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THE NORM OF A REE GROUP

TOM DE MEDTS and RICHARD M. WEISS

Abstract. We give an explicit construction of the Ree groups of type G2 as
groups acting on mixed Moufang hexagons together with detailed proofs of the

basic properties of these groups contained in the two fundamental papers of

Tits on this subject (see [7] and [8]). We also give a short proof that the norm
of a Ree group is anisotropic.

§1. Introduction

The finite Ree groups of type G2 were introduced by Ree in [5]. In [8],
Tits showed how to construct these groups over an arbitrary field K of
characteristic 3 having an endomorphism whose square is the Frobenius
endomorphism of K. His result can be summarized as follows.

Theorem 1.1. Let K be a field of characteristic 3, and suppose that K

has an endomorphism θ such that

xθ2
= x3

for all x ∈ K. Let U denote the set K × K × K endowed with the multipli-
cation

(1.2) (a, b, c) · (x, y, z) = (a + x, b + y + axθ, c + z + ay − bx − axθ+1),

and let

(1.3) H = {ht | t ∈ K∗ },

where for each t ∈ K∗, ht is the map from U to itself given by the formula

(a, b, c)ht = (ta, tθ+1b, tθ+2c).

Let

(1.4) N(a, b, c) = −acθ + aθ+1bθ − aθ+3b − a2b2 + bθ+1 + c2 − a2θ+4
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16 TOM DE MEDTS AND RICHARD M. WEISS

for all (a, b, c) ∈ U , and let X denote the disjoint union of U and a symbol
∞. Then the following hold.

(i) U is a group with identity (0,0,0) (which we denote by 0) and
inverses given by

(a, b, c)−1 = (−a, −b + aθ+1, −c),

and H is a group of automorphisms of U .
(ii) The map N is anisotropic. This is to say, N(a, b, c) = 0 if and only

if (a, b, c) = 0.
(iii) Let ω be the map from X to itself that interchanges ∞ and 0 and

maps an arbitrary element (a, b, c) of U ∗ to

(1.5) (−v/w, −u/w, −c/w),

where v = aθbθ − cθ + ab2 + bc − a2θ+3, u = a2b − ac + bθ − aθ+3, and w =
N(a, b, c). Let U be identified with the permutation group of X that fixes
∞ and acts on X\{∞} by right multiplication. Let H be identified with
the permutation group of X that fixes ∞ and acts on X\{∞} by the for-
mula (1.3) (and thus fixes also 0). Let K† be the subgroup of K∗ generated
by {N(a, b, c) | (a, b, c) ∈ U ∗ }, and let

(1.6) H† = {ht | t ∈ K† } ⊂ H.

Then ω is a permutation of X of order 2, and the subgroup G of Sym(X)
generated by U and ω has the following properties.

(I) G is a 2-transitive permutation group on X.
(II) U is a normal subgroup of the stabilizer G∞ and G∞ = UH†.

(III) G = 〈U,Uω 〉.
(IV) H normalizes G.
(V) ω inverts every element of H.

(VI) If |K| > 3, then G is simple.

Tits’s proof of Theorem 1.1 in [8] is based on the standard embedding
of the split Moufang hexagon in six-dimensional projective space (see also
[10, Section 7.7]). The purpose of this note is to give an alternative proof
of Theorem 1.1 in which we construct the set X inside the mixed hexagon
defined over the pair (K,Kθ), which we construct directly without reference
to projective space.
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THE NORM OF A REE GROUP 17

Our motivation is threefold. First, since the Ree groups of type G2 con-
tinue to be the center of lively interest (see especially [2]), we want to give
a proof of Theorem 1.1 in which many of the details left to the reader in
[8] are filled in. We also want to provide independent confirmation of the
accuracy of the formulas occurring in Theorem 1.1. (In fact, in [8] a θ is
missing in the second term in the definition of the norm, and a minus sign
is missing in front of the whole expression on page 12, where θ is called σ

and the norm N is called w.) Second, we want to examine the fact that
the map N , which we call the norm of G, is anisotropic. As in [8], this
fact emerges “geometrically” in the course of our proof of Theorem 1.1; in
Section 6, we give a short algebraic proof. Third, we hope that the method
we use to prove Theorem 1.1 can serve as a model for other calculations in
Moufang polygons and in more general types of buildings.

If |K| = 3, then the endomorphism θ is trivial and the group G is not
simple; in fact, it is isomorphic to Aut(L2(8)) in this case and thus has a
normal subgroup of index 3 (which is simple).

If K is finite, then H† = H and thus H ⊂ G (by [5, (8.4)]). It is not true in
general, however, that H = H†. We say a few words about this in Section 7.
(For another approach to the finite Ree groups, see [4].)

We mention that there are also Ree groups of type F4. The canonical
reference for these groups is [7].

We would also like to bring the reader’s attention to Remark 3.11 below.

§2. The hexagon of mixed type

Let K be a field of characteristic 3, and let θ be a square root of the
Frobenius endomorphism of K. We now begin our proof of Theorem 1.1
by constructing the mixed hexagon associated with the pair (K,θ). (See [9,
(16.20) and (41.20)] for the definition of a mixed hexagon.) Let U1,U2, . . . ,U6

be six groups isomorphic to the additive group of K, and for each i ∈ [1,6],
let xi be an isomorphism from K to Ui. Let U+ be the group generated by
the groups U1,U2, . . . ,U6 subject to the commutator relations

[x1(s), x5(t)] = x3(−st),

[x2(s), x6(t)] = x4(st), and(2.1)

[x1(s), x6(t)] = x2(−sθt)x3(−s2tθ)x4(sθt2)x5(stθ)
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18 TOM DE MEDTS AND RICHARD M. WEISS

for all s, t ∈ K and [Ui,Uj ] = 1 for all other pairs i, j such that 1 ≤ i < j ≤ 6.
(We are using the convention that [a, b] = a−1b−1ab = (b−1)ab.) By Propo-
sitions 2.2 and 2.5 below and [9, (5.6)], every element of U+ can be written
uniquely as an element in the product U1U2 · · · U6. It is easily checked that
there is an automorphism ρ of U+ interchanging xi(t) and x7−i(t) for all
i ∈ [1,6] and all t ∈ K. We will see below that the group U in Theorem 1.1
is the centralizer of ρ in U+.

