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The Dimits shift, an upshift in the onset of turbulence from the linear instability threshold,
caused by self-generated zonal flows, can greatly enhance the performance of magnetic
confinement plasma devices. Except in simple cases, using fluid approximations and
model magnetic geometries, this phenomenon has proved difficult to understand and
quantitatively predict. To bridge the large gap in complexity between simple models
and realistic treatment in toroidal magnetic geometries (e.g. tokamaks or stellarators),
the present work uses fully gyrokinetic simulations in a Z-pinch geometry to investigate
the Dimits shift through the lens of tertiary instability analysis, which describes the
emergence of drift waves from a zonally dominated state. Several features of the
tertiary instability, previously observed in fluid models, are confirmed to remain.
Most significantly, an efficient reduced-mode tertiary model, which previously proved
successful in predicting the Dimits shift in a gyrofluid limit (Hallenbert & Plunk,
J. Plasma Phys., vol. 87, issue 05, 2021, 905870508), is found to be accurate here, with
only slight modifications to account for kinetic effects.
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1. Introduction

Transport associated with small-scale plasma density/temperature-gradient-driven
instabilities (Liewer 1985) has proven to be highly significant for nuclear fusion
experiments, limiting performance by contributing significant, often stiff, transport
(Horton 1999; Mantica et al. 2009; Ryter et al. 2011). Knowing the associated turbulent
transport levels that dictate confinement properties is thus imperative, but an accurate
prediction of these requires numerically expensive gyrokinetic simulations (Lin 1998;
Dimits et al. 2000; Parker et al. 2004). Among other things, linear instability growth rates
have therefore been used to expedite this analysis, forming the basis of simpler mixing
length estimates (Waltz, Kerbel & Milovich 1994; Bourdelle et al. 2007; Pueschel et al.
2016).
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However, near marginal linear stability where reactors may be expected to operate
due to the aforementioned stiff transport, such a treatment is called into question by
the existence of self-generated poloidal zonal flows (Diamond & Kim 1991; Lin 1998;
Diamond et al. 2005). These efficiently suppress radial streamers by E × B-flow shear
decorrelation (Biglari, Diamond & Terry 1990; Lin 1998) or zonal-flow-catalysed energy
transfer (Terry et al. 2018, 2021). This process can be so efficient that transport becomes
strongly quenched, resulting in an effective upshift of the critical gradient, known as the
Dimits shift (Dimits et al. 2000). Since it is well known that zonal shear quenching exhibits
a complex dependence upon the magnetic geometry (Kinsey, Waltz & Candy 2007; Belli,
Hammett & Dorland 2008), so should the size of the Dimits shift. This opens up the
possibility of linearly unstable configurations that nevertheless are Dimits stable, which
may prove valuable for reactor optimisation, particularly for stellarators with their large
configuration space (Boozer 1998).

Unfortunately, a single general description of the Dimits upshift has proven elusive, with
many competing explanations having been put forth (see e.g. Ivanov et al. 2020; Pueschel,
Li & Terry 2021). This is because there exists a wealth of Dimits regime physics, even in
the simpler fluid models usually under investigation. Although a full overview is beyond
the present scope, a few examples are illustrative. Starting with non-local transport, Ivanov
et al. (2020) studied ‘ferdinons’, which are radially propagating soliton-like coherent
structures resembling those previously reported by van Wyk et al. (2016) in fully developed
gyrokinetic turbulence. In a similar vein, Qi, Majda & Cerfon (2020) observed transient
disordered radial avalanches similar to those of McMillan et al. (2009), which are known to
coexist with coherent structures in fully developed turbulence (McMillan, Pringle & Teaca
2018). Despite providing a dominating transport contribution, it is unknown precisely how
the two are related and what their effect upon the Dimits shift is.

Next, although the time-averaged transport by definition is small in the Dimits regime,
this does not preclude the possibility of transient turbulent bursts (see Berionni & Gürcan
2011), of which the aforementioned avalanches are an example. Thus predator–prey-type
energy oscillations between zonal flows, in the role of predator, and drift waves, as prey
(Diamond et al. 1994), are prevalent. These oscillations are observed to vary qualitatively
in e.g. amplitude, frequency or energy channels, even within a single system as the
Dimits regime is traversed (Malkov, Diamond & Rosenbluth 2001; Berionni & Gürcan
2011; Kobayashi, Gürcan & Diamond 2015; Zhu, Zhou & Dodin 2020a). However, they
eventually give way to continuous finite transport around the Dimits threshold, but it
remains unknown to what extent a causal link exists.

Related to the previous features, it is well known that strong zonal flows cause drift
waves and their associated turbulence to localise around those limited regions of zero
E × B flow shear in the Dimits regime (Kobayashi & Rogers 2012; Kim, Min & An
2018, 2019; Zhang & Krasheninnikov 2020). In effect, this creates transport barriers
with limited drift waves between these points, limiting overall transport. However, an
associated nonlinear effect also seems to be that zonal flows eventually saturate into so
called E × B-staircases (Dif-Pradalier et al. 2010; Peeters et al. 2016; Garbet et al. 2021)
that may extend well above the Dimits regime. This raises doubts that the breakdown
of these barriers are sufficient to capture the Dimits shift. Nevertheless, although the
formation and sustainability of these staircases are poorly understood, they are such an
omnipresent feature that they surely must be accounted for.

Despite the complexity the examples above hint at, attempts continue to be made to
encapsulate and predict the Dimits shift. Broadly, we can classify these into two categories.
The first of these focuses on the turbulent dynamics above the Dimits threshold and
attempts to extrapolate ‘downwards’ with the inclusion and emphasis of some particular
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piece of physics. The advantage of this approach is how it connects with already existing
transport modelling. Unfortunately, efficient conventional quasilinear modelling fails in
the Dimits regime, since mean zonal shear exceeds instability growth rates (Pueschel et al.
2016, 2021).

Thankfully, progress continues to be made on this front, with e.g. the combined
work of Pueschel et al. (2021) and Terry et al. (2021) predicting a Dimits shift of the
appropriate size. This was achieved by extending the turbulence saturation model of Terry
et al. (2018) while including an observation of Hatch et al. (2016): nonlinear coupling
is favoured between unstable modes and their conjugate side band mirror modes, even
when these are not present linearly. The reason is that the three-wave correlation time
is inversely proportional to the frequency mismatch, which is minimal for this coupling.
Although this approach is promising, some piece of physics not captured by this scheme
may still be vital. It remains to be seen if extrapolation candidates like this can prove
generally apt.

The second family of Dimits shift descriptions, to which the present work belongs,
instead focuses on the extreme quiescence very close to the linear instability threshold.
Then the linearised behaviour of small-amplitude drift waves, in the presence of an
essentially static zonal flow, is extrapolated ‘upwards’, i.e. towards the onset of turbulence.
Of course, this may only prove truly justifiable in the collisionless regime where the zonal
flow does not decay collisionally, but it has been observed that a significant collision rate
is required to significantly alter the Dimits shift (Weikl et al. 2017). Unfortunately, it is not
clear if the Dimits threshold coincides with a sharp linearised stability boundary. Should
this not be the case, investigations of this second kind may nevertheless be useful to those
of the first kind, clarifying properties of the Dimits regime.

As a result of these investigations, some success predicting the Dimits shift has been
found in individual cases. However, these cases all involve some kind of simplified
fluid model, predominantly of the Hasegawa–Mima–Wakatani kind (Hasegawa & Mima
1978; Hasegawa & Wakatani 1983). Frequently, although not always (see e.g. Ivanov
et al. 2020), the analysis underlying these emphasises the so-called tertiary instability
(St-Onge 2017; Zhu et al. 2020a; Zhu, Zhou & Dodin 2020b). The name of this instability
arises from its place in the primary–secondary–tertiary hierarchy (Rogers, Dorland &
Kotschenreuther 2000; Kim & Diamond 2002; Diamond et al. 2005). Here, the primary
instability is the initial linear drift wave instability, the secondary instability amplifies
drift wave inhomogeneities to then give rise to dominant zonal flows, which the tertiary
instability finally affects to let drift waves re-emerge. Frequently, the tertiary instability,
like the secondary instability, has been thought to essentially be a plasma nonlinear
Kelvin–Helmholtz-type (KH) instability (see e.g. Kim & Diamond 2002; Numata, Ball
& Dewar 2007; Kobayashi & Rogers 2012). Subsequent investigations have, however,
revealed this assumption to typically be false under experimentally relevant conditions.
Instead, the dominant tertiary instability is in fact a primary instability modified by zonal
shear, and so it is vital that linear terms driving the primary instability are included for its
treatment (Zhu et al. 2020a; Zhu & Dodin 2021).

Although eminently fruitful in elucidating key features, a fluid model cannot fully
encapsulate the dynamics of gyrokinetics. Thus, a Dimits shift prediction obtained from
these models must typically be modified and validated for the kinetic case, which may
not be straightforward. Owing to the inherent complexity there has been scant work on
this front, which the present article will attempt to begin rectifying. In previous work
(Hallenbert & Plunk 2021), building upon that of St-Onge (2017), a reduced-mode tertiary
analysis was employed to predict the Dimits shift of ion temperature-gradient (ITG)
turbulence in a collisionless gyrofluid limit. Here, we proceed to extend that model to
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the kinetic case, avoiding the question of complex geometries by focusing on the simplest
possible one: the Z-pinch.

Previous gyrokinetic simulations of Z-pinch entropy-mode-driven turbulence, while
investigating and highlighting various features of near-marginal turbulence, have already
established that the Z-pinch indeed exhibits a Dimits shift (Kobayashi, Rogers & Dorland
2010; Kobayashi & Gürcan 2015; Kobayashi et al. 2015). Here, we will again observe
a similar dynamics in nonlinear simulations using GENE (Jenko et al. 2000), but also
employ said code to perform a sophisticated kinetic tertiary instability analysis and arrive
at a Dimits shift prediction that matches the nonlinear findings well.

