ON QUASI-LINEAR PARABOLIC EQUATIONS

YOSHIAKI IKEDA®

To Professor Kiyoshi Noshiro on the occasion of his 60th birthday.

§1 Introduction

In this paper we consider the following quasi-linear parabolic equations

(1.1) Lu=u,~div A(x,t,u, u,)+ Bz, t,u,u,)=0,

where A is a given vector function of the variables «, ¢, #,u,, and B is a given

scalar function of the some variables. We assume that they are difined in the
rectangle

R={(z, t) s E**\x=(x,, ...... L%, € E a1 <2r,0<t < 2r%)
=Q,, x (0, 2r?), where Q,,={x||x;]<<2r}.
Moreover we assume that
A2, ¢, u, p)| < Mlpl+c(e, ) |u|+ex, t)

pA(x9 t, u, p) = Z|p'2—“d(x) t)lulz_—g(x’ t)

for any real vector p=(p,, ...... , D). Here Mand 2 are positive constants, and
b,c,d,e, fand g are non-negative functions of the variables z, # such that

b, ¢, e L7[0, 2r%; L*+¢(Qy,)], d, f, 9= L0, 2r%; L™ (@.,)]
for arbitrary ¢ >0 and
(1.3) max || d[ln+e(t)+max | cllite(t)+max |lelln+e(t)+max |[|d |[nte ()
. 0<t<272 o<t <272 o<t<2re o<t <272 2

+max || fl|nte (#)+max || gllats (£) <M,
o<t<ar -5 o<t<ary © ——

where ||w]|,(¢) =(S$ﬁlpdx)l/p

We denote by L0, 272; L7(Q,,)] the space of function ¢(z, ¢) with the following
properties:
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Matsuzawa for their many valuable suggestions to the author during the preparation of this
paper.
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(i) ¢ is defined and measurable in R=@Q,, x (0, 272),

(i1) for almost all t=(0,27%), o¢(x,t) < L2(Q,,),

(i) |l ¢ llzerc@u(2)E L0, 272).

The function # is said to be a weak solution of (1.1) in R if « with u,,«, is
square integrable and if # satisfies the following equality

(1.4) SSR[u,qS—l—A(x, £, )+ Blx, 1, u, u,)pldedt =0

for any ¢(x, t)e H?[0, 2¢%; L¥Q,,)1N L0, 2r2; H}*(Q,,)].

Let R'={(z,t)] |z:1<2p, 0<t<2p%},
Rt ={(z, )] lz:|<kp, h*p*<t<2p%},
R-={(z, t)| l@:|<ke, hip®<t<h3p®}

where p, k7, k3, h* and k are arbitrary numbers such that 0< p <7, O0O< h; < h3
2 4

2 4 _ 2
<5 g <h'<2 andO<k<¢T .
Then we can prove the following.

TrEOREM 1. If u is a non-negative weak solution of (I1.1) in R, then
(1.5) ngea_xu<r7gfn{u+l(p)},
where l(p):pneTlmax || e |lnte(t)+max Hf]]ﬁ(t)-k(max I]gl]_w_s(t)y—l-]} and
¢ ¢ 2 t 2

y > 1 ts a constant depending only on n, e, 2, M, k, h3, hs, h*, and 7 .
Remark. Moser [3] proved the Harnack inequality

1.6 max # < y min «
( ) R— = T R-V
for every positive solution # of the uniformely parabolic equations
”
Lu=u5—.21(ai,j(m, t)thz,)z, =0
i,j=

with measurable coefficients.
Theorem 1 does not imply the inequality (1.6). However, we can get
(1.6) by the same argument as in the proof of Theorem 1.

Tueorem 2.  Every weak solution of (1.1) in R is bouoded in subdomain
of R.
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We shall give the proof of Theorem 1 in §2 and prove Theorem 2 in §3.
In §4 we shall deal with the removable singularities for solutions of parabolic
equations (1.1). (cf. [1]). These results are extensions of the results of Serrin
(5], who considered the equation

—divA(x,u,u,)+B(x,u,u,)=0 in QCE",
of elliptic type, where

|A(2, u, p)| < alpl*—14clul*—1+e,
| B(z, u, p)|<<b|p|*=1+d|u|—1+f,
peA>|p|*—dlul|*—g

for xe2. Here a>1 is a fixed exponent, @ is a positive constant and if
1< a<mn, then

(1.7) ¢, e€ Lujta—1), VE Ln/i—¢), d. f,9E Lnjca—c).