Let Ui,j denote the subgroup UiUi+1 · · · Uj of U+ for all i, j such that
1 ≤ i ≤ j ≤ 6 (so that Ui,i = Ui for each i). For each i ∈ [1,5], let Wi denote
the set of right cosets in U+ of U1,6−i. For each i ∈ [6,10], let Wi denote
the set of right cosets in U+ of U12−i,6. Let W be the disjoint union of
W1,W2, . . . ,W10 together with two symbols • and �. For each i ∈ [1,9], let
Ei be the set of pairs {x, y} such that x ∈ Wi, y ∈ Wi+1 and the intersection
of x and y is nonempty. Let E be the set of (unordered) 2-element subsets of
W consisting of {•, �}, {•, x} for all x ∈ W1, {�, y} for all y ∈ W10 together
with all the pairs in E1 ∪ E2 ∪ · · · ∪ E9. Finally, let Γ be the graph with
vertex set W and edge set E.

Figure 1: The graph Γ

Proposition 2.2. The graph Γ is the Moufang hexagon associated with
the hexagonal system (K/Kθ)◦ as defined in [9, (15.20) and (16.8)].

Proof. Let Ũ+ and Ũ1, . . . , Ũ6 be the groups obtained by setting F = Kθ,
J = K, T (a, b) = 0, a# = a2, N(a) = a3, and a × b = 2ab for all a, b ∈ K

in [9, (16.8)]. By [9, (8.13)], the maps xi(s) 	→ xi(sθ) for i = 2, 4, and 6;
xi(s) 	→ xi(−s) for i = 3 and 5; and x1(s) 	→ x1(s) extend to an isomorphism
ψ from U+ to Ũ+ mapping Ui to Ũi for all i ∈ [1,6]. The graph Γ is precisely
the graph called G(U+,U1, . . . ,U6) in [9, (8.1)] and the Moufang hexagon
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THE NORM OF A REE GROUP 19

associated with the hexagonal system (K/Kθ)◦ is G(Ũ+, Ũ1, . . . , Ũ6) (see [9,
Chapter 16, page 163]). Hence, the isomorphism ψ induces an isomorphism
from Γ to this Moufang hexagon.

Notation 2.3. Let D = Aut(Γ), and let D† denote the subgroup of D

generated by all the root groups of Γ.

From now on, we will write Uij in place of Ui,j . The group U+ acts
faithfully by right multiplication on the elements of

W1 ∪ · · · ∪ W10

and maps the set E of edges of Γ to itself. This allows us to identify U+

with a subgroup of the stabilizer D•,� (which we continue to denote by U+).
Just to fix notation, we observe, for example, that

(2.4) U
x6(t)
15 = U15x6(t),

where the cosets U15 and U15x6(t) are vertices in the set W1 and the expres-
sion on the left means the image of the vertex U15 under the action of the
element x6(t) ∈ U+.

Proposition 2.5. The groups U1,U2, . . . ,U6 are the root groups of Γ
corresponding to the six roots of Σ that contain the edge {•, �}.

Proof. This holds by [9, (8.2)].

We mention that by [9, (35.13) and (36.1)], the extension K/Kθ is an
invariant of the quadrangle Γ, from which it follows that Γ is a split Moufang
hexagon if and only if the field K is perfect.

§3. The automorphisms m1 and m6

Let Σ denote the apartment of Γ spanned by the vertices •, �, U1,6−i ∈ Wi

for all i ∈ [1,5] and U12−i,6 ∈ Wi for all i ∈ [6,10]. Let

m1 = μ
(
x1(1)

)
and m6 = μ

(
x6(1)

)
,

where the map μ is defined (with respect to the apartment Σ) as in [9,
(6.1)]. Both of these elements are contained in the group D†, and both
induce reflections on Σ; m1 induces the reflection fixing � and U1, and m6

induces the reflection fixing • and U6. By [9, (32.12)], we have

x6(t)m1 = x2(t) and x5(t)m1 = x3(t)
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and
x1(t)m6 = x5(−t) and x2(t)m6 = x4(t)

for all t ∈ K. Thus the action of m1 on the vertices in W1 is given by

(3.1)
(
U15x6(t)

)m1 = U
x6(t)m1

15 = U
m1x2(t)
15 = U36x2(t)

(see (2.4) above), and the action of m6 on the vertices in W10 is given by

(3.2)
(
U26x1(t)

)m6 = U
x1(t)m6

26 = U
m6x5(−t)
26 = U14x5(−t)

for all t ∈ K. Similarly, we have

(3.3)
(
U14x5(t)

)m1 = U46x3(t)

and

(3.4)
(
U36x2(t)

)m6 = U13x4(t)

for all t ∈ K.

Proposition 3.5. The maps m1 and m6 are as in Tables 1 and 2. (For
use in Section 4, we have also recorded the product m1m6 in Table 3.)

Proof. Let ξ denote the permutation of W given in Table 1. We claim
that ξ maps edges to edges and is thus an automorphism of Γ. To begin, we
choose an edge e containing one vertex in W5 and one vertex in W6. Thus
e = {U1g,U6g} for some

g = x1(s)x2(t)x3(r)x4(u)x5(v)x6(w) ∈ U+.

We have
U1g = U1x2(t)x3(r)x4(u)x5(v)x6(w),

and hence

(U1g)ξ = U1x2(w)x3(v)x4(u + wt)x5(−r)x6(−t).

