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Introduction. Piochi in [10] gives a description of the least commutative congruence
A of an inverse semigroup in terms of congruence pairs and generalizes to inverse
semigroups the notion of solvability. The object of this paper is to give an explicit
construction of A for simple regular co-semigroups exploiting the work of Baird on
congruences on such semigroups. Moreover the connection between the solvability classes
of simple regular co-semigroups and those of their subgroups is studied.

As usual a indicates the least group congruence. H and D the Green's relations, N
the set of non negative integers, Z the additive group of the integers. For notations and
definitions not given in this paper the reader is referred to [9].

1. Preliminary results.

DEFINITION 1. An co-semigroup 5 is a semigroup whose set E of idempotents form an
co-chain

under the natural order defined on E by the rule e > / i f and only if ef =f =fe.

For a regular co-semigroup. Munn in [6] proved the following result.

THEOREM A. Let S be a regular (o-semigroup.
If S has no kernel, then it is the union of an m-chain of groups.
If the kernel of S coincides with S, then S is a simple regular (o-semigroup.
If S has a proper kernel, then S is a (retract) ideal extension of a simple regular

(o-semigroup K by a finite chain of groups with 0 adjoined H°. Moreover this extension is
determined by means of a homomorphism of H into the group of units of K.

Piochi in [10] characterized (by means of congruence pairs) the least commutative
congruence of an inverse semigroup, proving

THEOREM B ([10], Th. 2.4 and Th. 2.6). Let S be an inverse semigroup and E its
semilattice of idempotents. Define on E the relation e~f if and only if there exist a, b eS
such that e = abb~la~l, f = baa~lb~l and denote by AE the transitive closure of ~. Denote
by S' the subsemigroup of S generated by the elements [a, b] = aba~xb~l with a,beS and
put

d(S) = {a eS | a~laXEe for some e € E and ae eS'}.

Then (A£) d(S)) is a congruence pair and the congruence associated with it is the least
commutative congruence on S.

Henceforward the least commutative congruence on a semigroup 5 will be denoted
by A5 (or simply by A). We remark that the congruence A is denoted y in [10]; here we
changed notation, in order to avoid confusion with the mappings y, of Theorem C below.
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14 C. BONZINI, A. CHERUBINI AND B. PIOCHI

The main aim of this paper is to give an explicit construction of A for a simple regular
<w-semigroup. The construction of A for the non-simple case is a result of a routine nature
but adds to the technical problems, hence here is deleted; however it can be found in [4].

2. The least commutative congruence on a simple regular tu-semigroup. Several
authors, e.g. Kocin [5] and Munn [6], gave structure theorems for simple regular
ft)-semigroups. The one given by Munn is the following

THEOREM C. Let d be a positive integer and let {G, \ i = 0, . . . , d - 1} be a set of d
pairwise disjoint groups. Let yd_! be a homomorphism of Gd-\ into Go and, if d > 1, let y,
be a homomorphism of G, into G,+1 (i = 0, . . . , d — 2). For every n eN let h denote the
integer equivalent to n modulo d, belonging to N and less than d and let yn = yh. For
m, n eN and m<n write

<Xm,n=YmYn, + l-,- • Yn-l

and for all neN let ann denote the identity automorphism of G*. Let S be the set of the
ordered triples (m, ah n), where m, n eN, 0 s / < d - 1 and a,- e G,-. Define a multiplica-
tion in S by the rule that

(m, ah n)(p, bj} q) = (m+p- r, (a,-au.M,)(6yaru.w), n + q-r)

where r = min{/i, p}, u = nd + i, v = pd +j and w = max{«, v}. Denote the so formed
groupoid by S(d, G,, y,). Then S(d, G,, y,) is a simple regular co-semigroup with
exactly d D-classes and any simple regular co-semigroup is isomorphic to a semigroup
S(d, Gh y,). For neN and i = 0, . . . , d — 1 write e" = (n, e,, n), where e, is the identity of
the group G,. The elements e" are the idempotents of S(d, Gh y,) and we have

e°0> e?> . . . >e2- ,>e l
0> . . . >ei_, > e \ > . . .