Our conditions (1. 3) with respect to the coefficients 6,4, f, g correspond to
the conditions (1. 7) in the case a=2.
We state two lemmas which will be often used in this paper.

Lemma 1. (Sobolev’s Lemma) (cf. [4])
If ucsH2(Q), then

where K 1is a positive constant depending only on n, and '21T=%_— .

Lemma 2. If f(x,t) belongs to L0, 2r%; LYQ,,)] and if max <lelqu)1/q

0<t<272

< M for > p, then f(x,t) can be written in the form f(x,t)=f"(xt)+f" (2, t), where

1/p

max (XQ |f”l”dx> < 7 and sgp | /1< K(y) for any y > 0 and for a positivwe func-
t 2r

tion K(y) of n. Moreover K(n) may be taken as the value c(M)r;_—q—ZT , where ¢c(M) is a
constant depending on M, p and gq. (¢f. [6])

Proof. We put

Jk, ifk<f,
fl(x, t)=1f(x, t), if | fI<k,
k. if f< —k,
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and f’=f—f’. Then

Gerlf”Ipdx)l/p < Q(SAk(t)lfde)”p S Q(SQ,Jflqu)I/ql:meas (Ax(?)) :lllp-llq
where 4(t)={2€Q.,|1/1>4},

Since meas (Ag(t)) < k‘qg o | f1%dx, we have
(o 17717ae) " < 20 585

The right hand side of this inequality does not depend on ¢. Therefore

e q.1_49 . . . .
max 2(802 [ f"17d x) < 2M7k "% . From this we can easily verify the assertion
o<t <27 r

of Lemma.

§2 Harnack’s inequality.
In this section we give the proof of Theorem 1, i.e. (1.5), which Kurihara
(2] recently has proved under the following conditions

2.1 b, c,ee L0, 27%; L*™(Q,,)], d, f, g&L7[0, 27%; L™(Q,,)].

If we prove lemmas corresponding to Lemmas 9 and 10 of Kurihara [2],
then the proof of Theorem 1 can be completed, since the remaining part of
the proof follows by the same method as Kurihara’s.

First, we introduce some notation;

sz' ={(x’ t)l Ixi,< 0, "T<t<0},

H,, (W)=,o'”'r“‘SSR w(z, t)dxdt
0T
(2 2) DPT (w): ‘0—1»1»2,5.—1“&)r walz dxdt ,

M zb= -» max S widx .
pr(W)=p —r<t<0J@p

LemmA 2. 1. Assume that u is a non-negative weak solution of (1.1).
Let v=(u+1(p))"? and R,.'CR, ",
@) If ¢q>1, then

2n

2n 40 27 4o re re ’2 ’2
re! S € [ 4 2y, P 14
(2.3) Dy (v)<c p ) q {(p—p’)2 ottt 5 + - X

(L) (5 )Hee ),
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2n +1 2n +2

(2.4) My (v) < c< q—(il ) ¢ q° [(p:;’)z + .z.f_,f, +z-/-|-ip,—+ :’)’2 ]X
(B (o

() If ¢<0, then

’2

@5  Daw<di+id YLy

(Y.
(2.6) Myo(v)< c(1+lqli:“+2>( q;1 )[ 0 < + 7 +r'+-’;—

—_— p/)Z T“'T,
s G OIC AT

Here ¢ is a constant depending only on #, ¢, 2 and M.

pIZ ’2 p/2 p/2 }
5 +T_T, +0 +———p +—————p2 X

Proof. Now we suppose that ¢>1. We put
a=u+1(p), s=c+l(p)'e and d=d+1(p)"f+I(p)?g.
Then from (1.2) we have

| Az, t,u, p)| < M|p|+cg,
2.7) |B(z,t.u.p)|< blp|+du,
pA(z, t,u,p) > | p|*—da?

nte
and it is clear that 6 L"[0, 27%; L*+¢(Q,,)] and deL~[0,2*; L * (Q,,)].

