NOTES ON ERDÖS-TURÁN INEQUALITY YUKIO OHKUBO

(Received 12 March 1998; revised 12 April 1999)

Communicated by W. W. L. Chen

Abstract

A new version of Erdös-Turán's inequality is described. The purpose of the present paper is to show that the inequality provides better upper bounds for the discrepancies of some sequences than usual Erdös-Turán’s inequality.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 11K38.
Keywords and phrases: Discrepancy, Erdös-Turán's inequality, exponential sum, van der Corput's method.

1. Introduction

Let $\{x\}=x-[x]$ be the fractional part of $x \in \mathbb{R}$. For a subinterval E of the unit interval $U=[0,1)$, the characteristic function of E is defined by $\chi_{E}(x)=1$ for $\{x\} \in E$ and $\chi_{E}(x)=0$ otherwise. Let $e(x)=e^{2 \pi i x}$ for $x \in \mathbb{R}$. Let $\omega=\left(x_{n}\right)$, $n=1,2, \ldots$, be an infinite sequence in \mathbb{R}. For a positive integer N, the discrepancy of the sequence ω is defined by

$$
\begin{equation*}
D_{N}(\omega)=\sup _{0<y \leq 1}\left|\frac{1}{N} \sum_{n=1}^{N} \chi_{(0, y)}\left(x_{n}\right)-y\right| \tag{1}
\end{equation*}
$$

Erdös-Turán's inequality is very useful to obtain an upper bound of the discrepancy ($[2,3]$). Baker and Harman gave a new version of Erdös-Turán's inequality for the logarithmic discrepancy, which is defined by adapting the logarithmic mean instead of the arithmetic mean to (1) [1, Lemma 1]. By using the techniques developed by Baker and Harman [1, Lemma 1], we can analogously obtain Theorem 1, so we omit the proof of Theorem 1.

[^0]THEOREM 1. Let $\omega=\left(x_{n}\right)$ be a real sequence and let $0<\delta \leq 1$. Then there exists a constant $C(\delta)>0$ such that

$$
\begin{equation*}
D_{N}(\omega) \leq F(N)+\frac{C(\delta)}{N} \sum_{1 \leq h \leq N^{\delta}} \frac{1}{h} \sup _{h^{1 / \delta}<B \leq N}\left|\sum_{h^{1 / /} \leq n \leq B} e\left(h x_{n}\right)\right|, \tag{2}
\end{equation*}
$$

where

$$
F(N)= \begin{cases}\left(\frac{1}{2^{1-\delta}-1}+1\right) \frac{1}{N^{\delta}} & \text { for } 0<\delta<1 \\ \left(\frac{1}{\log 2}+1\right) \frac{1+\log N}{N} & \text { for } \delta=1\end{cases}
$$

2. Main results

The purpose of the present paper is to show that Theorem 1 provides better upper bounds for the discrepancies of some sequences than usual Erdös-Turán's inequality. The following is an analogue of Baker and Harman's theorem [1, Theorem 2].

THEOREM 2. Let $f(x), x \geq 1$, be a real-valued twice differentiable function such that $f^{\prime \prime}(x) \ll x^{-2+\epsilon}$ for some $0<\epsilon<1 / 2$. Suppose that there are real numbers $1=x_{0}<x_{1}<\cdots<x_{H}<\infty$ such that $f^{\prime \prime}(x)$ is of constant sign and monotone in each of the intervals $\left[x_{j-1}, x_{j}\right](j=1, \ldots, H)$ and $\left[x_{H}, \infty\right)$. Then the sequence $\omega=(f(n))$ satisfies

$$
\begin{equation*}
D_{N}(\omega) \ll \frac{1}{N\left|f^{\prime \prime}(N)\right|^{1 / 2}} . \tag{3}
\end{equation*}
$$

Proof. We use van der Corput's method for bounding exponential sums. Let $1 \leq A<x_{H}<B$. There exists an integer $1 \leq k \leq H$ such that $x_{k-1} \leq A<x_{k}$. Let $j \in \mathbb{Z}$ with $k \leq j<H$ and let $h \in \mathbb{Z}$ with $h \geq 1$. Suppose that $f^{\prime \prime}(x)<0$ in the interval $\left[x_{j}, x_{j+1}\right]$. Let $h f^{\prime}\left(x_{j+1}\right)=\alpha$, $h f^{\prime}\left(x_{j}\right)=\beta$. Applying [5, Lemma 4.7], we have

$$
\begin{equation*}
\sum_{x_{j}<n \leq x_{j}+1} e(h f(n))=\sum_{\alpha-1 / 2<v<\beta+1 / 2} \int_{x_{j}}^{x_{j+1}} e(h f(x)-v x) d x+O(\log (\beta-\alpha+2)) \tag{4}
\end{equation*}
$$

