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According to a classical theorem originally proved by L. Autonne (1; 3) in 
1915, every m X n matrix of rank r with entries from the complex field can be 
decomposed as 

A = U!DU2J 

where U\ and U2 are unitary matrices of order m and n respectively and D is 
an m X n matrix having the form 

(1) D = 
A 0 
0 0 

where A is a non-singular diagonal matrix whose rank is r. If r = m, then the 
rowr of zero matrices of (1) does not actually appear. If r = n, then the column 
of zero matrices of (1) does not appear. The main purpose of this paper is to 
give a necessary and sufficient condition under which both Ui and U2 may be 
chosen to be real orthogonal matrices. The result is contained in 

THEOREM 1. Let A be a rectangular matrix. Then A can be expressed as 

(2) A = Oi D02 

where 0\ and 02 are real orthogonal matrices and D has the form of (1) if and only 
if A A* and A* A are both real. Here X*, XT, and X denote the conjugate transpose, 
the transpose, and the conjugate of X, respectively. 

The necessity of the condition is immediate, for if such a decomposition 
exists, then 

AA* = 01DDOiT
1 A*A = 02

TDD02 

are both real. 
For any real orthogonal matrices Qi and Ç2, and any real number 6, Theorem 

1 is true for A if and only if it is true for 

(3) A = eieQ1AQ2. 

We shall say that two matrices, A and A, related as in equation (3), are 
orthogonally equivalent. Before demonstrating the sufficiency of the condition 
of Theorem 1, we shall perform a sequence of orthogonal equivalences, begin­
ning with A and ending with a matrix (also called A) which has a simpler 
form. Let 

A = B + iC, 
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where B and C are real, i = y/{—\). Then a direct computation shows that 

LEMMA 1. A A* is real if and only if 

(4) BCT = CBT
} 

in which case 

(5) A A* = BBT + CCT. 

Similarly, A*A is real if and only if 

(4r) BTC = CTB, 

in which case 

(50 A*A = BTB + CTC. 

Henceforth we shall assume that both ^4^4* and 4̂*̂ 4 are real and, conse­
quently, that equations (4), (5), (4'), and (5') hold. 

LEMMA 2. The matrices BBT, CCT, and BCT = CBT are real and symmetric 
and commute in pairs. Similarly, the matrices BTB, CTC, and BTC = CTB are 
real and symmetric and commute in pairs. 

Proof. It is sufficient to prove the first assertion. That all of the matrices are 
real and symmetric is obvious. In addition, by repeated use of equations (4) 
and (4r), we have 

BBTCCT = BCTBCT = CBTCBT = CCTBBT, 

(6) BBTBCT = BBTCBT = BCTBBT, 

CCTBCT = CBTCCT = BCTCCT. 

COROLLARY 1. There exists a real orthogonal matrix Q such that 

QBBTQT = Du QCCTQT = D2f QBCTQT = Dz 

where D\, D2, and D% are diagonal matrices of order m (2, p. 56). Moreover, D± 
and D2 are non-negative, and, according to equation (6), 

(7) D1D2 = (D,y. 

We now perform an orthogonal equivalence, using Q, and call the resulting 
matrix A. That is, first we set QA = A = B + iC (and consequently B = QB, 
C = QC). Then we drop the tildes and obtain a new matrix A = B + iC 
which satisfies equations (4), (5), (4'), and (5r) and for which we have, in 
addition, 

(8) BBT = Du CCT = D2, BCT = D3. 

Let us denote the rank of the matrix X by r(X). I t is well known that for 
any matrix X (4, p. 147), 

r(X) = r(X*) = r ( I I * ) = r(X*X). 
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COROLLARY 2. For any matrix A = B + iC for which A A* and A* A are 
both real, 

T(A) > m a x [ r ( 5 ) , r ( C ) ] . 