We put ¢(w, t)=qu’"'¢(x, t)?, where ¢ > 0 has compact support in @,. From
(2.7) we see

¢ul«'+¢£A(x, t' u} ul’)+¢B<x’ t: uv ux) 2 (vz¢2)t—2v2¢'¢£+4‘2—q%1—v2¢'2—q2d—1}2¢2
—4Mv]vwl¢|¢zl —‘2115712</’l ¢x| _valvw I ¢2 .

Thus we obtain
(2.8) SS x {(02¢2)t+4z—q—}1— v3¢2]dxdt
0T

<[f, 2000101 +40M010,191 9.1 +2010,1 ¢*+2g70 1 .19+ g'dv*g?] dadt
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By using Lemmas 1 and 2, we estimate each terms of (2.8).
First, we see

(2.9) §§ Mo 10,1919 | dadt < 4M]|v, || 0. |

= e il L

=

for any 7 >0. Here || 71=({{, fawat)”,

Next, we have
ngQvava]dx:?SQp b +b'" T )0, | d

< 2 sup |8 | ol v, lo(t)+1| 0@ 1o(8)+ 21187 1]a(2) ] 40 |(2)+]| v |1*(2)
< 2By llw 1o(#) el v 112(8) 4297 | v (o)) v [1*(2)

<Ly loag a00) +— L B g ()20 K 1102 (e 09): )

L a0+ —L B 109 180+ K 10,0 800+ 20/ |04 130)

)Tc(v), where

for an arbitrary positive constant 3. We put B,,/=( q31

7 a1 and c¢(y) depends only on e,#,M and 5 Then we have
p P y

(2.10) SSRMQb(/;?v]vx]dxdt < (%1—)(1+4K> 2l vags |2

(-2 ) ||v¢uZ+2( LA

Now we put

S§R072q502¢|¢z[dxdt =SSRMQqc02¢ g, | dadt +SSR,,,2‘1’< p)lenty| o, | dudt
=C+E.

Similarly as above, we see

(20c0%01 9.1 < 24Cy 199 1(0)+ 110, 1(0)+ 207’ |09, 1(1)+ 1106 1(2)
< 24Cy 10 1B(1)+24Cy | v, 18(8)+ 2 K 1| 0,9 () +4an K || 09 [13(8).

https://doi.org/10.1017/50027763000012459 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012459

ON QUASI-LINEAR PARABOLIC EQUATIONS
Here we put  7/=—"4—- 3¢ Then by Lemma 2 we may put

Cy =<——q—> ¢ qTC(ﬂ). Thus we obtain

+1

lvg

m'§

¢ < 2L )oK g et )*a
+[c<77>(—q—3T)%q%+1+4(ﬂ—;i) Ky |llog e

Similarly we have

2n 2n +1 n+te

E< (L) ik v petn( ) Ta T U0 vl

+Ha+4 q;‘ 7K |0 1.

Therefore we obtain

_ —1 ,

(2. 11) QqSSRpfcvzd;l(/:xIdxdt<4<———qq )2k 0. ¢l
o pmEe

rel( L) Ca A il

o)) et g

Here we have used the fact that 0< *q—;—l— <l< —q—zll- for ¢ > 1.

Finally we consider
{§r, cdvcasar=(|, qapwasat+(f, e¢ior rovasat
+SSR ¢*l(p)*g¢*v*dwdt =D+ F+G.
0T
We observe

Jeravrraz < @Dy 00 18 +200 K211 0.9 1800+ 20 K2 (| 00, 13(2),

~1 T
where 7;’=qu% and D,,f=(—q—_‘_1_—i—> q° cln).
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So we have
D <2( = )y lusg Ieretn(~ ) g * g +2( 4L )iy g, 1
= q NHUg 7 g—1 qa 7 7 z %

Similarly, we have

n 2n _n+te

LI 0 G R R DR Tl

+2(L LYKy llog,
6 <2( =Ly logiren( L) a1 e
G STEA

Therefore, using the fact that 0<-% P —1 ¢ — 1 for g > 1, we obtain

_nte

(2.12) SSquszquzzdxdtg6(—%)K2nllvx¢2l(+c(y)<7zT)%q£en—+z(1+l(p) o
+ip) n+e))llv¢'|2+6( L)y llog. I
It follows from (2.9)~(2.12) that
[§ 7,000, dadt+(-L= =1 91—(2+8K+6K)[[ . vigtandt

2n 4 Zn _n+te _2(n+e)

< (41 T e i ), verdaar

() s (], sotaasar}.