NOTATION. In the remainder of the paper h will denote, as in previous theorem, the
integer equivalent to n modulo d, belonging to N and less than d, and, for every i e N, the
endomorphism au+d of Gj will be indicated by or,-.

REMARK 2.1. For every i,jeN with i<j we have obviously a,, = a-t and, putting
i = md + i, j = nd +j, aitj = aij<xf~m if i £ / and auj = aij+jaj'"1'1 if i >j.

REMARK 2.2. For fixed i satisfying Q<i<d-\, put

5, = {(m, ah n)\m,neN, a,- e G,}.

Then 5, is a bisimple inverse semigroup of S ([2], p. 462) and the Reilly multiplication
([7], formula (1)) applies with a = ah

LEMMA 2.3. Let S = S(d, Gh y,) be a simple regular co-semigroup. Then its least
commutative congruence A is a group congruence contained in a v H.

Proof. First we recall that the congruence XE defined in Th. B is, by Th. 2.2 of [3], a
uniform congruence of E. Moreover, for every m, neN and for every i such that
0 s j < r f - l , we have e^XEe". In fact, putting a = (m,ehn), b = (n,ehm) we have
e? = abb~1a~l and e" = baa~lb~x. Hence, by the remarks preceding Lemma 2.1 of [3],
we immediately deduce that AE is the universal congruence coE on E, hence A is a group
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LEAST COMMUTATIVE CONGRUENCE 15

congruence. Finally we remark that, since S/o v H = Z (see [2], Corollary 3.1), a v HI is a
commutative congruence; so A is contained in a v H.

COROLLARY 2.4. If p is a commutative congruence on S = S{d, G,, y,), then p is a
group congruence.

DEFINITION 2.5 ([2], p. 463). Let S = S(d, Gh y,-). A subset A of
G = Go x G] x . . . X Gd_j which satisfies the conditions

(i) A = Aox Ar x . . . x Ad-X for some At c G,, i = 0, . . . , d - 1,
(ii) A,*G,, i = 0,...,d-l,

(iii) Aj-iYd-i £ A) and y4(y, c/l1 + 1 ) i = 0, . . . , d - 2,
is called a y-admissible subset of G.

F* denotes the set of the y-admissible subsets of G satisfying the condition
(iv) rad>l = A where radi4 = rad.A0 x . . . x xdidAd_x and

rad Ai = {a, e G, | a,ar" € /4, for some nonnegative integer n}.

LEMMA 2.6 ([2], Lemma 3.2, Lemma 3.4 and Lemma 3.5). Let S = S(d, G,, y,) and
let p be a congruence on S such that p e [o, a v H]. Puf Ap = Ag x . . . x ^45_i w/iere
A? = {a, e G, | (0, a,, 0) e ker p). Then the following conditions hold.

(i) ^ "eT* .
(ii) kerp = {{m, ah m)\meN, a, e Af, j = 0, . . . , d — 1}.
(iii) Let x = (m, g,, n), y = (/?, fy, q) be two elements of S, then we have xpy if and

only if m — n= p — q and (gi(Xu,w)(h]~lavtv) eA% where u = nd + i, v = qd+j, w =
max{u, v}, k = w.

Conversely, for every AeT*, the relation p defined by (iii) is a congruence on S
belonging to [o, a v H] such that Ap = A.

REMARK 2.7. By Lemma 2.6 it follows that a group congruence p contained i n a v H
is completely determined by the subset Ap of G. Hence, by Lemma 2.3, A can be
described by means of A \

REMARK 2.8. We recall that for every two congruences p and x on an inverse
semigroup, we have p^x if and only if t r p s t r r and k e r p c k e r r . Hence, if
S = S{d, Gh yd and p, x e [a, a v H] then p < x if and only if A" c A\

DEFINITION 2.9. Let H be a group and <f> an endomorphism of H. For every a, b eH
we call

(«~y)(&~>") (r, s,t,ue N)

a (^-commutator of a and 6, and, if it is unambiguous, we put

We denote by H'^ the subgroup of H generated by the (^-commutators of H and we call it
the (p-derivate of H.

