),(q_h, b_h, q_h)(n_h, a_h, n_h)(n_h, a_h^{-1}, n_h)(q_h, b_h^{-1}, q_h) = (p, f, p),$$

and, for every j such that $0 \le j \le h$, if $u_i = \min(m_i, q_i)$ we get

$$(q_{j}, b_{j}, q_{j})(n_{j}, a_{j}, n_{j})(n_{j}, a_{j}^{-1}, n_{j})(q_{j}, b_{j}^{-1}, q_{j}) = (n_{j+1}, a_{j+1}, n_{j+1})(q_{j+1}, b_{j+1}, q_{j+1})(q_{j+1}, b_{j+1}^{-1}, q_{j+1})(n_{j+1}, a_{j+1}^{-1}, n_{j+1}); n_{j} + q_{j} - u_{j} = n_{j+1} + q_{j+1} - u_{j+1}$$

and

$$b_{j}\alpha^{n_{j}-u_{j}}a_{j}\alpha^{q_{j}-u_{j}}a_{j}^{-1}\alpha^{q_{j}-u_{j}}b_{j}^{-1}\alpha^{n_{j}-u_{j}} = a_{j+1}\alpha^{q_{j+1}-u_{j+1}}b_{j+1}\alpha^{n_{j+1}-u_{j+1}}b_{j+1}^{-1}\alpha^{n_{j+1}-u_{j+1}}a_{j+1}^{-1}\alpha^{q_{j+1}-u_{j+1}}.$$
Also

$$m = n_0 + q_0 - u_0,$$

$$p = n_h + q_h - u_h,$$

$$e = a_0 \alpha^{q_0 - u_0} b_0 \alpha^{n_0 - u_0} b_0^{-1} \alpha^{n_0 - u_0} a_0^{-1} \alpha^{q_0 - u_0}$$

$$f = b_h \alpha^{n_h - u_h} a_h \alpha^{q_h - u_h} a_h^{-1} \alpha^{q_h - u_h} b_h^{-1} \alpha^{n_h - u_h}$$

At last:

 $(m, e, n)\lambda_{\delta_{i-1}(S)}(p, f, p)$ implies m = p and $e\lambda_{\delta_{i-2}(T)}f$. (4)

Let

$$(m, a, m) \in \delta_i(S) = \delta(\delta_{i-1}(S));$$

then there exists an idempotent $(m, e, m)\lambda_{\delta_{i-1}(S)}(m, a^{-1}a, m)$ such that:

 $(m, ae, m) \in (\delta_{i-1}(S))'.$

By (3) and (4), this implies that $e\lambda_{\delta_{i-2}(T)}a^{-1}a$ and $ae \in (\delta_{i-2}(T))'$. Hence:

for every $i \ge 1$, $(m, a, m) \in \delta_i(S)$ implies $a \in \delta_{i-1}(T)$.

If T is solvable of class n, then $\delta_{n-1}(T)$ is the first derivate subsemigroup which is commutative; thus one can easily see that $\delta_n(S)$ must be commutative, too, and S is solvable of solvability class less than or equal to n + 1.

Now, from Theorem 3.4 of [10] we can deduce the announced result on a simple regular ω -semigroup:

COROLLARY 3.5. Let $S = S(d, G_i, \gamma_i)$ be a simple regular ω -semigroup. Then S is solvable if and only if all the groups G_i are solvable. If S is n-solvable, then the greatest solvability class of the groups is n or n - 1.

REMARK 3.6. When $S = S(G, \alpha)$ is a bisimple ω -semigroup, then it is solvable of class *n* if and only if *G* is solvable of class *n* or n - 1. Both of these possibilities may occur. In fact consider the two following special cases of endomorphism α of the group *G*:

If the endomorphism α is nilpotent, that is if $\alpha^n(G) = 1$ for some $n \ge 1$, then $(G')_{\alpha} = G$. As $\delta(S)$ is a Clifford semigroup, we have that if G is solvable of class n - 1, then $\delta(S)$ is solvable of class n - 1. Thus S is solvable of class n.

If $\alpha = id_G$, then $(G)'_{\alpha} = G'$. Now, if G is a solvable group of class n, then G' is solvable of class n - 1. Hence $\delta(S)$ is solvable of class n - 1 and S is solvable of class n.

REMARK 3.7. It follows from Theorem 3.11 of [10] that the maximum group homomorphic image of a solvable inverse semigroup is solvable. The converse is not true in general; actually, here we have a new family of counter-examples.

22

In [7], Munn and Reilly proved that if α is nilpotent, then $S(G, \alpha)/\sigma$ is isomorphic to the additive group of integers. Hence, one can easily build up bisimple ω -semigroups which are not solvable, if G is not solvable, but where S/σ is solvable, since it is isomorphic to a commutative group.

REFERENCES

1. J. E. Ault, Group congruences on a bisimple ω -semigroup, Semigroup Forum 10 (1975), 351–366.

2. G. R. Baird, On a sublattice of the lattice of congruences on a simple regular ω -semigroup, J. Austral. Math. Soc. 13 (1972), 461-471.

3. G. R. Baird, Congruences on simple regular ω -semigroups, J. Austral. Math. Soc. 14 (1972), 155-167.

4. C. Bonzini and A. Cherubini, The least commutative congruence on a regular ω -semigroup, Quaderno n. 21/1987, Dipartimento di Matematica dell'Universita' di Milano.

5. B. P. Kocin, The structure of inverse ideally simple ω -semigroups, Vestnik Leningrad Univ. 237 (1968), 41-50.

6. W. D. Munn, Regular ω-semigroups, Glasgow Math. J. 9 (1968), 46-66.

7. W. D. Munn and N. R. Reilly, Congruences on a bisimple ω -semigroup, *Proc. Glasgow Math. Ass.*, 7 (1966), 184-192.

8. M. Petrich, Congruences on simple ω -semigroups, Glasgow Math. J. 20 (1979), 87-101.

9. M. Petrich, Inverse semigroups (Wiley & Sons, 1984).

10. B. Piochi, Solvability in inverse semigroups, Semigroup Forum 34 (1987), 287-303.

11. B. Piochi, The least commutative congruence on bisimple ω -semigroup, Rapp. Dip. Mat. Univ. Siena, 158 (1987), 1-14.

Dipartimento di Matematica, Università, Via Saldini, 50 20133 Milano.

Dipartimento di Matematica, Università, Via del Capitano, 15 53100 Siena.

DIPARTIMENTO DI MATEMATICA, Politecnico, Piazza L. da Vinci, 32 20133 Milano.