Denoting that

_nte _£
1p) * =[ o™ {max|lelluso(t)+max | 1l use (8)

nt-e
(x| gl ()1} |5 <o

32

and putting "= orarrerT ’ Ve have
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(2.13) SSRM(qubz),dxdt +z(ﬂ SSRprviqbzdxdt

——-+
<e(Z4p)” SSR,,,UW%I + 92+ ¢¥(1+ o1+ p~)dadst .

‘We define ¢(zx, t)=¢.(]2])*¢,(¢), where

0 if |z|> o, 0 i< —
¢,(x)={ ;’:“, if o/ <|x|< p, and ¢,(¢)= ;’__f, if —e<t<<—2,
‘1 if |x]< o, 1 if —/<t<0

Then we have

Plocd+o2el+ o4 < of oL

(o—p')" T ] ’

Therefore we obtain

(2. 14) SSRp,t,(vZ),dxdt+l<q%l)“ vidzdt

Rplrl

2n

c2< q—1 >—+1 —+2[ (p_}pr)z + T_l,r/ +1+%+—:2—]S§Rﬂv2dxdt.

Using this, we can get (2.3) and (2.4) in the quite similar manner to Kurihara’s
12].

We also obtain (2.5) and (2.6) in the similar manner.

Lemma 2. 2. Let w be a non-negative weak solution of (1.1) and let
v=u(x, —t)"2=(u(x, —t)+1(p)) for 0<g<l. Then for Ry, C R,;

(2.15) Dy <e((4 >%+2+1][ (pf;')z +2 +"'2+£}+ i»l: Jx
() (.
@d) e <(12g) T S

e A

This lemma is obtained by the same calculations as in the proof of Lemma
2. 1. Hence we omit the proof here.
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As stated in the beginning of this section, the above two lemmas imply
Theorem 1.

§3. Boundedness of weak solutions.
To prove Theorem 2, we put

) [a" if a<<i
F(U/)— qlq-lu—-(q—l)lq if a>1
and

G(u)=sign u{F(u)F’(a)—q}

for I>1 and g¢>1. Here a=|u|+1.
At first, we prove the following lemma,

LemMA 3. 1. Let u be a weak solution of (1. 1) in Rap,2pe. Then, for ¢>1,

(3.1) Dyev) < cq!:—“[ = ':,,)2 +-£2 o) (5 )Har )
(3. 2) Myolv) < cq%H[ =+ | ) (G )He o),

where F=v and ¢ is a constant depending on M, e, n and 2.

Proof. We put ¢=c+e¢ and d=d+f+g. Then from (1. 2), we see

|A(z, t,u, p)| < M|p|+5|al,
(3. 3) | B(z, t,u, p)| < b|p|+d]|u],
pA(x, t,u,p) > 2| p|*—d|al2

We take ¢=¢? G as the test function in (1. 4), where ¢ is a non-negative,
piecewise differentiable function with support in p={z| |2;|< p(<7)} and
¢(x, t)=0 for ¢+ <—r. Since u is a weak solution of (1. 1), we have

SSR [¢Gu,+(¢*G) A+ ¢*GBldxdt =0,
T

where

*Gu,+(P*G) A+ P*GB=¢? sign u{ FF' —q}u,+2¢¢, sign u{FF' —q}A
+¢2u,G' A+¢? sign u{FF'—q}B
> Q0+ 292 —2M v, ¢ |+ [vg, | —blv,¢ |« [vg| —2q8|vg|+ |vg,| —2¢2d P .

Here we used the fact that
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)2 o 2q—1 : —
Gl(u)=[(F) ; if (u|< -1

(F)? if lu|[>1—1

and uF"< ¢'F .