LEMMA 2.10. The following properties hold.
(i) H'^H' where H' indicates the derivate of the group H.
(ii) If g<f>k e Hip for some non negative integer k, then g e H'^,.
(iii) H'^H.

https://doi.org/10.1017/S0017089500009022 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009022


16 C. BONZINI, A. CHERUBIM AND B. PIOCHI

Proof. Property (i) is obvious, property (ii) easily follows because g{g~x4>k) is a
^-commutator of g and of the identity of H. To prove property (iii), let a, b, g eH and
consider a ^-commutator

[a, &]„ = (a<
If t < r,

If, on the contrary t>r,

g[a, bU~l

LEMMA 2.11. Let S = S(d, G,, y,) and A its least commutative congruence. Then
Ax = G'a where G'a=(Go)'ao x . . . x ( G ^ . , .

Proof. First we prove that G'aeT*. In fact condition (i) of Definition 2.5 obviously
holds; conditions (ii) and (iv) follow by Lemma 2.10. Moreover a,y, = Yiai+i f°r every
i = 0,. . ., d - 2, ad-xyd-x = yd-\OCQ. Let 0 s / < d - 1. For every ajt bj e Gs and for every
a,-commutator of ap bj we have

and [oj, bj]a.Yj = [ajYj, bjYj]aj+l with j^d-2, i.e. condition (iii) of Definition 2.5 holds.
Now, let p be the group congruence induced by G'a following Lemma 2.6. We will show
that p is commutative, i.e. that for every x, y e 5 we have xy pyx. Put

x = (m, gh n), y = (p, hjt q), (gt e Gh hj e Gy; 0 < /, / < d - 1; m, n, p, q e H),
then

xy = (m + p -r, (gia^XhjO^^), q + n-r)
and

yx = (p + m - s, (hjaa,c)(giabiC), q + n-s)

where r = min{n, p}, s = min{q, m}, u = nd + i, v=pd+j, w = max{u,v}, a = qd+j,
b =md + i, c = max{a, b).

Obviously condition

(m +p - r) - (q + n - r) = (p + m - s) - (q + n - s) (1)

holds. Now consider the element

g = (((gi«u.w)(hjau,w))ait,)(((hjaaj(gpbj)-
1aki,)

with
/ = (n + q -r)d + w, k = (q+ n-s)d + c, f = max{/, k}.

We have
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LEAST COMMUTATIVE CONGRUENCE 17

where, if 7^max{i, / } , z = t, otherwise z = t + d and iu i2, ij,, U a r e suitable non
negative integers (Remark 2.1). By (2) it follows that g e (G7) .̂-; hence by (1) and by
condition (iii) of Lemma 2.6, xy pyx.

Now, let T be a commutative congruence on 5; we shall prove that p < r. The
congruence r ' = x A (a v H) is commutative; hence it is a group congruence by Corollary
2.4. Let AT' be the y-admissible subgroup of G induced by x' following Lemma 2.6 and
let

foafXMflter'afXAr1*?1) (« = 0, • • • , d - 1; g/f h, e G,\p, n , q , m e N}
be an ^/-commutator of G,. Put x = (m + k, gh n + k), y = (p + k, hh q + k) where
k = min{r,s}, r = min{p, n}, s = min{q, m}. Since x' is a commutative congruence we
have xy r' yx, hence recalling condition (iii) of Lemma 2.6 and Remark 2.2 it follows that

where t = min{n + k, p + k}, j = min{q + k, m + k}, u = (n + q + 2k - t)d + i,
v = (n + q + 2k — j)d +j and iv = max{u, v}, whence

thus (Gi)'a.c Af and G'acAT'. So p < r' < x, hence p = A.