By (2.1), we have

U6g = U6x1(s)x2(t)x3(r)x4(u)x5(v)x6(w)

= U6x1(s) · x6(w)x2(t) · x3(r)x4(u + wt)x5(v)
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Table 1: The action of m1 on Γ

� 	→ �

• 	→ U26

U15x6(t) 	→ U36x2(t)

U14x5(s)x6(t) 	→ U46x2(t)x3(s)

U13x4(r)x5(s)x6(t) 	→ U56x2(t)x3(s)x4(r)

U12x3(u)x4(r)x5(s)x6(t) 	→ U6x2(t)x3(s)x4(r)x5(−u)

U1x2(v)x3(u)x4(r)x5(s)x6(t) 	→ U1x2(t)x3(s)x4(r + vt)x5(−u)x6(−v)

U6x1(s)x2(t)x3(r)x4(u)x5(v) s=0	−→ U12x3(v)x4(u)x5(−r)x6(−t)

s �=0	−→ U6x1(−s−1)x2(−s−θt)x3(v + s−2tθ)

· x4(u − s−θt2)x5(s−1tθ − r)

U56x1(s)x2(t)x3(r)x4(u) s=0	−→ U13x4(u)x5(−r)x6(−t)

s �=0	−→ U56x1(−s−1)x2(−s−θt)x3(−s−1r − s−2tθ)

· x4(u − s−θt2)

U46x1(s)x2(t)x3(r)
s=0	−→ U14x5(−r)x6(−t)

s �=0	−→ U46x1(−s−1)x2(−s−θt)x3(−s−1r − s−2tθ)

U36x1(s)x2(t)
s=0	−→ U15x6(−t)

s �=0	−→ U36x1(−s−1)x2(−s−θt)

U26x1(s)
s=0	−→ •
s �=0	−→ U26x1(−s−1)
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Table 2: The action of m6 on Γ

� 	→ U15

• 	→ •

U15x6(w) w=0	−→ �

w �=0	−→ U15x6(−w−1)

U14x5(v)x6(w) w=0	−→ U26x1(−v)

w �=0	−→ U14x5(−vw−θ)x6(−w−1)

U13x4(u)x5(v)x6(w) w=0	−→ U36x1(−v)x2(−u)

w �=0	−→ U13x4(−vθw−2 − w−1u)x5(−vw−θ)

· x6(−w−1)

U12x3(r)x4(u)x5(v)x6(w) w=0	−→ U46x1(−v)x2(−u)x3(r)

w �=0	−→ U12x3(r − v2w−θ)x4(−vθw−2 − w−1u)

· x5(−vw−θ)x6(−w−1)

U1x2(t)x3(r)x4(u)x5(v)x6(w) w=0	−→ U56x1(−v)x2(−u)x3(r)x4(t)

w �=0	−→ U1x2(vθw−1 − u − tw)x3(r − v2w−θ)

· x4(−vθw−2 − w−1u)x5(−vw−θ)

· x6(−w−1)

U6x1(s)x2(t)x3(r)x4(u)x5(v) 	→ U6x1(−v)x2(−u)x3(r − sv)x4(t)x5(s)

U56x1(s)x2(t)x3(r)x4(u) 	→ U1x2(−u)x3(r)x4(t)x5(s)

U46x1(s)x2(t)x3(r) 	→ U12x3(r)x4(t)x5(s)

U36x1(s)x2(t) 	→ U13x4(t)x5(s)

U26x1(s) 	→ U14x5(s)

https://doi.org/10.1215/00277630-2010-002 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2010-002


THE NORM OF A REE GROUP 23

Table 3: The action of m1m6 on Γ

� 	→ U15

• 	→ U14

U15x6(t) 	→ U13x4(t)

U14x5(s)x6(t) 	→ U12x3(s)x4(t)

U13x4(r)x5(s)x6(t) 	→ U1x2(−r)x3(s)x4(t)

U12x3(u)x4(r)x5(s)x6(t) 	→ U6x1(u)x2(−r)x3(s)x4(t)

U1x2(v)x3(u)x4(r)x5(s)x6(t)
v=0	−→ U56x1(u)x2(−r)x3(s)x4(t)

v �=0	−→ U1x2(uθv−1 − r)x3(s + u2v−θ)

· x4(uθv−2 + v−1r + t)x5(−uv−θ)x6(v−1)

U6x1(s)x2(t)x3(r)x4(u)x5(v)
s=0,t=0−−−−→ U46x1(r)x2(−u)x3(v)

s=0,t �=0−−−−→ U12x3(v + r2t−θ)x4(rθt−2 + t−1u)

· x5(−rt−θ)x6(t−1)

s �=0	−→ U6x1(r − s−1tθ)x2(s−θt2 − u)

· x3(v − s−2tθ − s−1r)x4(−s−θt)x5(−s−1)

U56x1(s)x2(t)x3(r)x4(u)
s=0,t=0−−−−→ U36x1(r)x2(−u)

s=0,t �=0−−−−→ U13x4(rθt−2 + t−1u)x5(−rt−θ)x6(t−1)

s �=0	−→ U1x2(−u + s−θt2)x3(−s−1r − s−2tθ)

· x4(−s−θt)x5(−s−1)

U46x1(s)x2(t)x3(r)
s=0,t=0	−→ U26x1(r)

s=0,t �=0	−→ U14x5(−rt−θ)x6(t−1)

s �=0	−→ U12x3(−s−1r − s−2tθ)x4(−s−θt)x5(−s−1)

(continued)
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Table 3: (continued)

U36x1(s)x2(t)
s=0,t=0−−−−→ �

s=0,t �=0−−−−→ U15x6(t−1)

s �=0	−→ U13x4(−s−θt)x5(−s−1)

U26x1(s)
s=0	−→ •
s �=0	−→ U14x5(−s−1)

= U6x1(s) · x2(t − sθw)x3(r − s2wθ)

· x4(u + wt + sθw2)x5(v + swθ).

If s = 0, then

(U6g)ξ =
(
U6x2(t)x3(r)x4(u + wt)x5(v)

)ξ

= U12x3(v)x4(u + wt)x5(−r)x6(−t),

and thus (U1g)ξ ⊂ (U6g)ξ . Suppose, instead, that s �= 0, and let

ĝ = x1(−s−1)x2(w)x3(v)x4(u + wt)x5(−r)x6(−t).

Note that ĝ ∈ (U1g)ξ . By (2.1) again, we have

U6ĝ = U6x1(−s−1) · x6(−t)x2(w) · x3(v)x4(u)x5(−r)

= U6x1(−s−1) · x2(w − s−θt)x3(v + s−2tθ)x4(u − s−θt2)x5(−r + s−1tθ).

Therefore, (U6g)ξ = U6ĝ by Table 1 and a bit of calculation. Thus

ĝ ∈ (U1g)ξ ∩ (U6g)ξ.