By [5, Lemma 4.4] we get

$$
\begin{equation*}
\int_{x_{j}}^{x_{j+1}} e(h f(x)-v x) d x \ll \frac{1}{\min \left\{\left|f^{\prime \prime}\left(x_{j}\right)\right|,\left|f^{\prime \prime}\left(x_{j+1}\right)\right|\right\}^{1 / 2} h^{1 / 2}} \tag{5}
\end{equation*}
$$

Since $f^{\prime \prime}(x) \ll x^{-2+\epsilon}$, we have

$$
\begin{equation*}
\beta-\alpha \ll A^{\epsilon-1} h \tag{6}
\end{equation*}
$$

From (4), (5) and (6) we get

$$
\begin{equation*}
\sum_{x_{j}<n \leq x_{j+1}} e(h f(n)) \ll \frac{\left(A^{\epsilon-1} h+1\right) h^{-1 / 2}}{\min _{j=0, \ldots, H}\left|f^{\prime \prime}\left(x_{j}\right)\right|^{1 / 2}}+\log h . \tag{7}
\end{equation*}
$$

The inequality (7) holds also for the interval $\left[A, x_{k}\right]$. Similarly, we can obtain the same estimate even if $f^{\prime \prime}(x)>0$ in the interval $\left[x_{j}, x_{j+1}\right]$.

On the other hand, since $\left|f^{\prime \prime}(x)\right|$ is monotone decreasing on $\left[x_{H}, B\right]$, in like manner we have also

$$
\begin{equation*}
\sum_{x_{H}<n \leq B} e(h f(n)) \ll \frac{\left(A^{\epsilon-1} h+1\right) h^{-1 / 2}}{\left|f^{\prime \prime}(B)\right|^{1 / 2}}+\log h \tag{8}
\end{equation*}
$$

From (7) and (8) it follows that
(9) $\sum_{A<n \leq B} e(h f(n)) \ll\left(\frac{1}{\min _{j=0 \ldots . H}\left|f^{\prime \prime}\left(x_{j}\right)\right|^{1 / 2}}+\frac{1}{\left|f^{\prime \prime}(B)\right|^{1 / 2}}\right)\left(A^{\epsilon-1} h+1\right) h^{-1 / 2}+\log h$.

In the same way we obtain
(10) $\quad \sum_{A<n \leq B} e(h f(n)) \ll \begin{cases}\frac{\left(A^{\epsilon-1} h+1\right) h^{-1 / 2}}{\min _{j=0, \ldots, H}\left|f^{\prime \prime}\left(x_{j}\right)\right|^{1 / 2}}+\log h & \text { if } A<x_{H} \text { and } B \leq x_{H}, \\ \frac{\left(A^{\epsilon-1} h+1\right) h^{-1 / 2}}{\left|f^{\prime \prime}(B)\right|^{1 / 2}}+\log h & \text { if } x_{H} \leq A \text { and } x_{H}<B .\end{cases}$

Now, we set

$$
\begin{aligned}
& S_{1}=\sum_{1 \leq h<x_{H}^{s}} \frac{1}{h} \sup _{h^{1 / \delta}<B \leq N}\left|\sum_{h^{1 / 8} \leq n \leq B} e(h f(n))\right|, \\
& S_{2}=\sum_{x_{H}^{s} \leq h \leq N^{\delta}} \frac{1}{h} \sup _{h^{1 / 8}<B \leq N}\left|\sum_{h^{1 / \delta} \leq n \leq B} e(h f(n))\right|,
\end{aligned}
$$

where it is assumed that $x_{H} \leq N$.

First we consider S_{1}. From (9) and (10) it follows that

$$
\begin{align*}
S_{1} & =\sum_{1 \leq h<x_{H}^{s}} \frac{1}{h} \max \left\{\sup _{h^{1 / 8}<B \leq x_{H}}\left|\sum_{h^{1 / 8} \leq n \leq B} e(h f(n))\right|, \sup _{x_{H} \leq B \leq N}\left|\sum_{h^{1 / 8} \leq n \leq B} e(h f(n))\right|\right\} \\
& \ll \sum_{1 \leq h<x_{H}^{s}} \frac{1}{h}\left\{\left(\frac{1}{\min _{j=0 \ldots . H}\left|f^{\prime \prime}\left(x_{j}\right)\right|^{1 / 2}}+\frac{1}{\left|f^{\prime \prime}(N)\right|^{1 / 2}}\right)\left(h^{(\epsilon-1) / \delta+1}+1\right) h^{-1 / 2}+\log h\right\} \\
& \ll \frac{1}{\left|f^{\prime \prime}(N)\right|^{1 / 2}}+1 . \tag{11}
\end{align*}
$$