By previous Lemmas we can deduce the following description of the least
commutative congruence for a simple regular co-semigroup.

THEOREM 2.12. Let S = S(d, G,, y,) be a simple regular co-semigroup and A its least
commutative congruence. Then

(m, gh n) A (p, hj, q) if and only ifm-n=p-q
and

(gi«u,w)(h^av_w)e(Gzya,
with

u = nd + i, v = qd+j, w = max{u,v}, z = w.

REMARK 2.13. A is a group congruence such that

ker A = {(m, ft, m) | m e IM, g, e (G,);,; i = 0, . . . , d - 1}.

Clearly ker A is an co-chain of groups.

THEOREM 2.14. Let S = S(d, G,, y,) be a simple regular (o-semigroup. Denote by <§
the direct product Go/(Go)'ao X . . . X Gd-i/(Gd^1)'ad^l and consider the subgroup K of $
defined by

% = {(gi<Xi.d(GoYa» •••' gi<Xi,d+s(Gs)'a,, • • • > g i « i , 2 i - i { G d - l ) ' a 4 J \ g i e G i ; i , s = 0 , . . . , d - 1 } .

The mapping fofS/k onto 3if x Z defined by

f: (m, gh n)A-» ((g,ar,,d(G0)^0,... , g,<v,,2rf-i(Grf-i)L,,-,), m - n)

is an isomorphism.

Proof. Consider (p, hj, q)ke 5/A and its image

((hj(Xjid(G0)'ao, . . . , V ; , 2 d - i ( G d - i ) ^ . , ) , p ~ q).
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18 C. BONZINI, A. CHERUBINI AND B. PIOCHI

First we prove that (m, gh n)X = (p, hj, q)X iff

((g,or,, d(Go)'ao, . . . , giai,2d-\{Gd--d'adJ, m-n)

= ((V/ .d(Go)«o> •••> hiaj,id-\{Gd-\)'a<lJ, P ~ q)-

In fact suppose (m, gh n)k(p, hj, q); then from Theorem 2.12 it follows that m — n =
p -q and gi<xu,whjxavw e (G^,)«. with u = nd + i, v-qd +j and w = max{u, v}. Hence,
by Remark 2.1 (giaii*+ei)a

ii,(h]~xajj*+d)a
ii,e (G*)'ai. for some nonnegative integers iu i2

and, since we have

we deduce (gr1a,->w+</)(fya7.M>+«/) e (G*)'^. Hence for every nonnegative integer k

[(gi ai,w+d)vlj<Xi,w+d)\aw+d,w+k+d G (G*)ai,
aw+d,w+k+d ^ (.G^T^kJa^T

and, by Remark 2.1,

for some nonnegative integer i3. So (ii) of Lemma 2.10 gives

(gi &i,'^+k+d){hj(Xj,'^Tk+d) € (G^aya—

whence, since k is an arbitrary nonnegative integer, {g~xau+d)(hjaj,+d) e (G,)'ai for every
integer t with 0 = £ t s d - 1. Thus, we deduce that (m, g,, n)A(p, Ay, q) implies hjajl+de
gi«i,t+d{G,ya, for every t = 0, . . . , d - 1 and m-n=p-q whence

-i);,,.,), m - n )

= ((V/,rf(Go)«o, • • • , V ; , M - I ( G J - I ) ^ , ) , p - q).

Conversely, let

d-i)'ailJ, m-n)

This implies m-n=p -q and gT^<Xi,k+dhj<Xj,k:+d e (Gfc)^ for every nonnegative integer k
whence

; ! 6

for every nonnegative integers j u j 2 . Let u = nd + i, v = qd+j and w = max{«, u}. Then
for every / ] , j2 such that

+ (/i + n + \)d, k + (j2 + q + l)d} > w,
we have

and
aj,ic+da £= av,

Now let w = w + fci; if n s ^, choosing k = w and /j = t, j2 = t + n-q, we have

^ + (/i + n + l)d = w + td + nd + d = w + (n + \)d = k + (j2 + q + \)d.
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Hence, by Remark 2.1, (giaUiJi]~1aVwW)a%+i e(G*)'aii. Analogously, if n<q, putting
y'i = t + q — n, j2 = t, we obtain

(giOtu.whJ1 av,w)a%+x e (G*)'^.