We conclude that eξ = {(U1g)ξ, (U6g)ξ } is an edge of Γ whether s = 0 or
not. It is now an easy task to check in a similar fashion that ξ maps all the
remaining edges to edges; we leave this to the reader.
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Next we observe that the automorphism ξ induces the same reflection of
the apartment Σ as does m1, and it agrees with m1 on the set of neighbors
of • and on the set of neighbors of U15 by (3.1) and (3.3). By [9, (3.7)],
it follows that ξ = m1. (In fact, Table 1 was created by starting with the
action of m1 on Σ, the set of neighbors of •, and the set of neighbors of U15

and working backward.) By (3.2), (3.4), and a similar argument, the claim
holds for m6.

Now let ρ be the automorphism of U+ mentioned above. Thus

(3.6) xi(t)ρ = x7−i(t)

for all i ∈ [1,6] and all t ∈ K. By [9, (7.5)], there exists a unique automor-
phism of Γ that maps the apartment Σ to itself, interchanges • and �, and
induces ρ on U+. We denote this automorphism of Γ also by ρ. Thus, in
particular, Uρ

1 = U6 and Uρ
6 = U1.

From now on, we set

(3.7) ω = (m1m6)3.

Proposition 3.8. The automorphisms ρ and ω commute with each other,
and both have order 2.

Proof. Since ρ has order 2 as an automorphism of U+, it also has order 2
as an automorphism of Γ. By [9, (6.9)], ω = (m6m1)3, and by [9, (6.2)],
mρ

1 = m6 and mρ
6 = m1. Thus ωρ = (m6m1)3 = ω. Let d = m2

1 and e = m2
6 (so

that [m1, d] = [m6, e] = 1). Then d and e both act trivially on the apartment
Σ, and by [9, (29.12)], d centralizes U1 and U4 and inverts every element
of Ui for all other i ∈ [1,6] and e centralizes U3 and U6 and inverts every
element of Ui for all other i ∈ [1,6]. By [9, (6.7)], d and e are elements
of order 2 (so m−1

1 = dm1 and m−1
6 = em6), and their product (in either

order) is the unique element of D acting trivially on Σ that centralizes
U2 and U5 and inverts every element of Ui for all other i ∈ [1,6]. Since
Um1

i = U8−i for all i ∈ [2,6] and Um6
i = U6−i for all i ∈ [1,5], both em1 and

dm6 centralize U2 and U5 and invert every element of Ui for all other i ∈ [1,6].
Thus em1 = ed = dm6 . It follows by repeated use of these relations that

(m−1
1 m−1

6 )3 = (dm1 · em6)3 = (m1m6)3,

and hence ω−1 = (m6m1)−3 = ω.
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Proposition 3.9. Let ϕ be the map from U to U+ given by

ϕ(a, b, c) = x1(a)x2(b)x3(c − ab + aθ+2)x4(c + ab)x5(b − aθ+1)x6(a).

Then ϕ is an injective homomorphism whose image is the centralizer of ρ

in U+.

Proof. By (1.2) and (2.1) and a bit of calculation, ϕ is a homomorphism.
It is clearly injective. Now choose a, b, c, d, e, f ∈ K, and let

g = x1(a)x2(b)x3(c)x4(d)x5(e)x6(f).

By (2.1) and (3.6), we have

gρ = x6(a)x5(b)x4(c)x3(d)x2(e)x1(f)

= x5(b)x4(c − ae)x3(d)x2(e) · x6(a)x1(f)

= x2(e)x3(d)x4(c − ae)x5(b) · x1(f)x6(a) · x2(af θ)x3(aθf2)x4(−a2f θ)

· x5(−aθf)

= x1(f)x2(e)x3(d + bf)x4(c − ae)x5(b) · x2(af θ)x3(aθf2)x4(a2f θ)

· x5(−aθf)x6(a)

= x1(f)x2(e + af θ)x3(d + bf + aθf2)x4(c − ae + a2f θ)x5(b − aθf)x6(a).

Thus gρ = g if and only if a = f , e = b − aθ+1, and c = d + ab + aθ+2. We
conclude that g commutes with ρ if and only if g = ϕ(a, b, d − ab).

From now on, we identify U with its image in U+ under the map ϕ in
Proposition 3.9.

Proposition 3.10. Let X be the set of edges of Γ fixed by ρ, let ∞
denote the edge {•, �}, and let G = 〈U,ω〉, where ω is as in (3.7). Then the
following hold:

(i) U acts regularly on X\{∞};
(ii) G acts 2-transitively on X;
(iii) G = B ∪ BωB, where B = G∞;
(iv) U is a normal subgroup of the stabilizer G∞;
(v) G acts faithfully on X.
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Proof. Since ρ interchanges the vertices • and �, all the edges in X other
than ∞ = {•, �} are 2-element subsets containing a right coset of U1 and a
right coset of U6. Since U1 ∩ U6 = 1, the intersection of a right coset of U1

and a right coset of U6 is either empty or consists of a unique element. It
follows that

X =
{

{U1g,U6g}
∣
∣g ∈ U

}
∪ {∞}.

In particular, (i) holds, and we can identify U with X\{∞} via the map that
sends g ∈ U to {U1,U6}g = {U1g,U6g}. In particular, 0 = (0,0,0) ∈ U now
denotes the edge {U1,U6} itself. By Proposition 3.8, ω acts on the set X .
Since ω interchanges the edges ∞ and 0 (by Table 3) and U acts transitively
on X\{∞}, we conclude that (ii) and (iii) hold. Since U+ is normal in D∞
(by [9, (4.7) and (5.3)]) and G is contained in the centralizer of ρ, (iv) also
holds.

Note that ω maps each vertex of Σ to a vertex at distance 6 from itself.
Since the elements of U all fix the vertex • and Γ is bipartite, it follows that
the distance from x to xg is even for every vertex x and every g ∈ 〈U,ω〉. In
particular, no element of G interchanges the two vertices of an edge.

For each x ∈ X\{∞}, there exists a unique apartment Σx of Γ containing
the edges x and ∞. For each (a, b, c) ∈ U , we have U15ϕ(a, b, c) = U15x6(a)
and U26ϕ(a, b, c) = U26x1(a) by Proposition 3.9. For each vertex u adjacent
to • or �, therefore, there exists an edge x ∈ X\{∞} such that u ∈ Σx.
If an element of G acts trivially on X , then it acts trivially on all these
apartments; thus it also acts trivially on the set of all vertices adjacent to
• or �, and hence it is itself trivial by [9, (3.7)]. Thus (v) holds.