This article is outlined as follows. The necessary fundamental physics of the subsequent
analysis is provided in § 2, with the Z-pinch geometry in § 2.1, its collisionless gyrokinetics
in § 2.2 and some relevant instabilities in §§ 2.3–2.4. A description of nonlinear
simulations and some key results for this system then follow in § 3. Then, the tertiary
instability is presented in § 4 and its numerical implementation discussed in § 4.1, with
detailed analysis following in §§ 4.2–4.4. With this in hand, the reduced-mode Dimits
prediction is presented, adapted for the present system, and finally tested in §§ 5–5.2,
before a final brief summary and discussion in § 6.

2. Basic physics

The focus of the present article will be collisionless gyrokinetics in the Z-pinch
geometry. This is advantageous for an exploratory investigation since the dominant
electrostatic instability does not exhibit any parallel (along the magnetic field) component,
i.e. with parallel wave number k‖ = 0 (Simakov, Hastie & Catto 2002), which effectively
reduces the system from spatially three-dimensional to two-dimensional. Furthermore,
zonal flows are linearly conserved, simplifying and emphasising the tertiary picture of
zonal flows. This is because of the lack of geodesic acoustic modes (Winsor, Johnson
& Dawson 1968; Qiu, Chen & Zonga 2018) and their accompanying zonal/drift wave
predator–prey-type intermittent oscillations (Miki et al. 2007; Kobayashi & Gürcan 2015),
leaving the Rosenbluth–Hinton remnant fraction (Rosenbluth & Hinton 1998) identically
one. Thus, this system is an excellent test bed for clarifying how key findings of simplified
models (see e.g. Kolesnikov & Krommes 2005a; Numata et al. 2007; St-Onge 2017; Zhu
et al. 2020a) are affected by the presence of kinetic effects.

2.1. Z-pinch geometry
The set-up of the Z-pinch can be expressed in the usual cylindrical coordinates (r, θ, z)
with basis vectors (r̂, θ̂ , ẑ). A strong current runs in the longitudinal ẑ-direction. It gives
rise to a azimuthal magnetic field confining the plasma, assumed to have sufficiently low
plasma β so as not to not alter the longitudinally uniform magnetic vacuum field

B = B(r)θ̂ where
1

B(r)
dB(r)

dr
≈ −1

r
. (2.1)

Because the plasma is free to rapidly equilibrate along magnetic field lines, the
large-scale plasma density n(r) and ion/electron temperatures Ti(r) and Te(r) only depend
on the radial coordinate r. For simplicity, we will also assume these satisfy Ti = Te = T(r)
since a scaling argument reveals this to be the most unstable scenario (Ricci et al. 2006).
In the typical gyrokinetic fashion we are then interested in the small-scale fluctuations
deriving their energy from the large-scale background plasma gradients. To encapsulate
these it is advantageous to employ flux tube simulations (Candy, Waltz & Dorland 2004),
so we proceed to the local picture, expanding around the point r = R and setting B = B(R).
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Then it is advantageous to introduce the local gradient scale lengths

1
Ln

= − 1
n(r)

dn(r)
dr

∣∣∣∣
r=R

and
1

LT
= − 1

T(r)
dT(r)

dr

∣∣∣∣
r=R

, (2.2a,b)

which are assumed to be greater than the ion gyroradius, Ln ∼ Lr � ρi. We also adopt a
more suitable local flux tube coordinate system (x′, y′, z′)

x̂′ = r̂, ŷ′ = −ẑ, ẑ′ = θ̂ , (2.3a–c)

in which x′ ∈ (−Lx/2, Lx/2) is the radial coordinate, y′ ∈ (−Ly/2, Ly/2) the bilinear
‘poloidal’ coordinate and z′ the parallel coordinate, where Lx, Ly � R are the flux tube
box widths. We will, however, drop the prime notation for future convenience and simply
write (x, y, z). Note that, as mentioned previously, parallel variations vanish in the regime
of interest and so all quantities will only depend on the perpendicular coordinates x and y.

2.2. Gyrokinetics
The collisionless gyrokinetic equation (Catto 1978; Frieman 1982; Abel et al. 2013) for
the ion-scale dynamics can in Fourier space and dimensionless form here be expressed as
(see Plunk et al. 2014)(

∂

∂t
+ iωdsk

)
gsk + {Φs, gs}k = i(ω∗sk − ωdsk)ZsΦskf0s (2.4)

for the component with wave vector k. Here, the macroscopic and microscopic spatial
dimensions are normalised to R and the ion gyroradius ρi = mivTi/

√
2eB, respectively,

while the temporal dimension is normalised to the ion streaming time
√

2R/vTi. The
subscript s = i/e denotes the ion/electron species with charge Zse = ±e, mass ms and
macroscopic Maxwellian distribution f0s with mean thermal velocity vTs = √

2T/ms. The
corresponding gyrocentre distribution is given by gsk = J0skδfskR/ρi, where δfsk is the
fluctuating distribution. Here, the Bessel function of the first kind

J0sk = J0(
√

2ms/mik⊥vs⊥), (2.5)

where vs = v/vTs is the normalised velocity, encapsulates the Fourier space gyroaverage.
It also enters through Φsk = J0skϕk, where the dimensionless electrostatic potential ϕ

is obtained from the electric potential φ as ϕ = eφR/Tρi. Naturally, the normalised
velocity and wavenumber are both split into their parallel and perpendicular components
vs‖, k‖, vs⊥, k⊥ with respect to the magnetic field.

Next, in (2.4), the Fourier space Poisson bracket, representing the E × B-nonlinearity,
is given by

{a, b}k =
∑
k1,k2

(
k1yk2x − k1xk2y

)
ak1 bk2δk,k1+k2, (2.6)

where δk,k1+k2 is the Kronecker delta. Finally, ∇lnB = b · ∇b = x̂/R since magnetic β
is small, so the velocity-dependent diamagnetic and magnetic drift frequencies can be
expressed as

ω∗sk = − kyR√
2Ln

(
1 + η

(
v2

s − 3
2

))
and ωdsk = −

√
2ky

(
v2

s‖ + v2
s⊥
2

)
, (2.7a,b)

where η = Ln/LT and the local gradients Ln and LT are given by (2.2a,b).
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To complement the gyrokinetic equation and provide closure, the gyrocentre distribution
gsk is related to the potential ϕk via the quasineutrality condition

∑
s=i,e

Zs

∫
d3vsJ0skgsk =

∑
s=i,e

n (1 − Γ0sk) ϕk, (2.8)

where Γ0sk can be expressed in terms of the modified Bessel function I0 through

Γ0sk =
∫

d3vsJ2
0skf0s = I0

(
msk2

⊥
mi

)
exp

(
−msk2

⊥
mi

)
. (2.9)

As a final note, it is plain that the parallel streaming term has deliberately been neglected
in (2.4), constituting a significant reduction from spatial three dimensions to spatial two
dimensions. This is because the entropy mode, to be described in § 2.3, is uniform in
the parallel direction. Although ostensibly a significant simplification, in the regime of
interest the entropy mode is massively dominant. In nonlinear simulations where parallel
streaming is included slab-mode-driven parallel structures are thus observed to only attain
amplitudes of at most 0.5 % of their uniform counterparts, justifying this simplification.

2.3. The entropy mode
Before we delve further into the details of the tertiary instability we must be familiar
with how the primary linear instability is determined. We thus look for solutions with an
exp(λ

p
kt)-time dependence, neglecting the nonlinear mode coupling through the Poisson

bracket. The partial time derivative ∂t in the gyrokinetic equation (2.4) is symbolically
replaced by the primary complex frequency λp

k = γ
p
k − iωp

k, which is then multiplied by
J0sk. The resulting equation is then integrated over velocity space and inserted into the
quasineutrality condition (2.8), resulting in the primary dispersion relation

Dp(λ
p
k, k) =

∑
s=i,e

(
1
n

∫
d3vs

i(ω∗s − ωds)J2
0skf0s

λ
p
k + iωds

− (1 − Γ0sk)

)
= 0, (2.10)

where the k-dependence enters through ω∗s, ωds, J0sk and Γ0sk.
Based on the definition (2.7a,b) for ω∗s and ωds, it is plain that two independent

parameters, R/Ln and η, span the Z-pinch configuration space to uniquely determine λp
k.1

ω∗s and ωds, being proportional to ky, furthermore makes (2.10) break down for modes
with ky = 0 unless λp

k = 0. But these modes make up the zonal potential

ϕ̄ = 1
Ly

∫ Ly

0
ϕ dy, (2.11)

and the zonal E × B-flow ∂xϕ̄. Thus zonal flows are, as previously mentioned, indeed
linearly conserved.

Returning to (2.10), a key feature is the inclusion of kinetic electrons in lieu of a
simplified adiabatic response as is frequently employed for efficiency in gyrokinetic
toroidal ITG simulations (Dorland & Hammett 1993) where the Dimits shift has
conventionally been studied (Dimits et al. 2000). This is necessary because the
dominant electrostatic instability at small gradients, originally considered by Kadomtsev
(1960), is the so-called entropy mode. This mode, like the magnetohydrodynamic

1Had we not assumed Te/Ti = 1, this would have added an additional third parameter.
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(MHD) interchange mode (Rosenbluth & Longmire 1957), exchanges n and T to
modify the entropy S = ln(T5/2/p) while leaving the pressure p = nT unchanged. It is
the plasma analogue of a fluid thermal convective instability, enabled by oppositely
directed displacements of ions/electrons, and so cannot be encapsulated when the
electron dynamics is excluded (Ware 1962). Despite existing even in the absence of
a temperature gradient, i.e. η = 0, this mode is occasionally also referred to as the
drift-temperature-gradient mode (see e.g. Kesner 2000), since it shares the same drive
term as the ITG mode. Thus, it is unsurprising that its associated turbulence, also subject
to the same E × B-nonlinearity, can exhibit that shear stabilisation which characterises the
Dimits shift (Kobayashi & Rogers 2012).

As to the solution of (2.10), since it is a kinetic integral equation that cannot be
solved analytically, it must be treated numerically. Although one can derive a comparable
dispersion relation in a gyrofluid model, both Ricci et al. (2006) and Kobayashi & Rogers
(2012) note that it significantly overestimates the stability threshold. We must therefore
solve (2.10), but instead of explicitly doing so it is convenient to initialise a random
state and let it evolve according to the gyrokinetic equation (2.4). The largest growth rate
component will then eventually dominate, allowing for easy determination of γ p by fitting
an exponential to the system’s long-term evolution as outlined in § 4.