In both the cases from (ii) of Lemma 2.10 it follows that (g,a-u Ji Jxocvw) e (G*)^ with
u=nd + i, v = qd +j and w = max{«, v}, so we have (m, gh n)X = (p, hjt q)X. Thus / is
well defined and injective.

The mapping/is obviously onto and finally it is a homomorphism; in fact consider

[{m, gh n)X][(p, hj, q)X] = (m+p-r, (giand+i,w)(hjapd+hw), n + q- r)X,

with w = max(nd + i, pd +/), r = min(n, p).

f((m +p-r, (giand+^OijOCpa+j^), n + q- r)X)

(giand+i.whjapd+jiW)a^2d-\(Gd-]yad_,), m+p-n-q).
Also

(Gd-\)'ad_,, m - n)((h,aj,d(Goyao,..., hjaj^-^Gd^Y^J, p-q)

= ((gi«i,dhjajd(Goyao, . . . , giait2d-Xhiaj>2d-i(Gd-\)'«d-), m-n+p-q).

Moreover

in fact, if w=pd+j, (hJapd+JiW)aii,id+ii = hlaj,d+h and, by Remark 2.1,
g,tf,\rf+/F(gr1tfnrf+.\K>)a.v.d+/;e(G,7);-; if w = nd + i, g,ar,-,d+A- = (g,arnd+,iK,)ar^d+ft- and by Re-
mark 2.1, hi(xhd+j;{hjlapd+j<w)oct,_d+j,e (G^)^-, hence the result follows because (G/;)^- is a
normal subgroup of G/;. Thus, we have

/([(m, gh n)X](p, hj, q)X]) =f((m, gh n)X)f((p, hjt q)X).

When d = \, S is a bisimple to-semigroup, usually denoted by 5 = S(G, a). Thus we
have the following result.

COROLLARY 2.15. The kernel of the least commutative congruence X on a bisimple
w-semigroup S is the commutator subsemigroup S', which is an co-chain of groups 5,
isomorphic to (G')afor every integer i. The semigroup S/X is a commutative group which
is isomorphic to the direct product G/(G')a x Z.

Proof. Let x be an element of ker X, thus from Remark 2.13 it follows that

x = (m, aarbofa~la'b~xav, m) = {(m, aar, m)(m, bof, m)(m, a~lar, m)(m, b~la*, m)}

. {{m, bof, m)(m, aar, m)(m, a~la', m)(m, ^"'ar5, m)}{(m, baf, m)(m, b~lav, m)}.

Moreover, denoting by e the identity of G, for every b e G and s, v nonnegative integers,
if s ^ v we have

(m, bo5, m)(m, b^a", m) = [(m, ba*, 0), (0, e, v - s)] e S'

and if s > v we have

(m, ba1, m)(m, b~lav, m) = {(m, ba", m){m, b~ V , m)}"1

= [(m,bav,0),(0,e,s-v)]-xeS'.
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Now, we consider

(m, bcf, m)(m, aar, m)(m, a^a', m)(m, b~lof, m) = (m, basaara~la'b~1as, m).

\ir<t, by a simple calculus, we have

(m, basaara-la'b-las, m) = [(m, bcfaa'b-V, 0), (0, bofb~V+'"r, t - r)]
. (m, bas+mb-ias+m+'-r, m)(m, bof+'-'b- V , m) e 5',

if r>t
(m, bcfaa'a^a'b-W, m) = (m, ba'aa'a'Wb' V , m)"1 e S'.