Furthermore, from (10) we have

$$
\begin{aligned}
S_{2} & \ll \sum_{x_{H}^{\delta} \leq h \leq N^{\delta}} \frac{1}{h} \sup _{h^{1 / \delta}<B \leq N}\left\{\frac{1}{\left|f^{\prime \prime}(B)\right|^{1 / 2}}\left(h^{(\epsilon-1) / \delta+1}+1\right) h^{-1 / 2}+\log h\right\} \\
& \ll \frac{1}{\left|f^{\prime \prime}(N)\right|^{1 / 2}}+(\log N)^{2},
\end{aligned}
$$

according to $0<\epsilon<1 / 2$. From (11) and (12) we infer

$$
\begin{equation*}
\sum_{1 \leq h \leq N^{\delta}} \frac{1}{h} \sup _{h^{1 / \delta}<B \leq N}\left|\sum_{h^{1 / 8} \leq n \leq B} e(h f(n))\right| \ll \frac{1}{\left|f^{\prime \prime}(N)\right|^{1 / 2}}+(\log N)^{2} ; \tag{13}
\end{equation*}
$$

and (13) holds even if $N<x_{H}$. By (13) and Theorem 1 we have

$$
\begin{equation*}
D_{N}(\omega) \ll F(N)+\frac{1}{N\left|f^{\prime \prime}(N)\right|^{1 / 2}}+\frac{(\log N)^{2}}{N} \tag{14}
\end{equation*}
$$

where

$$
F(N) \ll \begin{cases}N^{-\delta} & \text { for } 0<\delta<1 \\ \frac{\log N}{N} & \text { for } \delta=1\end{cases}
$$

Since $f^{\prime \prime}(N) \ll N^{-2+\epsilon}$, by choosing $\delta=\epsilon / 2$, the desired result follows.
Remark 1. Suppose that $f(x)$ satisfies the conditions of Theorem 2. By (9) we have

$$
\begin{equation*}
\sum_{n=1}^{N} e(h(f(n))) \ll\left(\frac{1}{\left|f^{\prime \prime}(N)\right|^{1 / 2}}+1\right) h^{1 / 2} \tag{15}
\end{equation*}
$$

Applying usual Erdös-Turán's inequality together with (15), for any positive integer m we obtain

$$
\begin{equation*}
D_{N}(\omega) \ll \frac{1}{m}+\frac{m^{1 / 2}}{N\left|f^{\prime \prime}(N)\right|^{1 / 2}} \tag{16}
\end{equation*}
$$

Choosing $m=\left[N^{2 / 3}\left|f^{\prime \prime}(N)\right|^{1 / 3}\right]$, from (16) we have

$$
\begin{equation*}
D_{N}(\omega) \ll \frac{1}{N^{2 / 3}\left|f^{\prime \prime}(N)\right|^{1 / 3}} \tag{17}
\end{equation*}
$$

If $N^{-2} \ll\left|f^{\prime \prime}(N)\right|$, then the upper bound of (3) is smaller than that of (17).
As the examples of functions $f(x)$ satisfying the conditions of Theorem 2, we consider $f(x)=\alpha x+\beta(\log x)^{\sigma}, \alpha, \beta \in \mathbb{R}$ with $\beta \neq 0, \sigma>1$, and $f(x)=\alpha x+\beta x^{\sigma}$, $\alpha, \beta \in \mathbb{R}$ with $\beta \neq 0,0<\sigma<1 / 2$. Then we have the following.

COROLLARY 1. The discrepancy of the sequence $\omega=\left(\alpha n+\beta(\log n)^{\sigma}\right)$ with real numbers α, β with $\beta \neq 0$ and $\sigma>1$ satisfies

$$
D_{N}(\omega) \ll(\log N)^{-(\sigma-1) / 2}
$$

COROLLARY 2. The discrepancy of the sequence $\omega=\left(\alpha n+\beta n^{\sigma}\right)$ with real numbers α, β with $\beta \neq 0$ and $0<\sigma<1 / 2$ satisfies

$$
D_{N}(\omega) \ll N^{-\sigma / 2}
$$

The following is another application of Theorem 1.
THEOREM 3. If α is an irrational number of finite type $\eta \geq 1$ and β is a nonzero real number, then for any $\varepsilon>0$ the discrepancy of $\omega=(\alpha n+\beta \log n)$ satisfies

$$
\begin{equation*}
D_{N}(\omega) \ll N^{-1 /(\eta+1 / 2)+\varepsilon} . \tag{18}
\end{equation*}
$$