The result of such a calculation, using the Z-pinch implementation (Bañón Navarro,
Teaca & Jenko 2016) of GENE (Jenko et al. 2000), can be seen in figure 1, where (a)
shows the range of gyrokinetic instability compared with the gyrofluid result of Ricci
et al. (2006). It confirms that the critical gradients are indeed lower than the gyrofluid
value, and indicates that R/Ln is a ‘good’ instability parameter, i.e. one that uniformly
destabilises the plasma, unlike η or R/LT . In (b,c), on the other hand, the entropy-mode
growth rate is shown as a function of the wavenumber k for η = 0.25 when R/Ln = 1.4
and R/Ln = 1.8, which, as we will see in § 3.1, are within the Dimits regime and at the
Dimits threshold, respectively. The result is typical of the Dimits regime, with the mode
exhibiting a wide unstable range. However, the growth rate also exhibits a sharp peak
around some radial streamer, here k ≈ (0, 0.6), while other modes constitute a broader,
lower growth rate shoulder.

2.4. The interchange mode
So far we have been focusing on the gyrokinetic equation and the resulting entropy mode,
but the full picture is more complex. At larger gradients there are several MHD instabilities
present, the first of which to appear as gradients are increased is the ideal interchange
mode (Rosenbluth & Longmire 1957). Of course, we are technically concerned with the
completely collisionless case where an MHD treatment is not justified, but the collisionless
analogue of this instability can be found by employing the Chew–Goldberger–Low model
(Chew, Goldberger & Low 1956). It possesses a very similar dispersion relation with a
simple instability criterion given by

R
Ln

≥ 7
2(1 + η)

, (2.12)

when electrons/ions have the same temperature (Ricci et al. 2006).
For our purposes, the interchange mode with its characteristic k-independent growth

rate eliminates the possibility of self-generated small-scale and small-amplitude zonal
flow stabilisation at larger gradients. Simulations in this range are therefore ill-behaved,
exhibiting secular growth at large scales with non-convergent fluxes, and so we dare
not attempt to extract any information from these simulations. Still, Z-pinch MHD-like
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(b)

(a)

(c)

FIGURE 1. (a) Region of collisionless gyrofluid entropy-mode instability (blue) and
collisionless gyrokinetic entropy-mode instability (green). The latter is seen to become unstable
at significantly lower gradients. Shown in (b,c) is the η = 0.25 entropy-mode (primary) growth
rate γ pR/cs as a function of the radial and poloidal wavelengths kx, ky for (b) R/Ln = 1.4 and
(c) R/Ln = 1.8. On increasing R/Ln, the unstable range is seen to widen significantly, but its
maximum remains mostly stationary, peaked around ky = 0.6.

instabilities like this could, in principle, also be shear-flow stabilised. For example, it was
predicted that the m = 1 kink mode (Newcomb & Kaufman 1961) could be stabilised
(Shumlak & Hartman 1995), which was also experimentally confirmed (Shumlak et al.
2001, 2009). These flows are, however, of a different type, being large scale and externally
imposed instead of small scale and self-generated. As such, they affect the background
equilibrium, and so we will not be considering the range given by (2.12).

3. Nonlinear simulations

Before proceeding further to discuss the tertiary instability, it is worthwhile describing
how the nonlinear simulations are performed and show some typical results. As previously
mentioned, gyrokinetic simulations were performed using the GENE code (Jenko et al.
2000). Naturally, it is desirable to use a minimal numerical implementation for the
multitude of runs needed to categorise a broad parameter range as belonging to the
Dimits regime or not. Thus nonlinear simulations were performed with 32 points in
v‖-space and 12 points in μ-space. These values were chosen to yield γ p-values within
a margin of 0.01vth/R of the converged value close above the linear instability threshold
and 0.0001vth/R around the Dimits threshold. As to the Fourier space decomposition,
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128 kx-modes and 16 ky-modes with smallest wavenumber kx = ky = 0.1 were found to be
suitably minimal without compromising key results.

Although collisions were absent in the simulations, explicit numerical dissipation had to
be included for stability. To this end, dynamically tuned gyrokinetic large eddy simulation
(gyroLES) hyperviscous dissipation νxk4

x + νyk4
y (Morel et al. 2011, 2012; Bañón Navarro

et al. 2014) was employed to reduce the excitation of small-scale modes. A strength of
this approach was its ability to capture of energy flows to smaller, unresolved scales in
periods of turbulent flare up, while flexibly reducing numerical dissipation in the marginal
Dimits regimes. Typical values for quiescent, zonally dominated states were νx ∼ 10−4 and
νy ∼ 10−2, both of which flared up to ∼0.05 in periods of significant turbulence. Although
schemes like this have already been noted as capable of allowing, and being consistent
with, a Dimits shift (Morel et al. 2011), dissipation was also artificially made not to affect
zonal modes. This eliminated the kind of predator–prey-type dynamics (see e.g. Kobayashi
et al. 2015) that would complicate the tertiary picture.

Some example simulations of the kind just outlined can be observed in figure 2, which
depicts the box-averaged particle flux2

Γ = 1
LxLy

∫ Lx

0

∫ Ly

0
dx dyx̂ · vE

∫
d3vsδfs, (3.1)

where vE = ẑ × ∇ϕ is the E × B-drift, and the zonal flow ∂xϕ̄ over time. Three different
configurations are shown: the first below the Dimits threshold, the second just above
it and the last far above it. The dynamics is observed to vary significantly in a way
consistent with previous findings (see e.g. Kobayashi & Gürcan 2015). When R/Ln is
small, a transient period of transport gives rise to an essentially stable zonal flow, which
effectively quenches drift waves and their associated transport. On the other hand, when
R/Ln is large the zonal flow continually evolves and fails to quench turbulent transport. At
intermediary values, the two types of dynamics coexist, with quasi-stationary zonal flows
eventually succumbing in turbulent bursts before being re-established in a continually
repeating pattern. Dubbed zonal flow cycling, this pattern was previously observed for
the gyrofluid limit described in Hallenbert & Plunk (2021), differing significantly only in
that the cycling here is much slower.

3.1. The Dimits shift
Turbulent bursts like those of § 3 have continually plagued investigations of the Dimits
shift by rendering time-resolved statistics of transport frustratingly imprecise and possibly
misleading (Pueschel & Jenko 2010). In essence, statistics averaged over different, similar
sections of a burst cycle yield very different results. This can make it particularly
difficult to determine whether a given configuration belongs to the Dimits regime or not
(for example, compare St-Onge 2017; Zhu et al. 2020b), which unfortunately also holds
true here. Although variance will remain high, the only remedy for a more unambiguous
determination of the Dimits shift is to average over much longer time intervals that
encapsulate multiple complete burst cycles. The particle flux Γ thus obtained can be
seen in figure 3 when η = 0.25. Γ is seen to increase exponentially with increasing R/Ln.
However, a discontinuity from a negligible level of ∼10−2ΓGB to the gyro-Bohm value
∼ΓGB is clear at R/Ln ≈ 1.8, which we interpret to correspond to the Dimits threshold
R/LD.

2Up to a factor, the heat flux generally follows Γ quite closely, so we will only be focusing on this quantity.
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(b)

(a)

(c)

FIGURE 2. Time-average particle transport rate Γ , normalised to the gyro-Bohm level ΓGB,
and the zonal flow ∂xϕ̄ over time for η = 0.25 and (a) R/Ln = 1.6, (b) R/Ln = 2.0 and (c)
R/Ln = 2.5. These values correspond to below, just above and well above the Dimits threshold.
In case (a) the potential is virtually unchanged after it initially forms and the transport is very
low, while in case (c) the potential is continuously modified and the transport is high. In the
intermediate case (b) the system alternates between these two states over extended periods,
resulting in bursty transport, whose mean magnitude is set by the non-quasistationary levels,
and zonal profile cycling.

To provide a quantitative measure of turbulent bursts we introduce

Θκ = lim
t→∞

1
t

∫ t

ti

dt′H (Γ − κΓ (ti)) , (3.2)

where H is the Heaviside function and ti is the time when the initial, linear growth phase
ceases, i.e. Γ (ti) is taken to be a representative level of turbulent transport. Θκ , measuring
the fraction of time the transport level exceeds κΓ (ti), is also plotted in figure 3 when
κ = 0.1. It is seen that this fraction begins to increase from 0 at R/LD, gradually increasing
until full turbulence (Θ0.1 ∼ 1) develops well above. The picture is the same for 0.01 �
κ � 0.3, the choice of which only affects how rapidly Θκ increases above R/LD. Although
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FIGURE 3. In black: particle flux Γ as a function of the density gradient R/Ln for η = 0.25. In
blue: the fraction Θ0.1 of the simulation time after the initial transport peak where the transport
level is higher than 10 % of the initial transport peak, i.e. the fraction of time spent outside of
quiescence. The transport is well described by two exponential fits (dashed red) of slopes 4 ± 0.3
and 4.9 ± 0.4, discontinuously jumping between the two at R/Ln ∼ 1.8. This corresponds to that
same point at which Θ0.1 becomes greater than 0 and will be identified as the Dimits threshold.

initially rare, the emergence of bursts causing appreciable transport of up to ∼0.3Γ (ti) thus
characterises the Dimits threshold. This clear signal was therefore used to unambiguously
determine R/LD.

Still analysing figure 3, the observed exponential growth of Γ with respect to R/Ln
is slightly different above and below R/LD, ∂(log Γ/ΓGB)/∂(R/Ln) = 4 ± 0.3 and 4.9 ±
0.4, respectively. This is because turbulent bursts with κ � 0.01 dominate Γ above R/LD.
Below this point, as we will describe in § 4, Γ is driven by drift modes that couple together
quasilinearly into marginally (un)stable tertiary modes. These can be rendered stable or
unstable by even a small perturbation, like the dynamically evolving νx, νy. That this is
enough to sustain small transport levels has been confirmed by running simulations where
νx, νy were kept constant at comparable values to those obtained through the gyroLES
procedure. Then Γ = 0 was eventually obtained for R/Ln � b, where the value 1.2 � b �
1.6 depended on the choice of νx, νy.