Hence * e S' and ker A = S', moreover, from Remark 2.13 it follows that 5' is an w-chain
of groups 5, isomorphic to (G')a. Finally from Lemma 2.3 it follows that A is a group
congruence and from Theorem 2.14 we deduce that S/A is isomorphic to the direct
product [G/(G')a]xl.

For a direct proof see [11], Theorem 2.5.

3. Solvability of simple regular w-semigroups. In [10] the following definition was
introduced for inverse semigroups:

DEFINITION 3.1. Let 5 be an inverse semigroup. Denote do(S) = S, k0=cos, the
universal congruence on 5, and for i > 1, let A, s (or simply A,) be the least commutative
congruence on 5,_i(5) = ker A,_, (trivially Aj = y). 5 is called solvable of solvability class c
or c-solvable if c is the least index i such that Ac = id6c l(S), the identity map on dc-x(S).

LEMMA 3.2 ([10], 3.3). 5 is solvable of class c if and only if c is the least index i such
that <5,_!(S) is commutative.

Since any simple regular to-semigroup is trivially inverse, it makes sense to ask about its
solvability. We want to prove that there is a strict connection between the solvability of S
and that of the groups G,.

We remark that a simple regular w-semigroup is a Bruck-Reilly semigroup over T
where T is a chain Go> Gx>. . .> Gd_! of groups [6, Structure Theorem], hence we state
the result for Bruck-Reilly semigroups. We recall the following definition.

DEFINITION 3.3. Let T be a monoid, or be a homomorphism of T into its group of
units. The Bruck-Reilly semigroup over T is the semigroup B(T, a) of the triplets
(m, a, n): m, n are nonnegative integers, aeT and the multiplication is defined as
follows:

(m, a, n)(p, b,q) = (m+p-r, (acf-'Xba"-'), n + q-r),
where r = min(n, p) and a0 is the identity map on T.

It is well-known (see [9], e.g.) that B(T, a) is a simple monoid for each T and a, and
that it is inverse if and only if T is inverse.

THEOREM 3.4. Let S = B(T, a) be a Bruck-Reilly semigroup over an inverse monoid
T. Then S is solvable if and only if T is solvable. If S is solvable of class n then T is
solvable of class n or n — \.

Proof. If 5 is a solvable semigroup of class n, then, by Theorem 3.5 of [10], T is
immediately seen to be solvable, and its solvability class is less than or equal to n, since T
is (isomorphic to) a subsemigroup of 5.
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LEAST COMMUTATIVE CONGRUENCE 21

To prove that the condition is sufficient, consider firstly a commutator of elements of
5:

c = [(m, a, n), (p, b, q)\

Let r = min(n, p), t = min(m, q), v = min(/i + q — r, n + q -1). Then

c = (m+p-r + n + q-t-v, {a-*ap-rb-l<x"-r)a"+q-'-v(aa''-'bam-')an+q--v, m

+ p — t + n+q — r — v).

Remark that:

_ / = - / O u = n + ^ - r » l < r O l = min(m, q) <min(n, p)
\ = - r O u = n+q -q - t » r < ( O r = min(w, p) <min(m, q)'

If we denote k = min(m, n, p, q), then we have proved that:

c = [(m, a, n), (p, b, q)] = (m+p- k, aap-kba"-k
a-

la'>-kb-lam-lc, m + p - k).

Since the product of two elements (m, a, m) and (p, b, p) is again of type (n, x, n)
then:

(m, a, n)eS' implies that m = n.

Let

(m, a, n){p, e,p) = (m+p- min(n, p), . . . , n + p - mm{n, p)),

where (p, e, p) e Es- Such a product belongs to 5 ' only if m + p — min(n, p) = n + p —
min(n, p), i.e. only if m = n. Then

(m, a, n) e 6(5) implies that m=n.

