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This paper describes a generalization of the inverse of a non-singular matrix, as the
unique solution of a certain set of equations. This generalized inverse exists for any
(possibly rectangular) matrix whatsoever with complex elements J. I t is used here for
solving linear matrix equations, and among other applications for finding an expression
for the principal idempotent elements of a matrix. Also a new type of spectral decom-
position is given.

In another paper its application to substitutional equations and the value of
hermitian idempotents will be discussed.

Notation. Capital letters always denote matrices (not necessarily square) with com-
plex elements. The conjugate transpose of the matrix A is written A*. Small letters
are used for column vectors (with an asterisk for row vectors) and small Greek letters
for complex numbers.

The following properties of the conjugate transpose will be used:

A** = A,

(A+B)* = A* + B*,

(BA)* = A*B*,

A A* = 0 implies 4̂ = 0.

The last of these follows from the fact that the trace of A A* is the sum of the squares
of the moduli of the elements of A. Erom the last two we obtain the rule

BAA* = CAA* implies BA = GA, (1)

since (BAA*-CAA*)(B-C)* = (BA-CA)(BA-GA)*.

Similarly BA*A = CA*A implies BA* = GA*. (2)

THEOREM \. The four equations AX A — A C\\

XAX = X, (4)

{AX)* = AX, (5)

{XA)* = XA, (6)
have a unique solution for any A.

% Matrices over more general rings will be considered in a later paper.
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Proof. I first show that equations (4) and (5) are equivalent to the single equation

XX*A* = X. (7)

Equation (7) follows from (4) and (5), since it is merely (5) substituted in (4). Con-
versely, (7) implies AXX*A* = AX, the left-hand side of which is hermitian. Thus
(5) follows, and substituting (5) in (7) we get (4). Similarly, (3) and (6) can be replaced
by the equation XAA* = A*. (8)

Thus it is sufficient to find an X satisfying (7) and (8). Such an X will exist if a B can
be found satisfying M , ,

3 B BA*AA* = A*.

For then X = BA* satisfies (8). Also, we have seen that (8) implies A*X*A* = A*
and therefore BA*X*A* = BA*. Thus X also satisfies (7).

Now the expressions A*A, (A*A)2, (A*A)3,... cannot all be linearly independent,
i.e. there exists a relation

A1A*A + \2(A*A)*+...+Ak(A*A)k = 0> (9)

where A,,..., Aft are not all zero. Let A, be the first non-zero A and put

B = - VH

Thus (9) gives B(A*A)r+1 = (A*A)T, and applying (1) and (2) repeatedly we obtain
BA*AA* = A*, as required.

To show that X is unique, we suppose that X satisfies (7) and (8) and that Y satisfies
Y = A*Y*Y and A* = A*AY. These last relations are obtained by respectively
substituting (6) in (4) and (5) in (3). (They are (7) and (8) with Y in place of X and the
reverse order of multiplication and must, by symmetry, also be equivalent to (3), (4),
(5) and (6).) Now

X = XX*A* = XX* A* AY = XAY = XAA*Y*Y = A*Y*Y = Y.

The unique solution of (3), (4), (5) and (6) will be called the generalized inverse of A
(abbreviated g.i.) and written X = A*. (Note that A need not be a square matrix and
may even be zero.) I shall also use the notation A* for scalars, where A+ means A"1 if
A + OandOif A = 0.

In the calculation of A* it is only necessary to solve the two unilateral linear equations
XAA* = A* and A*A Y = A*. By putting A* = XA Y and using the fact that XA
and A Y are hermitian and satisfy AX A = A = A YA we observe that the four
relations AA^A = A, A'tAAi = A*, (AA<)* = AA* and {AfA)* = A*A are satisfied.
Relations satisfied by Af include

A1 A'* A* = A* = A*A**A*\
(10)

and A*A A* = A* = A*AA\ J

these being (7), (8) and their reverses.
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Note that the properties (A + B)* = A* + B* and (AA)* = AA* were not used in
the proof of Theorem 1.

LEMMA. 1-1 An = A;

1-2 A** = A**;
1-3 if A is non-singular Af = A-1;
1-4 (/U)+

1-6 (A*Ay =
1-6 ifUandV are unitary (UA V)f = V*AtV*;
1-7 if A = ~LAit where AiA* = 0 and ^4*^ = 0, whenever i+j then

A* = -LAX;
1-8 i/ A is normal AfA = AA'' and (An)f = (̂ +)™;
1-9 A, A*A, A* and AiA all have rank equal to trace A*A.