Hence we have

G4 ([, [5 @ontiont|azae <[, ©@2M100.110.01 481001 14v]

ot

+2qe[¢v] |¢.v] +2¢2d P20+ v2| ¢, | 1dwdt .
We estimate each terms of (3. 4). First we get

AME )y 0.
i

8.5)  [[,, 2Migv.11¢.01dndt < 2MI v, (111001l <71l ¢v, |+
Further we see
forov.11901da < By 11902 1(0) 1| 9011+ 1 go. ()l g0 114(E)
< 2ll o I8(O+E2 11 o 1300 +260y | 9. 1B+ | 9015(0).
Thus we obtain
3.6)  {[,, blov.l lgvldadt < 142Ky | gu. [-+-L 11 golp+9K | oo
Similarly
(201001 10.01d < 24Cy 11 9 10 1| @20 D)+ 207 1| G0 114() 1| 20 11(8)
where 77’=—;—77 and C,,r=c(n)q7”.
Thus we obtain
3.7 g, 2051001 1¢.01dwdt < 2Ky l|v.g F+cl)ge L golE
+Help)ge T +4H71 1| g0 |
Similarly
3.8 SRNQquJszdxdt < 4K || v, [P+clp)ge 21| go|P+4K || g0 2.

It follows immediately from (3. 5)~(3. 8) that
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(3. 9) . %(vngz)z+[2—(4K2+4K+2)v]vi¢2]dxdt
< gt {[, (@oi+iee.vdzdt .
pT
Putting vsz) , we see from (3. 9)
3100 ([ 100+ agtotldat < 20,05 H[, (9-+02+100,)7dudt
pT pT

From this we obtain (3. 1) and (3. 2). We thus obtain Lemma 3. 1.
If we let / tend to oo, then v tends to #. Therefore by letting [ = in (3.1)
and (3. 2), and taking ¢ as in the proof of Theorem 1, we get

(3 1)/ Do (@'?) < cql:.+2[ (pipl)z + Ti,‘zz'/ + PI2]<“pT>n<%>Hpr(uq’2) ’

’2

)
’ . o2 7/ 7/ ’ e \" ~q
0.0 Mo < gt 4o 4l (e
It follows from (3. 1)’ and (3. 2)’ that we have
1 _ 119
(3. 11) max <(TRaimi ., . #dwdt)

for g2¢>1,0<k<k<2 and O<W <h<2. Here r>11is a constant
depending only on #n, ¢,2, M, k, ¥/, b/, h, ¢ and 7. (cf. [2]). Hence we have
Theorem 2.

CororLARY. Let # be a weak solution of (1.1) in R. Then « is Holder
continuous in any compact subset of R (cf. [3]).

§4. Removable singularities.

First we introduce some notations and definition. Let U(Q) be the class of
functions ¢=¢(x, ¢) such that ¢=CYE"x E), ¢=1 in a neighborhood of @, ¢=0
outside some fixed sphere in £ and 0 < ¢ < 1. Here Q1is a compact set in the
(n+1)-dimensional (z, ¢)-space E* X E'.

We say that @ is an (e, g)-null set if

(1) it [ (00t +girra]ar] "0

where « > 2, 8> 2, and 7 is a bounded open interval in E? such that QCE»XxI
and ¢;=max(0, —¢,) (cf. [1]).
We can prove the following.
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TureoreM 3. Let Q be an (a, p)-null set for some 2 < a<n and §>2. Let
u be a continuous weak solution of (1. 1) in R,, ,.o—Q such that u, is square integrable

and

(4. 2) uesL’—2r% 0;LYQ,,)] with a= aﬁQ (146) and b=-78%2—(1+0) Jor some

0 (0<o<]1). We iake a=o0 when a=2, and b=co when B=2. Then u can be
defined over Q so that the resulting function satisfies (1. 4) throughout R, ,,2 and u is
Holder continuous in any compacrt subset of Ry, 2.

Proof. Tt suffices to show that # can be made a continuous solution in the
neighborhood of any point in R,,,,.. Let P/(2’,4’) be in R,,,,» and let
R,(P)={P(x, t)] ||| P—P'|]]< 2p} be such that R,(P’) is in R, ;. ,

max{z,, ...... y %nr V—2F F if ¢+ <0,

h Pll|=
where ||| P|| [Oo €0

and P=(=, t)=(%4 ...... , T3 l).