One might be worried that νx, νy similarly affects Γ at and above the Dimits threshold
R/LD. Driven by turbulent bursts, it was, however, found to only be significantly affected
when νx, νy were increased much further. This Γ -insensitivity at R/LD echoes collisional
findings (Weikl et al. 2017), but there is still cause for alarm since bursts resemble
the continuous turbulence at larger R/Ln-values. Unfortunately, this turbulence is prone
to an unbalanced inverse energy cascade known to plague two-dimensional turbulence
(Kraichnan 1967; Qian 1986; Terry 2004). The resulting pile up, as energy tries to
transfer towards unresolved large scales, means that turbulent transport levels cannot be
trusted. Thankfully, the collisionless Dimits regime is characterised by marginally unstable
‘quasilinearly’ evolving states, which are resolved. That this includes R/LD, i.e. the point
where these states fail to remain uniformly quiescent, is confirmed in figure 4. It clearly
demonstrates that the discontinuous Γ -increase at R/Ln remains persistent, and consistent,
as the resolution is increased.
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FIGURE 4. Nonlinear particle flux as a function of the density gradient around the observed
Dimits threshold R/LD ∼ 1.8 of figure 3 for different numerical implementations: standard runs
as used in this article (black squares), runs with twice as large box length (blue triangles)
and runs with twice the k-space resolution (red circles) (the latter two are visually offset for
clarity). Here, the uncertainty is calculated by splitting the full runs into 10 smaller pieces.
Since the observed Dimits threshold is seen to be consistent across configurations, the standard
configuration employed is seen to be sufficient to determine the Dimits threshold.

3.2. Zonal shear
A common quantitative measure of the stabilising effect of zonal flows for turbulence
suppression is the box-averaged zonal shear magnitude 〈|∂2

x ϕ̄|2〉1/2 (Waltz et al. 1994;
Diamond et al. 2005). For example, it has been noted that when turbulence is strongly
suppressed the quench rule 〈|∂2

x ϕ̄|2〉1/2 ∼ γ p holds (Waltz, Dewar & Garbet 1998; Kinsey,
Waltz & Candy 2005). However, as can be seen in figure 5, the nonlinear shear significantly
exceeds γ p, attaining a value of ∼1 in the Dimits regime. It is possible that part of this
discrepancy can be traced to zonal dissipation, which would push the flow towards quench
rule levels, where turbulence, as found by Ivanov et al. (2020), acts to reinforce the zonal
flow in the Dimits regime. Indeed, Kobayashi & Rogers (2012) also observed that zonal
shear levels decreased with increasing collisionality in the Z-pinch Dimits regime until
quench rule levels heralded continuous turbulence.

Another heuristic estimate involving zonal shear gives rise to simple scalings of the kind
Γ ∝ 1 − ε〈|∂2

x ϕ̄|2〉1/2/γ p with some ε values that are sometimes employed to model zonal
shear quenching (Waltz et al. 1998; Kinsey et al. 2005). Such estimates imply that only
when 〈|∂2

x ϕ̄|2〉1/2 � γ p will zonal flows have a significant effect on turbulent saturation
(Xanthopoulos et al. 2007; Pueschel & Jenko 2010). As is clear in figure 5, this presently
holds, but 〈|∂2

x ϕ̄|2〉1/2 continues to increase faster than γ p above the Dimits threshold.
This behaviour is inconsistent with a a scaling of Γ ∝ 1 − ε〈|∂2

x ϕ̄|2〉1/2/γ p, which would
predict that increasing R/Ln will eventually eliminate transport. Even accounting, in the
same way as Hahm et al. (1999), for the fact that the effective shearing decorrelation rate
decreases when the zonal flow varies rapidly in time does not change this observation.

Now an increase of 〈|∂2
x ϕ̄|2〉1/2 as the driving gradients are increased like the one here

has also been observed in ITG simulations by Terry et al. (2021). This was, however,
noted as being inconsistent with the tertiary picture of the Dimits shift, seemingly under
the assumption that greater zonal shear should be more stabilising. But that this need not
be the case has already been observed (see e.g. Kinsey et al. 2005; Kobayashi & Rogers
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FIGURE 5. Time- and box-averaged nonlinear zonal shear 〈|∂2
x ϕ̄|2〉1/2 after the transient period

as a function of the density gradient R/Ln for η = 0.25 (blue). Also plotted is the entropy-mode
growth rate γ p (green), which is significantly lower. The zonal shear range where a sinusoidal
zonal profile can be stable (approximately obtained by using a strongly stabilising kx = 0.4-mode
as discussed in § 4) is furthermore shown in red. It is seen that the nonlinear shear rate remains
relatively constant throughout the Dimits regime, at a level around the lower boundary of
sinusoidal profile stability, before increasing thereafter.

2012). To presently reaffirm this, figure 5 also depicts the approximate range of zonal shear
amplitudes where a sinusoidal profile can be completely stable (determined as outlined
in §§ 4 and 5). A clear upper boundary where stable profiles cease to exist is observed.
Consistent with the tertiary picture, this boundary intersects with the lower boundary at
approximately the Dimits threshold, leaving no stable profiles at all.

3.3. Localisation
A persistent feature of marginal drift waves in the presence of a zonal flow is their
localisation to regions of zero zonal shear, i.e. where ∂2

x ϕ̄ = 0. This is in accordance
with the intuitive picture that the zonal flow is unable to decorrelate radial streamers at
such points, effectively only transporting them in the poloidal y-direction (Ivanov et al.
2020). However, this necessary condition is not sufficient for drift waves to congregate,
since they respond asymmetrically to minima ∂3

x ϕ̄ > 0 and maxima ∂3
x ϕ̄ < 0; significant

localisation is only observed at minima (McMillan et al. 2011; Zhu et al. 2020a). This
picture is presently reaffirmed in figure 6, showing that the zonal-averaged drift wave
density 〈ñ2〉1/2 is clustered at precisely these points. We note that that there are only a
few of them since the zonal flows form staircase states (Dif-Pradalier et al. 2010; Peeters
et al. 2016), i.e. broader rectangular shapes of nearly constant shear with sharp transitions
from positive to negative values. These clearly become more developed and broad as R/Ln
approaches the Dimits threshold from below. We also note for later that the ion/electron
temperature moments predominantly self-organise in such a way to predominantly have
opposite sign, something we will clarify further in §§ 4.3–4.4.

It was recently conjectured by Zhang & Krasheninnikov (2020) that localising
well-defined staircases like these may provide effective transport barriers of drift waves
and drifting coherent structures like ferdinons (Ivanov et al. 2020), reflecting and trapping
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(b)(a) (c)

FIGURE 6. Mean drift wave density perturbation ñ as a function of the radial coordinate x
in the presence of the quasistationary zonal flow ∂xϕ̄ and zonal fluctuating temperature T̄ for
η = 0.25 and (a) R/Ln = 1.2, (b) R/Ln = 1.5 and (c) R/Ln = 1.8. As can be seen, the ion
temperature (blue) and the electron temperature (red, dotted) tend to display opposite signs over
a majority of the region. Meanwhile, it can be seen that as the gradient is increased towards the
Dimits threshold the stable zonal flow by necessity increasingly resembles a staircase state with
broadening ‘steps’ of nearly constant zonal shear ∂2

x ϕ̄. Meanwhile, the drift waves increasingly
localise around zonal flow minima, i.e. where the zonal shear ∂2

x ϕ̄ vanishes and ∂3
x ϕ̄ > 0.

them in the vicinity of zonal extrema. Although coherent structures are not observed,
figure 7 shows that, during quiescent periods of zonal profile cycling, this seems to
be in effect. However, it can also be seen that when transport flares up drift waves
encompass the full volume. Meanwhile, tertiary streamer modes remain localised, only
marginally broadening. This raises doubts about the present validity of the further claim
of Zhang & Krasheninnikov (2020) that localisation may be more important than the
zonal shearing-reduced streamer growth rate for transport quenching. Furthermore, closer
to marginal stability turbulence essentially dies away, leaving only very low amplitude
tertiary streamers like those depicted in figure 7 with minimal self-interactions. In § 4,
we will see that this must be explained by the fact that their drive then is insufficient to
overcome zonal shear.

4. The tertiary instability

Having described how nonlinear simulations were performed and some typical results,
we now consider a static, high-amplitude zonal profile ϕ̄ and proceed to extend the analysis
of § 2.3 to capture its tertiary instability. Naturally, we can no longer neglect the nonlinear
term, but (2.6) makes it clear that the E × B nonlinearity {Φs, gs}k only couples modes
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(b)(a)

FIGURE 7. A snapshot from a simulation with η = 0.25 and R/Ln = 1.8 during a (a) quiescent
and a (b) turbulent period. Plotted is the drift wave potential ϕ̃ together with ∂2

x ϕ̄ (solid black)
and ∂3

x ϕ̄ (dashed red) of the zonal potential ϕ̄, with the corresponding most unstable tertiary drift
wave modes in the lower-most panel. For the zonal profile of (a) the drift waves are localised
around the same points as the tertiary modes that feed them while for that of (b) they fill the
space more uniformly while the tertiary modes remain localised.

together if they satisfy the triplet condition

k = k′ + k′′. (4.1)

Thus, zonal modes with k = (kx, 0) only couple modes sharing the same poloidal
wavenumber, and for small-amplitude drift waves the nonlinear self-interaction between
modes of different ky can be neglected. Because of this, the tertiary instability is
characterised by a single poloidal wave vector p = (0, p). The corresponding discrete
spectral decomposition into wave vectors

p, p ± q, p ± 2q · · · , (4.2)

where q = (q, 0) is purely radial, then gives rise to a combined tertiary mode

eγ t t+ipy
∑
s,n

asneilqxgsp+nq, (4.3)

where l runs over the integers and asl has to be determined by insertion into the gyrokinetic
equation.
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Galerkin truncating (4.2) after some qG = jq we have a finite set of modes whose radial
wavenumbers can be combined into a (2j + 1)-dimensional vector