Proof. Since the g.i. of a matrix is always unique, relations 1-1,...,1-7 can be
verified by substituting the right-hand side of each in the denning relations for the
required g.i. in each case. For 1-5 we require (10) and for 1-7 we require the fact that
AiAlj = 0 and A\A} = 0 if i # j . This follows from A] = A?A}*A) and A\ = A\A\*A\.
The first part of 1-8, of which the second part is a consequence, follows from 1-5 and
(10), since A* A = (A*A)fA*A and AA1 = (AA*)fAA*. (The condition for A to be
normal is A*A = AA*.)% To prove 1-9 we observe that each of A, A*A, A* and AfA
can be obtained from the others by pre- and post-multiplication by suitable matrices.
Thus their ranks must all be equal and A''A being idempotent has rank equal to its
trace.

Relation 1-5 provides a method of calculating the g.i. of a matrix A from the g.i.
of A* A, since A* = (A* Ay A*. Now A* A, being hermitian, can be reduced to diagonal
form by a unitary transformation. Hence A*A = UDU*, where U is unitary and
D = diag(a1; ...,an). Thus Z>+= diag(aj, . . . ,<) and (4*.4)+= UD*U* by 1-6.

An alternative proof of the existence of the g.i. of a square matrix can be obtained
from Autonne's (1) result that any square matrix A can be written in the form VBW,
where V and W are unitary and B is diagonal §. Now B* exists since it can be denned
similarly to Df above. It is thus sufficient to verify that Af = W*B*V* as in 1-6.
A rectangular matrix can be treated by bordering it with zeros to make it square.

Notice that Af is a continuous function of A if the rank of A is kept fixed, since in
the singular case the polynomial in (9) could be taken to be the characteristic function
of A *A. The value of r, being the nullity of A *A (as A *A is hermitian), is thus deter-
mined by the rank of A (by 1-9). Also A"1 varies discontinuously when the rank of A
changes since rank A = trace A*A by 1-9.

J This result, like several of the earlier ones, is a simple consequence of the construction of
A* given in Theorem 1. I t seems desirable, however, to show that it is also a direct consequence
of (3), (4), (5) and (6).

§ A simple proof of this result is as follows: since A A* and A* A are both hermitian and have
the same eigenvalues there exists a unitary matrix T such that TAA*T* = A*A. Hence TA is
normal and therefore diagonable by unitary transformation.
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THEOREM 2. A necessary and sufficient condition for the equation AXB = C to have

a solution is AA<CB<B = C,

in which case the general solution is

X = A'CB^+Y-A'AYBB',
where Y is arbitrary.

Proof. Suppose X satisfies AXB = G. Then

C = AXB = AA*AXBB*B = AA'GB'B.

Conversely, if G = AAfG&B then AfCB* is a particular solution of AXB = G (i.e. we
may treat A'' formally as an inverse of A in order to find a particular solution).

For the general solution we must solve AXB = 0. Now any expression of the
form X= Y-A^AYBB* satisfies AXB = 0 and conversely if AXB = 0 then
X = X — A^AXBB*. Theorem 2 follows. Note that the only property required of Af

for Theorem 2 is A A* A = A.

COROLLARY 1. The general solution of the vector equation Px = c is

where y is arbitrary, provided that the equation has a solution.%
The general linear matrix equation i ( 1 ) I£ ( 1 ) + ... + A^XB^ = G can also be solved

by using a g.i., since this equation can be written in the form

j,fclr=l

where AM = (a(rKj), etc. If X and C are regarded as vectors, this is an equation of the
type considered in Corollary 1.

COROLLARY 2. A necessary and sufficient condition for the equations AX = C, XB = D
to have a common solution is that each equation should individually have a solution and that
AD = CB.

Proof. The condition is obviously necessary. To show that it is sufficient, put

X =

which is a solution if the required conditions AA'C = C, DBfB = D, AD = CB are
satisfied.

This result is due to Cecioni (3).

Hermitian idempotents. A hermitian idempotent matrix (abbreviated h.i.) is one
satisfying EE* = E, that is, E = E* and E2 = E.

LEMMA. 2-1 A*A, AA\ I-A1 A, I-AA* are all h.i.;
2-2 ifEish.i.E* = E;
2-3 K is idempotent if and only if there exist h.i.'s E and F such that

K = {FEY in which case K = EKF.

% See also Bjerhammar(2).
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Proof. The proofs of 2-1 and 2-2 are evident. To prove 2-3 suppose K2 = K, then, by
l-l,K = {(K*K) (KK')y.ThusE = KK'and F = Z'Zwilldo. Conversely,ifK = {FEf
then K is of the form EFPEF (since Q* = Q*(Qf*QfQf*) Q* by (10)). Hence K = EKF,
so that K2 = E(FEy FE{FEy F = E(FE)fF = K.