Remark 3.11. The permutation group on U obtained by letting U act
on itself by right multiplication is of course the same as the permutation
group on U obtained by letting Uopp act on itself by left multiplication. It
follows that Theorem 1.1 is equivalent to the assertion obtained by replacing
the multiplication on U defined in (1.2) by the opposite multiplication and,
in part (iii), letting U act on U = X\{∞} by left rather than right multi-
plication, and this “left-handed” version of Theorem 1.1 produces the same
group G. We have chosen to work with right cosets and to let U+ act by
right multiplication in order to conform to [9] and to the recent literature
on Moufang sets, whereas Tits [8] chose to work with left multiplication.
This explains why the group U in Theorem 1.1 is the opposite of the group
U in [8, Example 3, pages 210–215].
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Proposition 3.12. Let H be as in (1.3), let D† be as in Notation 2.3,
let D◦ denote the centralizer of ρ in D†, and let T denote the two-point
stabilizer D◦

∞,0. Then there is a canonical isomorphism π from H to T that
is compatible with the map ϕ in Proposition 3.9.

Proof. Let g ∈ D†
∞,0. Thus g acts trivially on the apartment Σ. By [9,

(15.20) and (33.16)] and the isomorphism described in the proof of Propo-
sition 2.2, there exist a,u ∈ K∗ such that x1(s)g = x1(a2u−θs) and x6(s)g =
x6(a−θu2s) for all s ∈ K. By [9, (33.5)], the centralizer of 〈U1,U6〉 in D∞,0

is trivial. By (3.6), therefore, g commutes with ρ (and hence is contained
in T ) if and only if a2u−θ = a−θu2. Since the maps x 	→ x2+θ and x 	→ x2−θ

from K∗ to K∗ are inverses of each other, we conclude that a = u and that
the map g 	→ a2−θ is an isomorphism from T to K∗. Now let t = a2−θ, so
that x1(s)g = x1(ts) and x6(s)g = x6(ts) for all s ∈ K. By the commuta-
tor relations (2.1), it follows that x2(s)g = x2(tθ+1s), x3(t)g = x3(tθ+2s),
x4(s)g = x4(tθ+2s), and x5(s)g = x5(tθ+1s). By Proposition 3.9, therefore,
(a, b, c)g = (a, b, c)ht , where ht is as in (1.3).

From now on we identify H with the two-point stabilizer T via the map
π in Proposition 3.12.

§4. The formula (1.5)

In this section we show that the norm N defined in (1.4) is anisotropic and
that the automorphism ω satisfies (1.5). We do this by computing explicitly
the action of ω on X using Table 3.

For each g = (a, b, c) ∈ U , we have

(4.1) U1g = U1x2(b)x3(c − ab + aθ+2)x4(c + ab)x5(b − aθ+1)x6(a)

by Proposition 3.9 and

(4.2) U1g ∩ U = {g}

by Proposition 3.10(i).

Lemma 4.3. Suppose that U1x2(v̈)x3(ü)x4(r̈)s5(s̈)x6(ẗ) = U1g for some
g ∈ U . Then g = (ẗ, v̈, r̈ − v̈ẗ).

Proof. This holds by (4.1) and (4.2).
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We now fix g = (a, b, c) ∈ U ∗, and let u, v, and w = N(a, b, c) be as in
Theorem 1.1(iii). Observe first that the following curious identity holds:

(4.4) w = av + bu + c2.

Let m = m1m6 (so that ω = m3), let α denote the vertex U1g, let β = αm,
and let γ = βm. Our goal is to show that w �= 0 and that

(4.5) (a, b, c)ω = (−v/w, −u/w, −c/w).

Lemma 4.6. Suppose that w �= 0 and that

αω = U1x2(v̈)x3(ü)x4(r̈)x5(s̈)x6(ẗ).

Then (4.5) holds if and only if

ẗ = −v/w,(4.7)

v̈ = −u/w, and(4.8)

r̈ = −c/w + (−v/w)(−u/w).(4.9)

Proof. Since ω maps X\{∞,0} to itself, we have αω = U1e for some e ∈
U ∗. The claim holds, therefore, by Lemma 4.3.

To begin, we assume that

(4.10) b �= 0,

so by Table 3 applied to (4.1), we have

β = αm = U1x2(v̂)x3(û)x4(r̂)x5(ŝ)x6(t̂),

where

v̂ = b−1cθ − aθbθ−1 + a2θ+3b−1 − c − ab,

û = b − aθ+1 + b−θc2 + a2b−θ+2 + a2θ+4b−θ

+ ab−θ+1c − aθ+2b−θc + aθ+3b−θ+1,

r̂ = b−2cθ − aθbθ−2 + a2θ+3b−2 + b−1c − a,

ŝ = −b−θc + ab−θ+1 − aθ+2b−θ, and

t̂ = b−1.(4.11)
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It is straightforward to check that the following identities hold:

w = bûθ − v̂(v̂ − c),(4.12)

br̂ = v̂ − c,(4.13)

bŝθ = −a − b−1(v̂ + c), and(4.14)

v̂ = −b−1v.(4.15)

Next we assume that

(4.16) v �= 0.

Thus also v̂ �= 0 (by (4.15)), so by a second application of Table 3, we have

γ = βm = U1x2(ṽ)x3(ũ)x4(r̃)x5(s̃)x6(t̃),

where

ṽ = ûθv̂−1 − r̂,(4.17)

ũ = ŝ + û2v̂−θ,(4.18)

r̃ = ûθv̂−2 + v̂−1r̂ + t̂,(4.19)

s̃ = −ûv̂−θ, and

t̃ = v̂−1.(4.20)

Note that

ṽ = ûθv̂−1 − r̂ by (4.17),

= v̂−1b−1 · (bûθ − br̂v̂)

= v̂−1b−1 ·
(
bûθ − v̂(v̂ − c)

)
by (4.13),

= v̂−1b−1 · w by (4.12), and

= −w/v by (4.15).

In particular, we have

(4.21) ṽ = b−1v̂−1w

as well as

(4.22) ṽ = −wv−1
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and ûθv̂−1 = r̂ + b−1v̂−1w, so

(4.23) b2û2θv̂−2 = b2r̂2 − br̂v̂−1w + v̂−2w2.