Now, since (m, a, m) e 6(5) implies trivially that aeT = 60(T), suppose, by induc-
tion, that we have proved:

for i > 2, (m, a, m) e 6,_!(5) implies that a e dj-2(T)-

Consider c = [(p, a, p), (q, b, q)] e (6,_,(5))'; for k = min(p, q), one has:

c = (p + q-k, aa"-kbap-ka-la''-kb-iap-k, p + q - k)

= (p+q-k, [aa"-k, bcf-*],p+q-k).

Since the commutator subsemigroup and the derivative of any inverse semigroup T
are trivially closed with respect to powers of any endomorphism of T, then we get:

(m, a, m) e (6,_,(5))' implies that a e (6,_2(T))'. (3)

Let (m,e,m) and (p,f,p)eEs, and (m, e, m)k6. l{S)(p,f, p). Then, there exists a
sequence:

(n0, a0, n0), (q0, b0, q0), . . . , (nh, ah, nh), (qh, bh, qh)

of elements of 6,_,(5) such that

(m, e, m) = (n0, a0, no)(qo, b0, qo)(qo, b^\ qo)(no, fl0"', n0),

{qh, bh, qh)(nh, ah, nh)(nh, a^\ nh)(qh> b^\ qh) = (p, f, p),
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and, for every j such that O^y's/i, if uf = min(my, qf) we get

(?/> bj, qj)(nj, aj, «,)(«,, aj\ /iy)fay, bj\ q,)
= (,nJ+x, fly+i, «/+1)(^y+i, bJ+1, qj+l)(qJ+l, b~+u qj+x){nj+l, aj+u nj+l);

fij + qj - Uj = nj+l + qj+1-Uj+i
and

Also
m = n0 + q0 - u0,

p = nh + qh- uh,

e = a0a
q°-uob0a"o-uobo ' A X V ' " " ' ,

f^ bha
n"-u'-aha'"'-Uhaj;la'"--l"'bj; 'a"*""*.

At last:
(m,e,n)k6._lls)(p,f,p) implies m = p and eX6i_^(T)f. (4)

Let

then there exists an idempotent (m, e, m)Aa._l(s)(m, a~'a, m) such that:

By (3) and (4), this implies that ek6. 2^T)a~1a and ae e (<5,_2(r))'. Hence:

for every i 3= 1, (m, a, m) e 5,(5) implies a e <5,_,(r).

If T is solvable of class n, then 6n_!(T) is the first derivate subsemigroup which is
commutative; thus one can easily see that <5n(5) must be commutative, too, and 5 is
solvable of solvability class less than or equal to n + 1.

Now, from Theorem 3.4 of [10] we can deduce the announced result on a simple
regular w-semigroup:

COROLLARY 3.5. Let S = S(d, Git y,) be a simple regular co-semigroup. Then S is
solvable if and only if all the groups G, are solvable. If S is n-solvable, then the greatest
solvability class of the groups is n or n — 1.

REMARK 3.6. When 5 = S(G, a) is a bisimple co-semigroup, then it is solvable of
class n if and only if G is solvable of class n or n -1. Both of these possibilities may
occur. In fact consider the two following special cases of endomorphism a- of the group
G:

If the endomorphism a is nilpotent, that is if a"(G) = l for some n > l , then
(G')a = G. As 8(S) is a Clifford semigroup, we have that if G is solvable of class n-\,
then (5(5) is solvable of class n — 1. Thus 5 is solvable of class n.

If a- = idG, then (G)'a = G'. Now, if G is a solvable group of class n, then G' is
solvable of class n - 1. Hence 6(5) is solvable of class n - 1 and 5 is solvable of class n.

REMARK 3.7. It follows from Theorem 3.11 of [10] that the maximum group
homomorphic image of a solvable inverse semigroup is solvable. The converse is not true
in general; actually, here we have a new family of counter-examples.
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In [7], Munn and Reilly proved that if a is nilpotent, then S(G, a)/o is isomorphic to
the additive group of integers. Hence, one can easily build up bisimple m-semigroups
which are not solvable, if G is not solvable, but where 5/a is solvable, since it is
isomorphic to a commutative group.
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