Q =

⎡
⎢⎢⎢⎣

−qG
−qG + q

· · ·
qG − q

qG

⎤
⎥⎥⎥⎦ , (4.4)

whose elements we denote by Ql, where −j ≤ l ≤ j. Then the zonal and non-zonal Fourier
components of other variables can also be combined into corresponding vectors

ḡs =

⎡
⎢⎢⎢⎣

gs−qG

gs−qG+q
· · ·

gsqG−q
gsqG

⎤
⎥⎥⎥⎦ , g̃s =

⎡
⎢⎢⎢⎣

gsp−qG

gsp−qG+q
· · ·

gsp+qG−q
gsp+qG

⎤
⎥⎥⎥⎦ ,

ϕ̄ =

⎡
⎢⎢⎢⎣

ϕ−qG

ϕ−qG+q
· · ·

ϕqG−q
ϕqG

⎤
⎥⎥⎥⎦ , ϕ̃ =

⎡
⎢⎢⎢⎣

ϕp−qG

ϕp−qG+q
· · ·

ϕp+qG−q
ϕp+qG

⎤
⎥⎥⎥⎦ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

with elements g̃sl, ḡsl, ϕ̃sl and ϕ̄sl, for the potential and gyrocentre distributions. Letting
J0s, and Γ 0s denote the corresponding diagonal matrices, i.e. with lth entry J0sll =
J0(

√
2( p2 + Q2

l )ms/mivs⊥) and Γ0sll = I0(( p2 + Q2
l )ms/mi) exp(−( p2 + Q2

l )ms/mi), respectively,
we can thus write the set of coupled equations given by (2.4) and (2.8) for these modes as

Asg̃s = BsJ0sϕ̃, (4.6)

and ∑
s=i,e

Zs

∫
d3vsJ0sg̃s =

∑
s=i,e

n (I − Γ 0s) ϕ̃, (4.7)

where I is the identity matrix, the matrices As and Bs are given by

As = (λ+ iωdsp)I + C1s, Bs = iZsf0s(ω∗sp − ωdsp)I + C2s, (4.8a,b)

while the Poisson bracket is encapsulated by the matrices C1s and C2s with elements

C1smn = −p
j∑

l=−j

QlJ0sllϕ̄lδm(l+n), C2smn = −p
j∑

l=−j

Qlḡslδm(l+n). (4.9a,b)

The procedure is now analogous to that of the primary instability. Thus we multiply
(4.6) by A−1 and substitute the result into (4.7) to find that, in order for the solution to
possess non-zero ϕ̃, the tertiary dispersion relation

det

[∑
s=i,e

(
Zs

n

∫
d3vsJ0sA

−1
s BsJ0s − (I − Γ 0s)

)]
= 0 (4.10)

must be satisfied. The exact solution can then be recovered in the continuum limit where
qG → ∞, although we will only be concerned with the Galerkin-truncated system.
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The similarity of (2.10) and (4.10) as presented here is deliberate: we consider the
tertiary instability to be a linear confluence of primary modes within a poloidal band,
coupled together by the zonal flow. Although this allows the description of a KH-like
mode, as the tertiary mode has frequently been thought to be (see e.g. Kolesnikov &
Krommes 2005b; Numata et al. 2007), it also allows modes of an entirely different kind.
This is the modified primary instability, which differs in that the energy feeding the
instability is supplied by the background gradients instead of the zonal flow, a feature
elucidated and emphasised by Zhu et al. (2020a).

4.1. Tertiary instability simulations
When (4.10) is expanded, the result involves intractable products of integrals like (2.10)
with ever more complex integrands. Since (2.10) must already be solved numerically, the
same holds true here, but it becomes exceedingly cumbersome to do so directly as qG
is increased. To remedy this, the alternate procedure of instead evolving the gyrokinetic
equation directly as mentioned in § 2.3 is instead employed.

A zonal profile, i.e. the set of 2(2j + 1) zonal distributions ḡsk with potential modes
ϕ̄k, is either extracted from nonlinear simulations or initialised from scratch into some
desired configuration. Then a single poloidal wavenumber p is chosen and a new nonlinear
simulation, with a Fourier decomposition of 2j + 1 kx-modes and 2 ky-modes (ky = 0 and
ky = p), is initialised with this zonal profile and small-amplitude drift waves. The system
is then allowed to evolve nonlinearly, but with the zonal profile frozen in place. Since
drift wave self-interactions are not present by the triplet condition (4.1), the linear tertiary
growth rate eventually converges. For this to be stable, some small νx must, however,
be included. Thankfully, the specific value is generally unimportant for present purposes
unless specific comparison with nonlinear observations must be made.

To begin investigating the present tertiary instability using the aforementioned scheme,
in figure 8 the tertiary growth rate γ t of different zonal profiles, extracted from nonlinear
simulations, are compared with the primary growth rate γ p. The profiles are obtained just
above the η = 0.25 Dimits threshold R/LD ≈ 1.8, where turbulent bursts first manifest.
It is seen that γ t is much greater for zonal profiles of turbulent periods compared with
their marginally unstable quasistationary counterparts with γ t ∼ 0.01γ p. However, in both
cases, the growth rate is seen to peak around the same value p ≈ 0.6 where γ p attains its
maximum.

Having observed that quasistationary zonal flows are very nearly tertiary stable, the
question becomes how robust this stability is. For the fluid model under consideration in
the previous work of Hallenbert & Plunk (2021) this concept was key. There, frequent
turbulent bursts sustained drift waves at sufficient amplitude to affect stable zonal profiles,
markedly altering them over time. Therefore, to prevent subsequent turbulent bursts, the
zonal profile had to not only be individually tertiary stable, but also belong to a family
of similar profiles that also were stable. Here, the necessity of such stringent stability is
smaller. As observed in figure 2, the Z-pinch exhibits very little drift wave activity over
extended periods in the Dimits regime, during which the zonal flow remains very nearly
unchanged. As such, individual profile stability is therefore re-emphasised.

To verify that individual profile stability is sufficient, figure 9 depicts γ t of different
zonal flow profiles when a rescaling factor a is used to (artificially) adjust the zonal flow
amplitude. Here, γ t is observed to increase relatively swiftly as a is moved away from 1 for
quasistationary profiles. On the other hand, this process may stabilise the turbulent profiles
somewhat, although not to comparable levels of the quasistationary profiles. We interpret
this as meaning that quasistationary flows, in being established when turbulent bursts end,
are delicately pushed towards configurations of greater tertiary stability. Note again that
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FIGURE 8. Tertiary growth rates of different, randomly selected zonal profiles, obtained from
nonlinear simulations with η = 0.25 and R/Ln = 1.9, as a function of the poloidal wavenumber
p. Blue lines correspond to zonal profiles taken during turbulent periods, while red (inlaid) lines
correspond to profiles taken during quiescent periods. Additionally, the primary growth rate γ p

is plotted in green for comparison. As can be seen, the quiescent profiles are only unstable for a
few p-values clustered around ∼0.6, the most primary unstable point, with growth rates severely
reduced to approximately 1 % of the primary growth rates. In comparison, the turbulent profiles
are much more unstable to a broader range of p-values.

increasing the zonal shear, i.e. increasing a, does not necessarily imply that γ t decreases.
This fact was already noted by Kobayashi & Rogers (2012), who, however, misattributed
this fact to KH-type zonal flow breakup instead of their reduced efficacy in stabilising drift
waves, something we will expand upon in § 5.1.

4.2. Tertiary instability of a single zonal mode
To gain some basic understanding of the tertiary instability, we now turn to the minimal
case of a sinusoidal zonal profile, i.e. a single zonal mode ϕ̄q which we take to be real. As is
apparent from the presence of ḡsq in the definition (4.9a,b) of C2, the zonal flow ∂xϕ̄ alone
is insufficient to determine γ t; sideband coupling is modified by ḡsq. One reason for this is
because ḡsq modifies the background gradients, but, in principle, any kinetic modification
of ḡsq also affects the coupling. This fact, necessarily not included in previous studies of
fluid systems like Zhu et al. (2020a), Ivanov et al. (2020) or Hallenbert & Plunk (2021),
has perhaps not been adequately appreciated. To investigate this effect in a controlled way,
we will in the next sections vary the zonal distribution ḡsq, holding ϕ̄q fixed by employing
a multiplicative factor.

Before exploring this in detail, we can immediately deduce one way in which ḡsq does
not affect γ t. In Appendix A we show that the tertiary growth rate of a single zonal
mode ϕ̄q is unchanged under the transformation ḡsq → ḡ∗

sqϕ̄
2
q/|ϕ̄q|2, which also leaves ϕ̄q

unchanged. Expressing
∫

d3vsJ0sqḡsq as �seiϑs ϕ̄q, this transformation acts to transform the
phase like ϑs → −ϑs. However, quasineutrality (2.8) makes it clear that the distribution
parts ḡsout that are π/2 out of phase with ϕ̄q are opposite, i.e. Im (�ieiϑi) = − Im (�eeiϑe).
One species distribution therefore trails the potential while the other leads it, and we
conclude that γ t does not depend upon which is which. This result can be interpreted in
light of the tertiary localisation highlighted in § 3.3; ḡsout satisfies ∂xḡsout = 0 at the points
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FIGURE 9. Tertiary growth rate γ t, normalised to the primary growth rate γ p, of different
zonal flow profiles obtained from nonlinear simulations with η = 0.25 and R/Ln = 2.0 as their
amplitude is multiplied by a factor a. Quiescent zonal profiles (red triangles) are seen to typically
be of very nearly that amplitude which is most stabilising, i.e. when a = 1. The same is not true
for profiles from turbulent periods (blue squares), which, beyond generally being less stabilising,
may be made more stabilising if their amplitude is altered.