Moreover,

r̃ = ûθv̂−2 + v̂−1r̂ + t̂ by (4.19),

= ûθv̂−2 + v̂−1r̂ + b−1 by (4.11),

= (ṽ − r̂)v̂−1 + b−1 by (4.17);

hence,

(4.24) r̃ = b−1v̂−2w − r̂v̂−1 + b−1 by (4.21),

and thus

(4.25) br̃w = v̂−2w2 − br̂v̂−1w + w.

We record also that

(4.26) b2ŝθv̂ = −abv̂ − v̂2 − v̂c by (4.14).

The vertex αω = γm lies on an edge contained in X . Hence, αω ∈ W5

(where W5 is as in Figure 1). It follows that ṽ �= 0, since otherwise γm ∈ W7

by Table 3. By (4.22), we conclude that

w �= 0,

and by a final application of Table 3, we have

αω = γm = U1x2(v̈)x3(ü)x4(r̈)x5(s̈)x6(ẗ),

where

v̈ = ũθṽ−1 − r̃,

ü = s̃ + ũ2ṽ−θ,

r̈ = ũθṽ−2 + ṽ−1r̃ + t̃,

s̈ = −ũṽ−θ, and

ẗ = ṽ−1.
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We now observe that ẗ = ṽ−1 = −v/w by (4.22), so (4.7) holds. Furthermore,

−bv̈w = −b(ũθṽ−1 − r̃)w

= −b2ũθv̂ + br̃w by (4.21)

= −b2(ŝ + û2v̂−θ)θv̂ + br̂w by (4.18)

= −b2ŝθv̂ − b2û2θv̂−2 + br̃w.

Applying (4.23), (4.25), and (4.26) to the three terms in this last expression,
we find that

−bv̈w = abv̂ + v̂2 + cv̂ − b2r̂2 + w

= abv̂ + v̂2 + cv̂ − (v̂ − c)2 + w by (4.13)

= −av − c2 + w by (4.15)

= bu by (4.4).

Thus (4.8) holds. Finally, we have

wr̈ = w(ũθṽ−2 + ṽ−1r̃ + t̃)

= wṽ−1(v̈ − r̃) + wt̃

= −ṽ−1(u + wr̃) + wt̃ by (4.8)

= uvw−1 + vr̃ + wt̃ by (4.22)

= uvw−1 + vr̃ + wv̂−1 by (4.20)

= uvw−1 + v(b−1v̂−2w − v̂−1r̂ + b−1) + wv̂−1 by (4.24)

= uvw−1 + (−v̂−1w + br̂ − v̂) + wv̂−1 by (4.15)

= uvw−1 − c by (4.13),

so (4.9) also holds. By Lemma 4.6, it follows that (4.5) holds. We conclude
that w �= 0 and that the identity (1.5) holds for all “generic” points in U ∗,
that is, for all g = (a, b, c) in U ∗ satisfying (4.10) and (4.16).

Next we consider the case that b �= 0 but v = 0. By (4.15), we have v̂ = 0
as well, and hence

β = αm = U1x3(û)x4(r̂)x5(ŝ)x6(t̂).
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It follows from Table 3 that

γ = βm = U56x1(û)x2(−r̂)x3(ŝ)x4(t̂).

If û = 0, it would follow from Table 3 that αω = γm ∈ W3 ∪ W9. This is
impossible since the vertex αω lies on an edge contained in X . We conclude
that û �= 0. It follows from (4.12) (with v̂ = 0) that w �= 0. From Table 3 we
now obtain

αω = γm = U1x2(v̈)x3(ü)x4(r̈)x5(s̈),

where

v̈ = −t̂ + û−θr̂2,

ü = −û−1ŝ + û−2r̂θ,

r̈ = û−θr̂, and

s̈ = −û−1.

Remembering that v = v̂ = 0, we calculate that

r̈ = û−θr̂

= w−1b · r̂ by (4.12)

= −w−1c by (4.13)

and that

v̈ = −t̂ + û−θr̂2

= −b−1 + w−1b · (−b−1c)2 by (4.11)–(4.13)

= −b−1w−1 · (w − c2)

= −b−1w−1 · bu by (4.4)

= −w−1u.

By Lemma 4.6, we conclude that (4.5) holds.
We can thus assume from now on that b = 0, so

α = U1x3(c + aθ+2)x4(c)x5(−aθ+1)x6(a),
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as well as

v = −cθ − a2θ+3 = −zθ,(4.27)

u = −ac − aθ+3, and(4.28)

w = −acθ + c2 − a2θ+4 = c2 − azθ,(4.29)

where
z = c + aθ+2.

From Table 3 we now obtain

β = αm = U56x1(z)x2(−c)x3(−aθ+1)x4(a).

Note that a and c cannot both be 0, since otherwise g = (a,0, c) = 0 ∈ U .
Suppose that c = −aθ+2 or, equivalently, that z = 0. Then a �= 0, and

Table 3 tells us that

β = αm = U56x2(aθ+2)x3(−aθ+1)x4(a),

γ = βm = U13x5(a−θ−2)x6(a−θ−2),

αω = γm = U1x3(a−θ−2)x4(a−θ−2).

By (4.27)–(4.29), we have v = 0, u = 0, and w = a2θ+4 �= 0, and by Lemma 4.6,
we conclude once again that (4.5) holds.

Suppose, finally, that c �= −aθ+2 or, equivalently, that z �= 0. From Table 3
we obtain

γ = βm = U1x2(ṽ)x3(ũ)x4(r̃)x5(s̃),

where

ṽ = −a + z−θc2,(4.30)

ũ = z−1aθ+1 + z−2cθ,(4.31)

r̃ = z−θc, and(4.32)

s̃ = −z−1.

It follows from (4.29) and (4.30) that

(4.33) w = zθṽ.
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Observe that ṽ �= 0, since it would otherwise follow from Table 3 again that
αω = γm ∈ W7, which is impossible. Therefore, w �= 0 also in this last case.
By one final application of Table 3, we obtain

αω = γm = U1x2(v̈)x3(ü)x4(r̈)x5(s̈)x6(ẗ),

where
v̈ = ũθṽ−1 − r̃,

ü = s̃ + ũ2ṽ−θ,

r̈ = ũθṽ−2 + ṽ−1r̃,

s̈ = −ũṽ−θ, and

ẗ = ṽ−1.