Principal idempotent elements of a matrix. For any square matrix A there exists
a unique set of matrices Kx denned for each complex number A such that

KxK^8XllKx, (11)

ZKX=I, (12)

AKX = KXA, (13)

(A - A/) Kx is nilpotent, (14)

the non-zero Kx's being the principal idempotent elements of A (see Wedderburn(7))4
Unless A is an eigenvalue of A, Kx is zero so that the sum in (12) is finite, though
summed over all complex A. The following theorem gives an ' explicit' formula for Kx

in terms of g.i.'s.

THBOBEM 3. / /

Ex = I-{(A-U)ny(A-XI)n and Fx = / - (A -U)n{(A - A/)n}+,

where n is sufficiently large (e.g. the order of A), then the principal idempotent elements
of A. are, given by Kx = (FxExy,andncanbetakenasunityifandonlyifAisdiagonable.

Proof. First, suppose A is diagonable and put

Ex = I-(A-Aiy(A-M)

and Fx = I-(A-M)(A-Aiy.

Then Ex and Fx are h.i. by 2-1 and are zero unless A is an eigenvalue of A by 1*3.
N o w (AjuI)E = 0 and Fx{A-\I) = 0, (15)

so that [iF^p = FxAE/t = A - F ^ . Thus

2 ^ = 0 if A*/*. (16)

Putting Kx = (FxEx)
f we have, by 2-3,

Kx = Ex(FxExyFx. (17)

Hence K^ = SX/lKx by (16). Also (17) gives

F^E, = S^S^F.E^ (18)

Any eigenvector za oiA corresponding to the eigenvalue a satisfies Eaza = za. Since
A is diagonable, any column vector x conformable with A is expressible as a sum of
eigenvectors; i.e. it is expressible in the form (a finite sum over all complex A)

x = ZExxx.

| The existence of such Kxs can be established as follows: let 4>(E) = (£—A^"1 ... ( | —A^"' be,
say, the minimum function of A where the factors (£ — A()

nl are mutually coprime. Then if
0(£) = (E, - A,)»« $<(£) there exist polynomials XAi) such that £*,(£) $,(£) = 1. Set KX{ =
with the other Kxs zero.

https://doi.org/10.1017/S0305004100030401 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004100030401


A generalized inverse for matrices 411

Similarly, if y* is conformable with A, it is expressible as

Now 2/*(£ig x = (Xy*xFx) (S j

by (18) and (16). Hence Eif̂  = / . Also, from (15) and (17) we obtain

AKX = XKX = KXA. (19)

Thus conditions (13) and (14) are satisfied. Also

A = 2AZA. (20)

Conversely, if it is not assumed that A is diagonable but that Y,KX = / , Kx being
defined as above (i.e. with n = 1), then x = HKxx gives a; as a sum of eigenvectors of A,
since (19) was deduced without assuming the diagonability of A.

If A is not diagonable it seems more convenient simply to prove that for any set of
Kxs satisfying (11), (12), (13) and (14) each Kx = (FxExy, where Fx and Ex are defined
as in the theorem.

Now, if the iCA's satisfy (11), (12), (13) and (14) they must certainly satisfy

and (A - XI)n Kx = 0 = KX(A - A/)",

where n is sufficiently large (if n is the order of A, this will do).

From this and the definitions of Ex and Fx given in the theorem we obtain

EXKX = KX = KXFX. (21)

Using Euclid's algorithm we can find P and Q (polynomials in A) such that

I = (A - M)n P + Q(A - pi)*,

provided that A#/t. Now Fx(A-XI)n = 0 = (A-piy-E^. Hence F^E^ = 0 if A=t=/t,
which with (21) gives F^K^ = 0 = K^E^ whenever A#/t. But SZA = / . Thus

and KXEX = EK.\ • ( 2 2 )

Using (21) and (22) it is a simple matter to verify that (-FA^A)f = KK. (Note that
iTA = / - { ( / - # A ) ( / - ^ A ) } t also.)

Incidentally, this provides a proof of the uniqueness of Kx.%

COROLLARY. / / A is normal, it is diagonable and its principal idempotent elements are
hermitian.

Proof. Since A — XI is normal we can apply 1-8 to the definitions of Ex and Fx in
Theorem 3. This gives

EX = I-(A-XIY(A-XI) and Fx = I - (A - A/) (A - XI)\

whence A is diagonable. Also Ex = Fx, so tha t Kx = Ex is hermitian.