By a suitable parallel transformation of variables it may supposed that
P'=(0,0) and R, (P)={(x,t)]]2;|< 2p, —2p* <t <0}=R,,,,2. Asin the proof
of Theorem 2, we put a=|u|+1 for (x, t)ER,, ,,2—Q.

We now introduce an appropriate test function ¢(x, t). Let ¢ and ¢ be non-
negative smooth functions, ¢ having compact support in Q,={z| |2;|< p} with
respect to & and ¢(=, #)=0 for ¢ < —p?, and ¢ vanishing in some neighborhood
of Q. Let

B(x, t)=(¢g)? sign u[u”“l— 1 } Xq

for q>q0>——;—.

By the same manner as in the proof of Lemma 2. 1 or 3. 1, it follows that

(4. 3) Sm(w)mxﬂ(%—q—k)“ v2($g)rdadt

Rzp,2p2—@Q

2n

<eaq ¥, . Juirt@pededt+ ([, | (0g)eg)atdadt.
Here v=#* (q > qy > %) .

Now, we use the following lemma (cf. [1]).
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Lemma 4. 1. If Q is an (a, B)-null set for some 2 < a < n and B> 2, then Q isof
measure zero and there exists a sequence v’ U(Q) such that »' =0 almost everywhere
in E»x1I as v — o,

We replace ¢ in (4. 1) by the elements ¢”=1—»"" Then ¢”=0 in the neigh-
borhood of @ and ¢” — 1 almost everytwhere as v — oo, Since
(@ NPP")e= (PP )(@" P+ ¢HP" Do) < 9| (”)+¢*(0"):
and since
(@9")s=(dad” +P(—n)) < 202(¢”**+2¢%(n2)*

it follows from (4. 3) that

(4. 4) S(¢;Z”)2v2dx+2(—2—q%—)ss 9@ Puzdzdt

Rzpy2p%—

2n

< cqu"'zSS o (PP PGP 2+ PP (7)) + ¢ (1) +(7") Iv*d xdt .
RZpuzp -Q
Now consider

[fe+rnedaar < [([tae+omneae) " ([ae7 az) "< Jar

-2

<[[(feor+ommeae )y as T |(fu ==z ax) C

If we put g=q,= 0'*2'1 , (4. 2) implies

B B—2
"‘Zdt] B

B/e 2/B
[+ emirrasar <  ([tar+aiyran)yat "
Letting v — o0, we obtain from the dominated convergence theorem that

2n

(4. 5) S¢2v2dw+l<—2‘{;o;l)“&p’2p2_0¢2113dxdt <cage e X

XSSRzp»zpz—Q{‘pz—}_‘bi-i_ |¢¢c|}vzdxdt ,

where »=u%, and ¢, does not depend on g. Therefore, if ¢ is chosen as in
Theorem 1, we have

(4' 6) H/p’pz(ukm/z) < 71 Hlxp-2p2 (ﬁp"/z)k
where  p,=2¢,> 1, k=1+% for n>2 and k=% for n=1,2 and H,, ,2(u)
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=(p)‘"’(p2)‘1SSR 2_o® dudt. Here 7, depends only on p, M, 2, #, ¢, @, § and p.
P 0"

Now, to proceed the arguments, we define for ¢ > p, > 1,

ul, ifl<a<li,

F@:[pal[qlq"’oa"oJr(po—q)lq], ifi<a,

and

G(u)=sign{F (@) F'(u)—q} —oo <y < +o0,

Then it is clear that F is a continuouly differentiable function of %, and G is
a piecewise smooth function of # with corners at u=+4(/—1). Moreover, these

functions have the properties:
F < (q/p)la—mum, uF' < qF
and
G'(u)=q"(2q—1)(F")*.