∂2
x ϕ̄ = 0 that are tertiary unstable, and so are not able to affect the tertiary instability by

modifying the background gradients there.
The preceding discussion did not depend upon the Galerkin truncation. However, before

we further investigate the role of ḡsq in § 4.3 for γ t, it is prudent to investigate its
effect. Thus figure 10 depicts how γ t, obtained as outlined in § 4.1, changes as qG is
varied for some example distributions ḡsq with ϕ̄q = 3.5 (a typical nonlinear value) and
ϕ̄q = 35. Also plotted for comparison is the primary sideband growth rate γ

p
p+qG

. For small
to ‘normal’ zonal amplitudes γ t > γ

p
p+qG

seems to uniformly hold in accordance with
the view that the tertiary instability mixes primary modes (Hallenbert & Plunk 2021).
When significantly increased, γ t < γ

p
p+qG

is occasionally found to hold when qG is small.
Presumably this is explained by immediate subdominant mode coupling (see e.g. Terry,
Baver & Gupta 2006; Hatch et al. 2011), the matching of which becomes less resonant
when more modes are included, i.e. when qG is increased.

Continuing, we note that the point qG at which γ t converges effectively constitutes a
measure of how many sidebands are coupled together into a combined tertiary mode.
Intuitively, it increases with increasing ϕ̄q, since in the opposite weak coupling limit ϕ̄q →
0 different wavenumbers decouple. For the typical zonal amplitude of figure 10(a) this
point occurs at kx ≈ 12q = 4.8 < 6.4, which as stated in § 3 is the smallest scale included
in our simulations, offering some further evidence that our numerical implementation was
sufficient to capture the dynamics of the Dimits regime.

4.3. Role of ion/electron response phase
The question now is how the choice of ḡsq, as uncovered in § 4.2, affects γ t. As a first
facet, we choose to investigate the relative phase of the ion/electron response. For this,
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(b)(a)

FIGURE 10. Single zonal mode tertiary growth rate γ t, normalised γ p, of some example
distributions when qG is varied. Here, η = 0.25, R/Ln = 1.8, q = 0.4 and p = 0.6, while the
distributions are of the form (4.11a,b) with (a) ϕ̄q = 3.5, α1 + α2i = (0.5, 2 + i, 0, −1), and (b)
ϕ̄q = 35, α1 + α2i = (1 + i, 0.4 + i, 0.1 + 0.25i, −1 + i). Also plotted in green is the primary
growth rate γ

p
p+qG

of the sideband mode with kx = qG. The configurations are chosen to give a
wide spread of converged γ t, which occurs around qG/q ∼ 10 and qG/q ∼ 30 for ϕ̄q = 3.5 and
ϕ̄q = 35, respectively.

both distributions are taken to be simple representative Maxwellians, i.e.

geq = M(α1 + α2i)
(πα3)3/2

e−v2
e /α3 and giq = M

(πα4)3/2
e−v2

i /α4, (4.11a,b)

where M is a multiplicative factor that ensures ϕ̄q attains its desired value. It can be
calculated using quasineutrality (2.8) as

M = ϕ̄q(2 − Γ0iq − Γ0eq)∫
d3viJ0iqgiq/M − ∫

d3veJ0eqgeq/M
. (4.12)

Here
ngeq

ngiq
=

∫
d3vegeq∫
d3vigiq

= α1 + α2i (4.13)

is the cross-species phase whose influence we want to investigate. On the other hand,
α3 = α4 = 0.2 are ‘effective temperatures’, the choice of which will be explained in § 5.

Figure 11 shows how γ t, of the poloidal band p = 0.6 at the Dimits threshold η = 0.25
and R/Ln = 1.8, changes as α1/α2 are varied. Four different cases, corresponding to ϕq =
0.35, 3.5, 35 and 350, are shown, each exhibiting a radically different appearance (note the
usage of the result of Appendix A for a reduction to the half-plane). Two features, however,
persist. The first is an extreme instability γ t � γ p, centred at the point (α1, α2) = (1, 0)
where the ion/electron responses are completely in phase that spreads with increasing ϕ̄q.
The second feature is the stabilisation γ t < γ p of opposing responses with α1 < 0 so long
as α2 is not too large.
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(b)(a)

(d)(c)

FIGURE 11. Tertiary growth rate γ t for η = 0.25, R/Ln = 1.8 and p = 0.6 in the presence of
a sinusoidal zonal profile of q = 0.4 and amplitude (a) ϕ̄q = 0.35, (b) ϕ̄q = 3.5, (c) ϕ̄q = 35
and (d) ϕ̄q = 350, as a function of the relative phase α1 + α2i = ∫

d3vegeq/
∫

d3vigiq of the
zonal ion/electron responses of (4.11a,b). Although the stabilisation changes significantly as
the zonal amplitude is varied, two noteworthy features persist: maximum instability occurs
for (α1, α2) = (1, 0) and the stabilising region extends out from (α1, α2) = (−1, 0), which is
consistently (although not necessarily most) stabilising. Note that γ t-values larger than 2γ p are
not shown and, as outlined in § 4.2, γ t is unchanged when α2 → −α2.

Based on the result above, quiescent zonal profiles should be expected to exhibit similar
opposing ion/electron responses. Indeed, the opposite sign of the ion and electron zonal
temperature profiles of figure 6 already hinted at this. To firmly establish that this is the
case, multiple simulations scattered closely around the point η = 0.25 and R/Ln = 1.7
were conducted to extract long-term stable zonal distributions. The result can be seen
in figure 12, where the distribution of (a) the zonal shear contribution 2q2|ϕ̄q| and (b)
arg(ngeq/ngeq) for the first 15 zonal modes are plotted. It is striking that q = 0.3 and q =
0.4-modes (whose shear contribution typically is the largest) indeed develop the expected
phase shift arg(ngeq/ngeq) ≈ π while the unstable range arg(ngeq/ngeq) ≈ 0 constitutes an
‘avoidance zone’ they never attain. Confusingly, other modes are seen to exhibit similar
‘avoidance zones’ centred elsewhere or appear nearly uniformly distributed.

The picture is clarified when we selectively filter out Fourier components to produce
some high- and low-pass-filtered zonal fields ϕ̄>qcutoff and ϕ̄<qcutoff , the tertiary growth
rate γ t of which are shown in figure 12(c). Here, ϕ̄>qcutoff is seen to exhibit γ t

which rapidly increases from ∼0 to above γ p as qcutoff increases to exclude the q =
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(b)

(a)

(c)

FIGURE 12. (a) Box-averaged zonal shear mode contribution 2q2|ϕ̄q| of different quiescent
zonal profiles obtained from nonlinear simulations with (η, R/Ln) = (0.25, 1.7), with three
coloured red, green and blue in particular. (b) The argument of the corresponding relative
phase ngeq/ngiq. (c) The corresponding tertiary growth rates for p = 0.6 of the modified profiles
ϕ̄<qcutoff and ϕ̄>qcutoff that are obtained via the removal of modes not satisfying q < qcutoff
(triangles) and q > qcutoff (squares). Modes with q = 0.3 and q = 0.4 typically develop a phase
shift of ∼π and stabilise γ t inordinately compared with their shearing. This can be seen by how
γ t greatly increases around qcutoff ∼ 0.3 − −0.4 when large-scale modes are excluded. Similarly,
when small-scale modes are excluded, γ t instead decreases there.

0.3 and q = 0.4-modes. A similar trend is observed for ϕ̄<qcutoff when qcutoff traverses
in the opposite direction, although here, γ t also displays large fluctuations in the
range of 0.5γ p − −1.2γ p. Combined, it therefore seems that the phase-shifted modes
contribute much stronger to the total stabilisation than other modes, based on what
one would suspect solely upon their shear. For the purposes of stabilisation, these
modes are the most important component and can be thought of as a foundation
to which modes at smaller-scale modes can contribute, either constructively or
destructively.

4.4. Velocity space dependence
We noted in § 4.2 that γ t is affected by velocity space structures. Therefore, we now want
some understanding of how γ t depends upon∫

d3vsv
2n
s ḡsq, n ∈ {1, 2, 3, . . .}, (4.14)

for some representative ḡsq-distributions. The reason why, as we noted in § 4.1, is that the
relevant velocity moments for the tertiary theory entering (4.10) have the form∫

d3vs
v2n

s ḡsq

Ls
, n ∈ {1, 2, 3, . . .}, (4.15)
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where the resonant denominator Ls originates from A−1
s , see (4.8a,b)–(4.10). In general, Ls

has a complex dependency on both λt and v2
s , which is why we instead focus on the simpler

moments (4.14) to obtain a rough assessment of how velocity space structures affect γ t.
As a representative case we initially lift the most stable distributions from figure 11(b,c),

having the form (4.11a,b), and look for even more stable configurations by adding
an additional part ḡT

sq = (as1 + as2i)p1(v
2
s⊥) exp(−v2

s ), where p1 is the second degree
polynomial satisfying∫

d3vsv
2
s⊥p1(v

2
s⊥)e−v2

s = 1,

∫
d3vsp1(v

2
s⊥)e−v2

s =
∫

d3vsv
4
s⊥p1(v

2
s⊥)e−v2

s = 0,

(4.16a,b)

or ḡχ
sq = (as3 + as4i)p2(v

2
s⊥) exp(−v2

s ), where p2 is the second degree polynomial
satisfying∫

d3vsv
4
s⊥p2(v

2
s⊥)e−v2

s = 1,

∫
d3vsp2(v

2
s⊥)e−v2

s =
∫

d3vsv
2
s⊥p2(v

2
s⊥)e−v2

s = 0.

(4.17a,b)

These additions should be thought of as a ‘pure temperature’ perturbation and a ‘purely
higher moment’ perturbation respectively, whose stabilisation effect we are interested in.

The resulting modification �γ t to γ t when ḡsq is modified with the inclusion of ḡT
sq and

ḡχ
sq, keeping ϕ̄q fixed using (4.12), can be seen in figures 13 and 14,respectively. It is very

clear that the inclusion of either term could only marginally reduce γ t by some 0.01γ p. At
greater amplitudes its inclusion even becomes strongly destabilising. Of course we cannot
guarantee that it is impossible to employ some trial distribution with a different velocity
space structure to significantly stabilise γ t. Nevertheless, a range of different exploratory
investigations with different trial distributions hints that the velocity space stabilisation
cannot move γ t much at all below its minimum value among the configurations of
figure 11. We will apply this evidence to simplify the critical gradient model developed
later.