By (4.27) and (4.33), we have

(4.34) ẗ = ṽ−1 = zθ/w = −v/w.

Furthermore,

v̈ = ũθṽ−1 − r̃

= (z−1aθ+1 + z−2cθ)θ · (−v/w) − z−θc by (4.31), (4.32),

and (4.34)

= w−1 ·
(
(z−θaθ+3 + z−2θc3) · zθ − z−θcw

)
by (4.27)

= w−1 · (aθ+3 + z−θc3 − z−θc3 + ac) by (4.29)

= −u/w by (4.28),(4.35)

and

r̈ = ũθṽ−2 + ṽ−1r̃

= (−v/w) · (ũθṽ−1 + r̃) by (4.34)

= (−v/w) ·
(
(−u/w) − r̃

)
by (4.35)

= (−v/w)(−u/w) + (v/w) · z−θc by (4.32)

= −c/w + (−v/w)(−u/w) by (4.27).

By Lemma 4.6, we conclude that (4.5) holds also in this last case.
This completes the proof that w �= 0 and that the identity (1.5) holds for

every g = (a, b, c) in U ∗.

https://doi.org/10.1215/00277630-2010-002 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2010-002


36 TOM DE MEDTS AND RICHARD M. WEISS

§5. Properties (I)–(VI)

By Proposition 3.8, ω is a permutation of X of order 2. To conclude
our proof of Theorem 1.1, it thus remains only to show that (I)–(VI) hold.
By Proposition 3.10(ii),(v), (I) holds. For each x ∈ X , there exists g ∈ G

mapping ∞ to x; let Ux = Ug. If g1, g2 are two elements of G mapping
∞ to the same element of X , then g1g

−1
2 ∈ G∞ and thus Ug1 = Ug2 (by

Proposition 3.10(iv)). By Proposition 3.10(i), it follows that (X, (Ux)x∈X)
is a Moufang set (as defined, e.g., in [1, Section 2.1]). Let G† = 〈Ux | x ∈ X〉,
and let μ be as in [1, Definition 3.1]. Thus for each a ∈ U ∗, μ(a) is the
unique element of U0aU0 = UωaUω that interchanges ∞ and 0. (Note that
this is not the same μ as in the definition of m1 and m6 at the beginning
of Section 3 above.) By [1, Theorem 3.1(ii)], we have

(5.1) G†
∞ = U · 〈μ(a)μ(b) | a, b ∈ U ∗ 〉.

Proposition 5.2. The following hold.
(i) G†

∞ = UH†, where H† is as defined in (1.6).
(ii) ω ∈ 〈U,Uω 〉 (so G = G†).

Proof. We have 〈μ(a)μ(b) | a, b ∈ U ∗ 〉 = H† by [3, Proposition 6.12(ii)],
whose proof depends only on knowing that the norm N is anisotropic. By
(5.1), therefore, (i) holds. At the conclusion of the proof of [3, Proposi-
tion 6.12(ii)], it is observed that ω = μ(0,0,1). Hence, (ii) holds.

By Propositions 3.10(iv) and 5.2, (II) and (III) hold. Let

(5.3) t · (a, b, c) = (a, b, c)ht

for each (a, b, c) ∈ U and each t ∈ K∗. By (1.5), we have

(5.4) ω
(
t · (a, b, c)

)
= t−1 · ω(a, b, c)

for all (a, b, c) ∈ U and all t ∈ K∗. Thus (V) holds. Since H normalizes U , it
follows that H also normalizes Uω. Hence, (IV) follows from (III).

Suppose, finally, that |K| > 3. Let K† be as in (1.6). Thus, in particular,
(K∗)2 = N(0,0,K∗) ⊂ K†. Since |K| > 3, it follows that we can choose t ∈
K† such that tθ+1 �= 1. Thus t �= 1, so also tθ+2 �= 1. We have

[ht, (a,0,0)] =
(
(1 − t)a, (t − 1)tθaθ+1,0

)
,

[ht, (0, b,0)] =
(
0, (1 − tθ+1)b,0

)
, and
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[ht, (0,0, c)] =
(
0,0, (1 − tθ+2)c

)

for all a, b, c ∈ K. Hence, U ⊂ [G,G]. By Proposition 3.10(iii), (G∞, 〈ω〉) is
a BN -pair (as defined in [6, Definition 2.1]). The group U is nilpotent. By
[6, Proposition 2.8] and Proposition 3.10(iv),(v), it follows that G is simple.
Thus (VI) holds.

§6. A more elementary reason that the norm is anisotropic

In this section we give a short algebraic proof that the norm N defined
in (1.4) is anisotropic. Let

(6.1) Ω(a, b, c) = (−v, −uwθ, −cwθ+1)

for all (a, b, c) ∈ U , where, as in (1.4) and (1.5),

v = aθbθ − cθ + ab2 + bc − a2θ+3,

u = a2b − ac + bθ − aθ+3,

and w = N(a, b, c) = −acθ + aθ+1bθ − aθ+3b − a2b2 + bθ+1 + c2 − a2θ+4. Note
that

(6.2) N
(
t · (a, b, c)

)
= t2θ+4N(a, b, c)

for all (a, b, c) ∈ U , where t · (a, b, c) is as in (5.3), and

(6.3) N
(
(a, b, c)−1

)
= N(a, b, c)

for all (a, b, c) ∈ U ∗, where (a, b, c)−1 is as in Theorem 1.1(i).
Our proof rests on the observation that

(6.4) N
(
Ω(a, b, c)

)
= N(a, b, c)2θ+3

for all (a, b, c) ∈ U . This can be checked simply by plugging the definitions
of v, u, and w into (6.1). (That this identity ought to hold follows from [3,
(6.18)] and (5.4).)

Now fix (a, b, c) ∈ U ∗ such that w = 0.

Lemma 6.5. v = 0.

Proof. By (6.1) and (6.4), we have

N(−v,0,0) = N
(
Ω(a, b, c)

)
= 0.

By (1.4), on the other hand, N(−v,0,0) = −v2θ+4.
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Lemma 6.6. a �= 0.

Proof. Suppose that a = 0. Since (a, b, c) �= 0 and w = 0, we have c �= 0.
By (6.2), the norm of cθ−2 · (0, b, c) is zero. We can thus assume that c = 1.
It follows by (1.4) that b �= 1, but Lemma 6.5 implies that b = 1.