Proof. Note that the orthogonal equivalence just performed above does not 
change the rank of A,B, or C. Hence we may assume (8) without loss of 
generality. Then it follows from the fact that D± and D2 are non-negative that 

(9) r(A) = v(AA*) = r(BBT + CCT) = r(Z)1 + D2) 

> max[r(Z>i), r(D2)] = max[r(5), r(C)] 

since r(Di) = r(B) and r(D2) = r(C). 

LEMMA 3. There exists a real number 6 for which the real part of A = eidAhas 
the same rank as A. 

Proof. Set A = B + iC. Then a computation shows that 

B = cos 0£ - sin 6C, C = sin SB + cos ^C. 

Consequently, by equations (4) and (8), we have 

(10) (cos SB - sin BC) (sin BBT - cos 6CT) = sin d cos 6 (BBT + CCT) 

-BCT = | sin 20(Di + D2) - D*. 

By (7), D% has zero on the diagonal in any position in which either Dx or D2 

has a zero. Since D\ and D2 are non-negative, it follows that for 26 9e kit, 
k = 0, ± 1 , ± 2 , . . . , 

(11) r[J sin 26(D1 + D2) - Dz] < r(Z>! + Z?2). 

Moreover, it is clear that for a proper choice of 6 (which we now select and 
henceforth use) we can obtain equality in (11). Then, from equations (9) 
and (10), we have 

r (5) > r[ |sin20(Z)1 + ^ 2 ) - Dd] = r(D1 + D2) = r(A) = r(A). 

On the other hand, by Corollary 2, r(B) < r(A) and consequently r(B) = r(if). 
We define the diagonal matrices Du D2, and Z)3 as follows: 

251 = 5 5 r = cos20Z>i + sin20i^2 - sin 20i93, 

5 2 = CC77 = sin?0£>i + cos26D2 + sin 26DZ, 

Bz = BCT = \ sin 26(D1 - D2) + cos 20P3. 

Note that Du D2, and D3 satisfy equations (7) and (8). As before, we perform 
an orthogonal equivalence, replacing A by A = eidA, and then drop the tildes. 

Since a permutation matrix P is a real orthogonal matrix, it is easily seen 
that there is an orthogonal equivalence (replacing A by A = PAPT) which 
preserves all of the properties thus far established, and for which BBT has the 
form 

BBT = Dx = 
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where Ai is a non-singular diagonal matrix of order r, the rank of A. Then 

(12) CC T _ Z?Î = 
A2 

0 
BC1 D3 

A3 0 
0 0 

where A2 and A3 also have order r. Moreover, Ai and A2 are non-negative and 

(7') Ax A2 = (A3)2. 

We part i t ion A as 

(13) / - [f] 
where A i is an r X n matrix and A 2 is an m — r X w matrix. Then , by equa­
tions (5), (12), and (13), 

AA* 
'AXAX* AXA2*' 

_A2Ai* A2A2-

and it follows immediately tha t ^ 2 = 0. Clearly 

Ax + A2 0" 
0 0 

* - [ * . ' ] • c - [o ' ] -
the part i t ion being the same as in equation (13). Moreover, by the construction 
in Lemma 3, the rows of B\ are linearly independent. 

LEMMA 4. There is an orthogonal matrix Q of order n such that 

(14) B,Q= [Bx 0], C i G = ICi 0] 

where B\ and C\ are square matrices of order r and Bi is non-singular. 

Proof. Since B\ has n columns and is of rank r, it follows (4, p . 34) t h a t the 
null space of B\ has dimension n — r. I t is only necessary to construct any 
orthogonal matrix Q in which the last n — r columns form an orthogonal basis 
for the null space of B\. Then the first pa r t of equations (14) is immediately 
satisfied. Set 

CiQ= \& C2]. 
Then 

l = AQ-[S* + iC*f A* A = 
£iTB1 +_ 

. - î "C 2
J ' ( -B 

- CiTCi i{Bx
T - iC1

T)C2~\ 
Bi + id) C2

TC, J 

However, ^4*^4 is real, and since B\ is non-singular, it follows tha t C2 = 0. 
As before, there is an orthogonal equivalence (replacing A by A = AQ and 

then dropping the tildes so tha t 

A 

Set 

(15) 

Bi + id 0" 
0 0 

A, = Bi + id. 
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Note that A i A i* and A x*A i are both real and that 

(16) B, BX
T = A,, d dT = A2, Bx dT = A3. 