We may now substitute ¢(z, #)=(¢¢)?G(u) into (1. 4). Then we find by the
same argument as in Theorem 1 or Theorem 2 that

(4.7) [ogroas+a( 21N (ogridaat

2n —
S\ I (7)Y R PR P AR T L T
200 202 —
where v=v(x, t)=F(%).
Since v < Const. #?, it is clear as in the earlier part of the proof that
SS Rap. o G IIVdzdt < Const. U(g{gﬁ"l‘gﬁz}“/zdx)ﬁ / “dt]z/ A
Replacing ¢ by ¢”=1—2" and letting » — c0, we obtain
2q—1
(4. 8) S(/szzdx—l—,l(_—q—)SSRzpzypz_Qviqﬂdxdt

2n +2

<eq s P, g teitiggyrdudt

Let I >oo. Then v—u'. If we choose ¢ as in the proof of Theorem 1 or
Theorem 2, we see

(4 9) Hlp'Pz("_‘kq) < TzH/zp,zp”(Eq)k (g = Do)
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Now iterate the inequality (4. 6), (4. 9) starting with g=g,. This yields the

conclusion

(4. 10) max i< T[SS Sy }x/po

Ryp.2p%-Q
On the other hand,

{SS&“ dxdt]l/p" < [S[Sﬁadx }b/adt]l/b |

so that the right side of (4. 10) is finite. Thus we have shown that « is uniformly

bounded on the set R, ,2-q.
Next we show that # can be extended to a continuous solution of (1. 1)

throughout R, ,2. Choosing ¢ such that ¢=1 in R, ,;, we have from (4. 5)
700 —2 2 -
SSRp‘ pz_QuP [u.z[ dxdt < csSSRgp,sz—Qupodxdt < Const.

Since p,<2 and # is bounded in R, ,—@Q, this proves that u, is in

Ly(Rp. 2—Q) . ‘
We shall show that if # is put to be equal to zero on , the resulting function

is strongly differentiable in R, 2.
For any smooth function ¢(2, #) with compact support in @,—Q we have

SSRP‘pzuqudxdt: —SSRp'pzu,ngdxdt .
Putting ¢ =¢¢ where ¢ has compact support in @,, we get

SSRp»pZ—-Q“(‘/’95x+§5¢’x)dxdt = —SSR,,,pz_Q‘ﬁS/;uxdx .

Thus, replacing ¢ by ¢”=1—7" where 5" is given in Lemma 4. 1 and letting

y — oo, we have from the dominated convergence theorem

(4. 11) Sgu%dxdt:—sngdxdz ,

the integrals being evaluated over the set R, 2—Q. If we put #,=0 on Q, the
relation (4. 11) becomes valid over all of R, ,2. Thus the assertion is proved.

Finally if ¢ has compact support in @, and if ¢=0 on @, then

([cucs+ 9.+ BgYazar=o0.

Again setting ¢=¢¢"*, we easily obtain, in the limit as v — oo,
g g y s
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SS{u,¢+A¢$+B¢}dxdt =0,

which is valid whenever ¢ has compact support in R, . It follows that u,
defined over @ as above, is a weak solution of (1. 1)in R, ,. By Corollary
in the end of §3, we can redefine # on a set of measure zero so that it is Holder
continuous in R, ;2. The redefinition cannot effect the values of » on R, :—@Q,
where it is already continouous. Since measure of @ is zero, the resulting
function « is a (Holder) continuous solution of (1. 1) in R, ,2, that is,in a non-
empty neighborhood of the point P. This completes the proof.

REFERENCE

[1] D.G. Aronson: Removable Singularities for Linear Parabolic Equations, Arch. Rational
Mech. Anal. 17, 79-84 (1964).

[2] M. Kurihara: On Harnack’s inequarity for parabolic partial differential equations.
I. I1., Funkcialai Ekvacioi Voll. XVII Nro 3. TULIO (1965).

[3] J. Moser: A Harnack inequality for parabolic differential equations, Comm. Pure. Appl.
Math. 17, 101-134 (1964).

[4] L. Nirenberg: On elliptic partial differential equations, Ann. Scuola. Norm. Sup. Pisa
Vol. 13, 115-162 (1959).

[5] J. Serrin: Local behavior of solutions of quasilinear equations. Acta Math., 111, 247-302
(1964).

[6] G. Stampacchia: Le probleme de Dirichlet pour les équations elliptiques de second order
a coefficients discontinus; Ann. Inst. Fourier. 15, 189-258 (1965).

Added in proofs: During the proofs of this paper, Professor Serrin informed me that he
and Aronson obtained more precise results than mine (cf. Notices of Amer. Math. soc., 13
(1966), p. 381) and that Ivanov also gave the same results as mine.

The author wishes to express his hearty thanks for kind comments of Professor Serrin.
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