Proof. We also use van der Corput's method for bounding exponential sums. Let $g(x)=\alpha x+\beta \log x$ and let $1 \leq A<B$. Applying integration by parts, for integers ν and $h \geq 1$ we have

$$
\begin{equation*}
\int_{A}^{B} e(h g(x)-v x) d x \ll \frac{1}{|h \alpha-v|}\left(1+h\left|\int_{A}^{B} \frac{1}{x} e(h g(x)-v x) d x\right|\right) \tag{19}
\end{equation*}
$$

Since [1, Lemma 2] implies

$$
\int_{A}^{B} \frac{1}{x} e(h g(x)-v x) d x \ll h^{-1 / 2}
$$

(19) yields

$$
\begin{equation*}
\int_{A}^{B} e(h g(x)-v x) d x \ll \frac{h^{1 / 2}}{\|h \alpha\|} \tag{20}
\end{equation*}
$$

where $\|x\|=\min \{|x-n|: n \in \mathbb{Z}\}$ for $x \in \mathbb{R}$. By using [5, Lemma 4.7], from (20) we obtain

$$
\begin{equation*}
\sum_{A \leq n \leq B} e(h g(n)) \ll\left(\frac{h}{A}+1\right) \frac{h^{1 / 2}}{\|h \alpha\|} \tag{21}
\end{equation*}
$$

Let $0<\delta \leq 1$. Then from (21) it follows that

$$
\begin{align*}
\sum_{1 \leq h \leq N^{\delta}} \frac{1}{h} \sup _{h^{1 / \delta}<B \leq N^{\delta}}\left|\sum_{h^{1 / \delta} \leq n \leq B} e(h g(n))\right| & \ll \sum_{1 \leq h \leq N^{\delta}}\left(\frac{1}{h^{1 / \delta-1 / 2}\|h \alpha\|}+\frac{1}{h^{1 / 2}\|h \alpha\|}\right) \tag{22}\\
& \ll \sum_{1 \leq h \leq N^{\delta}} \frac{1}{h^{1 / 2}\|h \alpha\|} .
\end{align*}
$$

By using (22) with the following analogue of [3, Lemma 3.3]: for every $\vartheta>0$

$$
\begin{equation*}
\sum_{h=1}^{m} \frac{1}{h^{1 / 2}\|h \alpha\|} \ll m^{\eta-1 / 2+\vartheta} \tag{23}
\end{equation*}
$$

Theorem 1 implies

$$
\begin{equation*}
D_{N}(\omega) \ll F(N)+N^{(\eta-1 / 2+\vartheta) \delta-1} \tag{24}
\end{equation*}
$$

By choosing $\delta=(\eta+1 / 2)^{-1}$, the desired result follows.

REMARK 2. By applying usual Erdös-Turán's inequality, Tichy and Turnwald [4, p. 357] showed that $D_{N}(\omega) \ll N^{-1 /(\eta+1)+\epsilon}$.

In the same way as in the proof of Theorem 3, we obtain the following.

THEOREM 4. If α is an irrational number of constant type and β is a nonzero real number, then the discrepancy of $\omega=(\alpha n+\beta \log n)$ satisfies

$$
D_{N}(\omega) \ll N^{-2 / 3} \log N
$$

Acknowledgement

The author is deeply indebted to Professors H. Yoshida, I. Miyamoto and K. Goto for their many helpful comments and for kind encouragement.

References

[1] R. C. Baker and G. Harman, 'Sequences with bounded logarithmic discrepancy', Math. Proc. Cambridge Philos. Soc. 107 (1990), 213-225.
[2] M. Drmota and R. F. Tichy, Sequences, discrepancies and applications, Lecture Notes in Math. 1651 (Springer, Berlin, 1997).
[3] L. Kuipers and H. Niederreiter, Uniform distribution of sequences (Wiley, New York, 1974).
[4] R. F. Tichy and G. Turnwald, 'Logarithmic uniform distribution of ($\alpha n+\beta \log n$)', Tsukuba J. Math. 10 (1986), 351-366.
[5] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed. revised by D. R. Heath-Brown (Clarendon Press, Oxford, 1986).

Faculty of Economics
Kagoshima Keizai University
Shimofukumoto-cho
Kagoshima-shi 891-0191
Japan
e-mail: ohkubo@eco.kkis.ac.jp

[^0]: (C) 1999 Australian Mathematical Society 0263-6115/99 \$A2.00+0.00