5. A reduced-mode tertiary instability Dimits shift prediction

We now have all the tools in hand to proceed to what motivated the present work: an
attempt to expand and apply the reduced-mode Dimits shift estimate outlined in Hallenbert
& Plunk (2021), which proved successful in the gyrokinetic strongly driven fluid limit
system. Expressed in the present notation, the predicted Dimits threshold was obtained
from the critical solution of the equation system involving the four system parameters p,
q, ϕ̄q and R/Ln that is given by

∂γ p
p

∂p
= 0, (5.1)

∂γ t

∂ϕ̄q
= 0, (5.2)

∂γ t

∂q
= 0, (5.3)

γ t

(
R
Ln

)
= 0. (5.4)
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(b)(a)

(d)(c)

FIGURE 13. Tertiary growth rate modification �γ t when an additional part ḡT
sq = (as1 +

as2i)p1(v
2
s⊥) exp(−v2

s ), with p1(v
2
s⊥) being the second degree v2

s⊥-polynomial satisfying
(4.16a,b), is added to the initial zonal response of figure 11. In (a,b) (α1, α2, ϕ̄q) = (−1, 0, 3.5),
corresponding to the most stable point of figure 11(b), while in (c,d) (α1, α2, ϕ̄q) = (0, 0.5, 35),
corresponding to the most stable point of figure 11(c). The inclusion of the ‘pure temperature
perturbation’ ḡT

sq is seen to predominantly destabilise (�γ t > 0) the tertiary instability, at most
stabilising (�γ t < 0) some ∼2 % of the primary growth rate γ p.

Here, (5.4) is the ‘most important’, as its solution specifies a R/Ln-value that is taken to
correspond to the Dimits threshold.

We will now go through (5.1)–(5.4) to make their meaning clear. Starting from the
bottom, (5.4) succinctly expresses that the Dimits threshold corresponds to a tertiary
stability threshold. Equation (5.1) next conveys the expectation that the tertiary mode of
the poloidal band containing the most unstable primary mode also is the most unstable,
and thus destabilises first. The effect of typical zonal flows is then approximated by that
single maximally stable zonal mode which is set through (5.2) and (5.3), where the former
fixes its amplitude and the latter its wavelength. This, as explained in Hallenbert & Plunk
(2021), attempts to capture how the random nature of turbulence makes it plausible that the
system will continue to explore the landscape of zonal flows until it finds a zonal profile
that can possibly stabilise the system.

Rather than accepting the above description wholesale, it is prudent to review its
applicability and validity. To this end we recall that, as indicated by figures 2, 8 and 9, γ t
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(b)(a)

(d)(c)

FIGURE 14. The equivalent result to figure 13, but where instead ḡχ
sq = (as3 +

as4i)p2(v
2
s⊥) exp(−v2

s ), with p2(v
2
s⊥) being the second degree v2

s⊥-polynomial satisfying
(4.17a,b), is added. Once again, the inclusion of a higher moment perturbation is seen
to predominantly destabilise (�γ t > 0) the tertiary instability, with marginal stabilisation
(�γ t < 0) not exceeding ∼2 %.

is marginal for the quasistationary flows of the Dimits regime and increases substantially
above it. Thus it seems the transition is indeed characterised by some condition like (5.4).
Similarly, figure 8 makes it patently clear that 5.1 is a suitable and robust condition.
That leaves just the reduction to a maximally stable single zonal mode of (5.2) and
(5.3). But, here, figure 12 shows that a few modes give rise to most of the stabilisation,
suggesting that a reduced-mode description should prove apt. The seeming evolution
towards stable flows hinted at by figure 9, then finally affirms that its stabilisation should be
maximised.

Before proceeding, it is important to note that in Hallenbert & Plunk (2021), the system
(5.1)–(5.4) was solved with a minimal 4-mode3 (4M) qG = q Galerkin truncation with an
eye towards computational efficiency for kinetic systems such as this one. Unfortunately, as
will be described in § 5.1, there are some doubts about the present validity of such a severe
reduction. Therefore, we will also make use of a less efficient, but more justifiable (see
the convergence of figure 10), 32-mode (32M) reduction with qG = 15q) for the present
prediction scheme.

31 streamer, 2 sidebands and 1 zonal mode.
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5.1. Adapting the prediction
The astute reader will already have identified the problem with (5.2) as written: it does
not prescribe how one should choose ḡsq, being formulated for a fluid model. This
can, in principle, be fixed by extending the optimisation to find maximally stabilising
distributions, but the vast possibility space makes this massively computationally
inefficient. We must therefore reduce our attention to a minimal representative set of trial
distributions

ḡsq = h(αs1, αs2, . . . , αsjs, v
2
s⊥, v2

s‖), (5.5)

parametrised by some je + ji variable parameters αsl with l ∈ 1, 2, . . . , js. To complete our
system, these can, analogously to ϕ̄q and q in (5.2)–(5.3), then be fixed as

∂γ t

∂αsl
= 0, (5.6)

which is added to (5.1)–(5.4) to find the most stable zonal mode within the space of trial
distributions.

The question now is what trial distributions to substitute into the right-hand side of (5.5).
Noting that Maxwellian velocity dependence affords a predictable control over density
and temperature moments, we took our trial distributions to be those of (4.11a,b) with
je + ji = 4. Naturally,this form is quite restrictive. Thankfully, § 4.4 strongly hints that,
when minimising γ t, the inclusion of finer velocity space structures in our functional
dependence can safely be neglected at an accuracy cost of perhaps only some 0.02γ p.
Their propensity to cause instability makes them, perhaps counter-intuitively, unimportant
for the Dimits shift, since in the Dimits regime, where zonal flows evolve towards stability,
they are unfavoured to emerge. This is massively favourable and signifies that our choice
of trial distributions is sufficient.

As a further stroke of luck, exploratory investigations revealed that α3 ≈ α4 ≈ 0.2
consistently yielded the lowest tertiary growth rates for typical values q � p and ϕ̄q ∼
1 − 10. With minimal impact α3 = α4 = 0.2 could thus be set, bypassing the need to
dynamically solve (5.6) for these parameters. We could therefore restrict our attention
from the full kinetic distribution possibility space to just a cross-species phase in the
form of α1 and α2, which, however, massively affects the tertiary growth rate as § 4.3 and
figure 11 highlights. In the end, our modified Dimits shift prediction is finally obtained as
the solution R/Ln to the equation system

∂γ p
p

∂p
= 0, (5.7)

∂γ t

∂ϕ̄q
= 0, (5.8)

∂γ t

∂q
= 0, (5.9)

∂γ t

∂α1
= 0, (5.10)

∂γ t

∂α2
= 0, (5.11)

γ t

(
R
Ln

)
= 0. (5.12)
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FIGURE 15. Growth rate γ t, normalised to γ p, at the Dimits threshold η = 0.25 and R/Ln = 1.8
of the tertiary mode with p = 0.6. Here, the sinusoidal zonal profile ϕ̄q with radial wavenumber
q has ḡsq correctly out of phase for maximum stability, as seen in figure 11. Strong instability
commences only when q > p and, unless q is large, only for large zonal flows (although not
shown, γ t explodes above 2γ p in this region). Below this threshold the zonal flow is uniformly
stabilising, to varying degrees. Note the peculiar feature that γ t exhibits two separate local
minima with respect to ϕ̄q for q � 1.3.

5.2. Prediction comparison
Finally, proceeding to put the prediction into action, the γ t-minimum of a given
R/Ln-value, with poloidal wavenumber p given by (5.7), was obtained through a
steepest-descent walk of the parameters ϕq, q, α1 and α2 that simultaneously solved
(5.8)–(5.11).

To enhance our understanding of the zonal flows explored by this procedure we turn to
figure 15. There, we can see the 32M γ t as a function of ϕ̄q and q with α1 and α2 determined
by (5.10) and (5.11). Strikingly, as q > p all distributions ḡsq satisfy γ t > γ p except when
ϕ̄q is small. This is the behaviour of KH-like modes (Zhu, Zhou & Dodin 2018), with the
generalised KH instability criterion that the radial wavenumber must exceed the poloidal
of gyrokinetics, k2

x > k2
y , already well known (Kim & Diamond 2002; Diamond et al.

2005). Thus we can easily identify the unstable upper-right region of figure 15 as KH
dominated, with an associated kxky|ϕ̄|-dependent growth rate.

In contrast to the KH range, stabilising distributions with γ t < γ p exist when q < p and
in a limited region of small ϕ̄q when q > p. Initiating the aforementioned steepest-descent
walk at a point with q < p, we eventually reach the most stable configuration at q ≈ 0.55
and ϕ̄q ≈ 5 where γ t ≈ 0.01γ p. Were we to employ the 4M-reduction to calculate γ t

instead of the full 32M of figure 15, this point would be moved upwards to ϕ̄q ≈ 35.
Studying figure 10(b), this hints that the direct coupling to conjugate mirror modes of
Pueschel et al. (2021), captured by the 4M-description, may easily be spoiled by the
inclusion of further sidebands. This view is further strengthened because nonlinearly ϕ̄q
also typically reaches values where a larger qG is required for γ t to converge.
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FIGURE 16. Characterisation of the qualitative long-term behaviour of nonlinear simulations,
with (possibly intermittent) unstable or continuously quiescent zonal flows, as a function of
the system configuration R/Ln and η = Ln/LT . The estimated Dimits threshold, obtained as the
solution to (5.7)–(5.12) using both a reduced 4M and a full 32M (i.e. qG = 15q) calculation,
is also plotted, exhibiting remarkable agreement.

Knowing how to produce a single, minimal γ t(R/Ln)-value, we arrive at our prediction
by solving (5.12). Because of the presence of multiple undriven modes, the convergence
of γ t is exceptionally slow around the Dimits threshold. Therefore, the algorithm
is commenced at R/Ln well into the expected turbulent range where γ t(R/Ln) and
∂γ t/∂(R/Ln) can more quickly be calculated. Then Newton’s algorithm is deployed for
γ t(R/Ln) to find the solution to (5.12), ameliorating the problem of slow convergence.