% In fact, S.KA = I and (A — XI)n Kx = 0 are sufficient for uniqueness.
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Tor this result see, for example, Drazin(4).
If A is normal (20) gives A = £AJ?A, and thus using 1-7, 1-4 and 2-2 we obtain

A new type of spectral decomposition. Unless A is normal, there does not appear to be
any simple expression for A* in terms of its principal idempotent elements. However,
this difficulty is overcome with the following decomposition, which applies equally to
rectangular matrices.

THEOREM 4. Any matrix A is uniquely expressible in the form

A = 2 aUa,

this being a finite sum over real values of cc, where U\ = U*, U*U^ = 0 and Ua U^ = 0

Proof. The condition on the U's can be written comprehensively as

uaupY = safisfirua.
For Va U*Ua = Ua implies TJ*JJa U* = 17*. whence by uniqueness, TJ\ = V* (as Ua U*
and U%Ua are both hermitian). Also UaU%Up = 0 and UaU^ U^ = 0 respectively imply
U* Up = 0 and Ua U*fi = 0 by (2). Define

Ex = I - (A*A - Aiy (A*A - ?J).

The matrix A*A is normal, being hermitian, and is non-negative definite. Hence the
non-zero JE^'s are its principal idempotent elements and JE7A = 0 unless A ^ 0.

T h u s A*A = 2A^A and (A* Ay = 2A^A.

Hence A*A = [A*Ay A*A = SA+A^A = S Ex.
A>0

Put Ua = otr^AE^ if a> 0 and Ua = 0 otherwise. Then

a>0 A>0

Also if a, £ y > 0 Ua U*fiUy = u-1fi-1y-1AEatEptA*AEyt

To prove the uniqueness suppose

A = 2 <*K, where Fa F|Fy = 6a/>8fi7Va.
a>0

Then it is easily verified that the non-zero expressions V%Va, for a > 0, and / — 2 l7?^

are the principal idempotent elements of A*A corresponding respectively to the
eigenvalues a2 and 0. Hence V*Va = Ea2, where oc> 0, giving

tf. = *-H 2 / ^ ) F*Fa = Va.

Polar representation of a matrix. I t is a well-known result (closelyrelatedto Autonne's)
that any square matrix is the product of a hermitian with a unitary matrix (see, for
example, Halmos (5)).

| Thus A* =
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Put H = 2af/a U*. Then H is non-negative definite hermitian, since Ua = 0 unless
a>0, and H2 = AA*. (Such an H must be unique.) We have WH = HW = ^44+.

Now AAi and 4̂+JL are equivalent under a unitary transformation, both being
hermitian and having the same eigenvalues; i.e. there is a unitary matrix W satisfying
WA*A = AA'W. Putting V = H*A + W- WA*A we see that VV* = I and A = HV.
This is the polar representation of A.

The polar representation is unique if A is non-singular but not if A is singular.
However, if we require A = HU, where i? is (as before) non-negative definite hermitian,
Uf = U* and UU* = WH, the representation is always uniquej and also exists for
rectangular matrices. The uniqueness of If follows from

A A* = HUU*H = H(Hm)H = H2,

and that of U from WA = WHU = UU*U = U.

The existence of H and J7 is established by H = Sa?7a Z7* and J7 = SC/a.
If we put G = SaC/a* Ua we obtain the alternative representation A = [/(?.

I wish to thank Dr M. P. Drazin for useful suggestions and for advice in the prepara-
tion of this paper.

REFERENCES
(1) AUTONNB, L. Sur les matrices hypohermitiennes et sur les matrices unitaires. Ann. Univ.

Lyon, (2), 38 (1915), 1-77.
(2) BJEBHAMMAB, A. Rectangular reciprocal matrices, with special reference to geodetic calcula-

tions. Bull. gdod. int. (1951), pp. 188-220.
(3) CECIONI, F. Sopra operazioni algebriche. Ann. Scu. norm. sup. Pisa, 11 (1910), 17-20.
(4) DBAZTN, M. P. On diagonable and normal matrices. Quart. J. Math. (2), 2 (1951), 189-98.
(5) HAIMOS, P. R. Finite dimensional vector spaces (Princeton, 1942).
(6) MURRAY, F. J. and VON NEUMANN, J. On rings of operators. Ann. Math., Princeton, (2),

37 (1936), 141-3.
(7) WEDDERBTJBN, J. H. M. Lectures on matrices (Colloq. Publ. Amer. math. Soc. no. 17, 1934).

ST JOHN'S COLLEGE

CAMBRIDGE

https://doi.org/10.1017/S0305004100030401 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004100030401