By (6.2) and Lemma 6.6, we can assume from now on that a = 1. Hence,
v = 0 means that

(6.7) bθ − cθ + b2 + bc − 1 = 0,

and w − v = 0 means that

(6.8) bθ+1 + b2 − b − bc + c2 = 0.

By (6.3) and Lemma 6.5, we also have v(−1, −b+1, −c) = v((1, b, c)−1) = 0,
and thus

(6.9) bθ + cθ − b2 − b − 1 + bc − c = 0.

Adding (6.7) and (6.9), we find that

(6.10) bθ + b − 1 = −bc − c.

Multiplying this last equation by b and comparing with (6.8), we obtain

(6.11) c(c − b2 + b) = 0.

Assume first that c = 0. Then by (6.7), we have bθ + b2 − 1 = 0, whereas
by (6.10), we have bθ + b − 1 = 0. We find that b2 = b and thus b ∈ {0,1},
contradicting the equality bθ + b − 1 = 0.

Hence, c �= 0, and it follows from (6.11) that c = b2 − b. By (6.7), we now
obtain

b2θ = b3 − 1 − bθ;

from (6.10), on the other hand, we get

b3 − 1 = −bθ.

Combining the last two equations, we obtain b2θ = bθ, but then cθ = 0, and
hence c = 0 after all. With this contradiction, we conclude that the norm N

is anisotropic.
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§7. The subgroup H†

If K is finite, then |K| is an odd power of 3, from which it follows that
K∗ is generated by (K∗)2 = N(0,0,K∗) and −1 = N(0,1,1), so K† = K∗

and H† = H . (This is [5, (8.4)].) It is not necessarily true, however, that
H† = H if K is infinite. In this section we illustrate this with an example.
As Tits suggests in [7, Section 1.12], we need to modify what he does there
only slightly.

Let F be an odd degree extension of the field with three elements, and
let K be the field of quotients of the polynomial ring F [s, t] in two variables
s and t. Since |F | is an odd power of 3, there exists a unique endomorphism
θ of K mapping F to F , t to s, and s to t3 whose square is the Frobenius
endomorphism. (In what follows, the reader may wish to think of s as being
formally equal to t

√
3.)

Proposition 7.1. The group K† ∩ F (t) is generated by (F (t)∗)2 and all
irreducible polynomials in F [t] of even degree.

Proof. Since F is finite, we have F ∗ ⊂ K†. Let f ∈ F [t] be an irreducible
polynomial of even degree over F , and let α be a root of f in some split-
ting field L. Then L = F (α) and [L : F ] = deg(f) = 2d for some d. Thus L

contains an element β whose square is −1. Since [L : F (β)] = d, there are
nonzero polynomials p, q ∈ F [t] of degree at most d such that p + βq is the
minimal polynomial of α over F (β). Thus p + βq divides f . Hence, p − βq

also divides f . Since the polynomial p + βq is irreducible over F (β), it fol-
lows that it is relatively prime to the polynomial p − βq. Thus f/e equals
the product of these two polynomials for some e ∈ F ∗. Hence,

f = e(p2 + q2) = eN(0, pθ−1, q) ∈ K†.

Since h−1 = h · h−2 for all h ∈ F [t]∗ and (K∗)2 ⊂ K†, it will now suffice
to show that no product in F [t] of distinct irreducible polynomials of odd
degree is contained in K†. Let g ∈ F [t] be such a product, let F1 be the
splitting field of g over F , and let K1 = F1(s, t). The extension F1/F is of odd
degree by the choice of g, so θ has a unique extension to an endomorphism
of K1 (which we continue to call θ) whose square is the Frobenius map.
Let c be an arbitrary root of g in F1, and let d = cθ. We define a valuation
ν on K1 with values in Z[

√
3]. First, we declare the degree of a monomial

e(s − d)m(t − c)n (for e ∈ F ∗
1 ) to be n + m

√
3. If p ∈ F1[s, t]∗, we write p as

a sum of monomials in the variables t − c and s − d and define ν(p) to be
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the minimum of the degrees of these monomials (minimum with respect to
the natural ordering of Z[

√
3] as a subset of R). Finally, we set ν(p/q) =

ν(p) − ν(q) for all p, q ∈ F1[s, t]∗. Then ν is a well-defined valuation on K1.
Since g is a product of distinct irreducibles, c is a simple root of g. Since
the variable s does not occur in g, we conclude that ν(g) = 1. Since

(
e(s − d)m(t − c)n

)θ = eθ(t3 − c3)m(s − d)n

= eθ(t − c)3m(s − d)n

for all e ∈ F1 and all m,n ≥ 0, it follows that ν(uθ) =
√

3 · ν(u) for all u ∈ K∗
1 .

Now let w = N(a, b, c) for a, b, c ∈ K1. By [3, (9.3)] (whose proof depends
only on the fact that the norm is anisotropic), ν(w) is equal to the minimum
of (2

√
3 + 4)ν(a), (

√
3 + 1)ν(b), and 2ν(c). Since (

√
3 + 1)2 = 2

√
3 + 4 and

(
√

3 + 1)(
√

3 − 1) = 2, it follows that ν(K†
1) = (

√
3 + 1)Z[

√
3]. Since ν(g) =

1 /∈ (
√

3 + 1)Z[
√

3], we conclude that g /∈ K†
1 . Hence, g /∈ K†.

Corollary 7.2. K∗/K† is infinite.

Proof. There are infinitely many pairwise nonproportional irreducible
polynomials of odd degree in F [t]. By Proposition 7.1, these polynomials
have pairwise distinct images in K∗/K†.
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[4] G. Kemper, F. Lübeck, and K. Magaard, Matrix generators for the Ree groups
2G2(q), Comm. Algebra 29 (2001), 407–413.

[5] R. Ree, A family of simple groups associated with the simple Lie algebra of type (G2),
Amer. J. Math. 83 (1961), 432–462.

[6] J. Tits, Algebraic and abstract simple groups, Ann. Math. 80 (1964), 313–329.
[7] J. Tits, Moufang octagons and Ree groups of type F4, Amer. J. Math. 105 (1983),

539–594.
[8] J. Tits, “Les groupes simples de Suzuki et de Ree” in Séminaire Bourbaki, Vol. 6
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