How the result of this entire procedure, both 4M and 32M, compares with the result of
nonlinear simulations, run for up to t = 8000 and categorised through the measure Θ0.1 of
(3.2), can be seen in figure 16. The 4M-prediction is found to match the observed Dimits
threshold remarkably well. However, as mentioned in § 5.1, the 4M solution of (5.7)–(5.12)
produces high zonal amplitudes that would cause coupling to additional sidebands if these
were included. The 32M-solution does not suffer from this problem, and also does not
differ much from the observed Dimits threshold. Curiously, the 32M critical gradient of
the latter is actually lower than the 4M one, a feature that will be discussed in § 6. In
either case, the key result is that a reduced-mode tertiary instability prediction is able to
accurately capture the Dimits transition.

6. Discussion

In this article we have performed nonlinear flux tube simulations and employed
extensive tertiary instability analysis for the entropy-mode-driven Z-pinch using GENE.
This enabled us to extend the fluid model Dimits shift prediction of Hallenbert & Plunk
(2021), which is essentially an efficient reduced zonal tertiary stability optimisation
routine to mirror the observation that the zonal profile typically evolves towards more
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stable configurations. The inclusion of kinetic effects encouragingly alters the prediction
minimally, and the result closely matches the observed Dimits threshold. Furthermore,
the only apparent obstacle preventing this prediction from being adapted for toroidal
geometries is a suitable means of accounting for the fact that only Rosenbluth–Hinton
residual flows (Rosenbluth & Hinton 1998) can be stable. Hopefully,these can be captured
by a similar trial distribution approach as in the present work, but more work on this front
needs to be carried out.

Compared with the gyrokinetic fluid limit of Hallenbert & Plunk (2021), one
key difference of Dimits regime dynamics is apparent. There, the Dimits range was
characterised by large but transient turbulent bursts giving way to completely stable zonal
profiles. Here, such stability can only occur at the very most stable part of the Dimits
range. Instead, the Dimits range is characterised by a localised, low-amplitude drift wave
with insufficient amplitude to significantly alter the zonal profile. Correspondingly, zonal
profile evolution is much slower, and the need for ‘robustness’ lessened, see also § 4.1.

While large turbulent bursts do not occur within the Dimits regime of Z-pinch
gyrokinetics as in the fluid limit, they emerge to dominate transport above the Dimits
threshold but below higher R/Ln where continuous turbulence eventually develops. These
bursts seem to be of the same nature as those in Hallenbert & Plunk (2021), exhibiting little
change in zonal energy, in contrast to conventional predator–prey-type zonal drift wave
oscillations (Malkov et al. 2001; Kobayashi et al. 2015). Such oscillations arise as a result
of zonal collisional damping. Higher collisionalities, although stabilising primary modes,
more importantly also dampen zonal flows. This facilitates zonal/drift wave oscillations,
which effectively induces higher transport and can even remove the Dimits shift entirely
(Kobayashi & Rogers 2012; Weikl et al. 2017; Ivanov et al. 2020). Without such a
mechanism here, as can be seen in figure 2(c), the present bursts instead coincide with
periods of zonal profile cycling between profiles that are tertiary unstable at different
points.

For computational efficiency, the present Dimits shift prediction can use a 4M reduction.
This constitutes a simplification in which only immediate sideband coupling is considered
that draws parallels to recent toroidal ITG work by Pueschel et al. (2021) and Terry et al.
(2021), who found that energy transfer rapidly diminishes in the chain of sidebands. The
reason why is that direct sideband coupling can engage stable conjugate sideband mirror
modes, and by a nearly zero nonlinear frequency mismatch prolonging this three-wave
correlation time, this is favoured (Hatch et al. 2016).

It is helpful to contrast the view above with the conventional shearing picture.
Therein energy is continually shuffled, through shear, to smaller and smaller radial
scale sidebands before being dissipated. Despite this energy transfer difference, both are
consistent with the tertiary picture, with poloidal bands exhibiting collective, coherent
behaviour. Nevertheless, Terry et al. (2021), based on findings of Whelan et al. (2019) that
finite β-effects initially diminishes transport despite zonal flow shearing then becoming
weakened, considers it likely that the dominant stabilising mechanism within the Dimits
shift is direct mirror mode coupling instead of zonal shearing. For the collisionless
Z-pinch, however, we have three pieces of evidence that indicate that this is not the case.
First, as seen in figure 1, the Z-pinch possesses a very broad range of unstable sidebands
even well inside the Dimits regime. Second, we noted that removing small-scale modes
of an initially stable profile is sufficient to destabilise it. Finally, stabilisation via direct
coupling in the Dimits range requires large-amplitude zonal modes, whose tertiary growth
rates were observed in figure 10 to become unstable as more modes were included.

With this information in hand it is natural to question the validity of a 4M-prediction,
which ostensibly captures direct coupling. Therefore, we completed the analogous
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32M-prediction for comparison, which could also encapsulate zonal shear stabilisation.
Since the maximally stabilising zonal profile found in each prediction scheme was
different, it is perhaps surprising that this latter prediction was similar but slightly smaller
than the previous, with both matching the observed Dimits threshold well. Although there
is no guarantee that this is true in general, it does hint that the potential stabilising effect
of zonal shear and conjugate mirror mode coupling may be comparable.

In §§ 4.2–4.4 and § 5.1 we saw that the choice of focusing on the Z-pinch, despite its
simple geometry, was not uniformly advantageous for tertiary instability analysis. Despite
the complete conservation of zonal flows, the necessary inclusion of kinetic electrons
considerably complicates things. This vastly increases the zonal configuration space which
complicates the optimisation scheme underlying the prediction. Although we attempted
to capture this, we cannot guarantee that more stable zonal configurations can be found
outside our limited selection of trial distributions. The fact that the Dimits threshold, with
its emergence of unstable zonal flows, so closely coincides with the point at which we
cease to discover stable profiles nevertheless hints that such configurations are very rare.

On the topic of kinetic distributions, it has already been observed by Li & Diamond
(2018) that zonal flows need not have a uniformly stabilising effect even for configurations
which are KH-stable. Thus, the stabilising influence of a zonal configuration can be
altered significantly without altering the zonal flow profile itself. Nevertheless, the extent
to which the full kinetic distribution affects tertiary (in)stability beyond its modification
of the background gradients has perhaps not been adequately appreciated before in the
literature. At best, it is possible, though not certain, that zonal self-organisation of the kind
observed here lessens the importance of this effect by precluding such resonant instability
as demonstrated in figure 11.

Regarding the tertiary instability, there have been many recent advances in its
understanding. In accordance with these, we stress that the tertiary instability should
primarily be thought of as a modified primary instability, differing from the former in
how it extracts energy from background gradients instead of zonal flows (Zhu & Dodin
2021). Indeed, we expect the KH-instability affecting zonal flows not to play a significant
role for the Z-pinch. As figure 15 indicates, it could, in principle, effectively limit zonal
amplitudes. However, since it only truly arises at zonal amplitudes quite a bit greater than
what is typical in simulations, it seems dubious to expect this to actually occur.

Now, although some attention has been given to features other than the tertiary
instability in this article, naturally it has been the main focus. That is not to say that other
nonlinear dynamics could not still be generally important for the Dimits shift. Indeed,
much attention has recently been paid to non-diffusive transport in the form of avalanche
bursts and solitary travelling structures (see e.g. Ivanov et al. 2020; Qi et al. 2020).
Although no exhaustive search was carried out on this front, no immediately apparent
signal indicating the presence of such features was observed. Allowing ourselves some
liberty, we might speculate that their apparent absence is related to the fact that in the
completely collisionless Z-pinch Dimits regime, drift wave amplitudes are too small for
their self-interactions to enable manifestations of this kind. In conclusion, with the fuller
understanding of the tertiary instability, observations generally point towards it being the
dominant, sufficient contributor to the Dimits shift, at least for the collisionless Z-pinch.
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Appendix A. Invariance of the single mode zonal profile tertiary instability

Recall from § 4 that the tertiary dispersion relation which determine γ t can be
expressed as

det (D (ḡsk)) = det

[∑
s=i,e

(
Zs

n

∫
d3vsJ0sA

−1
s BsJ0s − (I − Γ 0s)

)]
= 0, (A1)

where

As = (λ+ iωdsp)I + C1s, Bs = iZsf0s(ω∗sp − ωdsp)I + C2s, a, b (A2)

and the elements of C1s, C2s, and J0s are given by

C1smn = −pq
j∑

l=−j

lJ0sllϕ̄lδm(l+n), (A3)

C2smn = −pq
j∑

l=−j

lḡslδm(l+n), (A4)

J0smn = J0(
√

2( p2 + m2q2)ms/mivs⊥)δmn, (A5)

and

Γ0smn = I0(( p2 + m2q2)ms/mi) exp
(−( p2 + m2q2)ms/mi

)
δmn. (A6)

Restricting the zonal profile to the single mode q (and its conjugate −q) we now set
ϕ̄l = ḡsl = 0 for l �= ±1. Then we can write

a, b

(A7)

where the real condition ḡ−q = ḡ∗
q was used.
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Next we introduce the transformation matrix

(A8)

where m is the row number. It is clearly diagonal, T T = T , but also orthonormal with
determinant −1, so that T 2 = I . As is easily checked, the T -transformation replaces the
elements of a matrix with their mirror like Emn ↔ (−1)m+nE−m−n (remember that the
indexing runs from −j to j). By (A3)–(A6), we therefore have T C1sT = C∗

1s, T C2sT = C∗
2s,

T J0sT = J0s and TΓ 0sT = Γ 0s. Thus, (A1) can equivalently be expressed as

det (T DT ) = det

[∑
s=i,e

(
Zs

n

∫
d3vsT J0sT

2A−1
s T 2BsT

2J0sT − T (I − Γ 0s)T

)]

= det

[∑
s=i,e

(
Zs

n

∫
d3vsJ0s(T AsT )−1T BsT J0s − (I − Γ 0s)

)]

= det
(
D(ḡ∗

sq)
) = 0, (A9)

i.e. the tertiary dispersion relation of a single mode zonal profile is unchanged under the
substitution ḡsq → ḡ∗

sq. Of course this substitution also modifies ϕ̄q, but if we also include a
translation of the periodic domain (which patently does not modify γ t) in our substitution
like

ḡsq → ḡ∗
sqϕ̄

2
q

|ϕ̄q|2 , (A10)

it is clear upon insertion into the quasineutrality condition (2.8) that ϕ̄q now also remains
unchanged.
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