Proof of Theorem 1. I t is sufficient to prove Theorem 1 for A\, since if 

Ax = O1DO2 
then 

A M l 0" "Oi oi lD °1 ro2 oi 
Lo 0_ _0 1] Lo oj Lo r 

as required. Since Ai is a positive definite real diagonal matrix, it has a unique 
positive definite real diagonal square root, say H. That is, 

BiBS = Ax = H\ 

where H is diagonal. Clearly H is non-singular and hence 

(17) H^BtB^H-1 = I. 

Set BrxB\ = Q. By (17), Q is a real orthogonal matrix. Multiplying equation 
(15) on the right by BiT and substituting equations (16) yields 

AXBX
T = Ai + iAs. 

Then 
Ai= (Ax + iA3)(B1

T)~1 - (Ax + iAz)H-iQ, 

which is the required equation, with 0\ — I, D = (Ai + iA^H"1, and 02 = Q. 
This completes our proof. 

An interesting special case of Theorem 1 is 

COROLLARY 3. Every unitary matrix U can be expressed as 

U = Oi D02, 

where Oi and 02 are real orthogonal matrices and D is a diagonal unitary matrix. 

Clearly D of equation (2) can be chosen so that the real part of each diagonal 
element of A of equation (1) is non-negative and so that each pure imaginary 
diagonal element of A (if any) is a positive multiple of i. This is achieved by 
multiplying the diagonal elements of A by —1 when necessary and absorbing 
a compensating — 1 into either 0\ or O2. Also, the diagonal elements of A can 
be made to appear in any order. In particular, we may assume 

"PI e"1 

Pi e" 

A = ' 

Pr e idr 

where pt > 0, ir/2 > 0i > 02 > . . • > 0r > —ir/2, and pi+i > pt whenever 

THEOREM 2. With the restrictions of the above paragraph, D of equation (2) is 
unique. 
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Proof. Let A = d £>02. Then 

AAT = OiD2Ox
T, 

that is, the diagonal elements of A are the unique (within the restrictions of 
the last paragraph) square roots of the characteristic roots of A A T. 

If A (and hence D) is square and if the diagonal elements of D are distinct, 
then 0\ and 02 are unique up to a diagonal matrix <5, all of whose elements are 
± 1 . That is, if 

A = 01 D02 = Qi DQ2 

then Oi = Qi 5, 02 = ôQ2. 

COROLLARY 4. If A A* and A* A are real, then AAT and ATA are orthogonally 
similar to a diagonal matrix and hence are normal. 

The normality of ATA and AAT could also have been obtained directly 
from equations (4), (5), (4'), (5'), and Lemma 2. 

THEOREM 3. Let Ai, A2 be m X n matrices and let AtA* and A *At be real, 
i = 1,2. Then a necessary and sufficient condition that there exist orthogonal 
matrices 0\ and 02 such that 

(18) A2 = 01A102 

is that the characteristic roots of A\ AiT are the same as the characteristic roots of 
A2A2

T. 

Proof. That the condition is necessary is clear, for it follows immediately 
from equation (18) that A\A^ is orthogonally similar to A2A2

T. 
On the other hand, if A\ AiT and A2A2

T have the same characteristic roots, 
then, by Theorem 2, Ai and A2 have expressions of the type of equation (2) 
with the same D and the theorem follows. 

We present a simple example to show that the hypothesis in Theorem 3 
that Ai A? and A *A t both be real cannot be dropped. For example, if 

Al = [1 il A2 = [0 0], 

then A\A\T = A2A2
T = 0; but A1 and A2 do not satisfy equation (18) for any 

orthogonal matrices, Oi, 02. 
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