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Abstract

Let V be a vector space and let 7(V) denote the semigroup (under composition) of all linear
transformations from V into V. For a fixed subspace W of V, let T'(V, W) be the semigroup consisting of
all linear transformations from V into W. In 2008, Sullivan [‘Semigroups of linear transformations with
restricted range’, Bull. Aust. Math. Soc. 77(3) (2008), 441-453] proved that

O={aeT(V,W):Va C Wea}

is the largest regular subsemigroup of 7(V, W) and characterized Green’s relations on 7'(V, W). In this
paper, we determine all the maximal regular subsemigroups of Q when W is a finite-dimensional subspace
of V over a finite field. Moreover, we compute the rank and idempotent rank of Q when W is an n-
dimensional subspace of an m-dimensional vector space V over a finite field F.
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1. Introduction

Let T(X) be the set of all full transformations from a nonempty set X into itself. If
X={1,2,...,n}, with n € N, we write T,, = T(X). It is well known that 7'(X) is a
regular semigroup under composition of functions. The properties of 7(X) have been
widely studied. In particular, in 2002, You [15] determined all the maximal regular
subsemigroups of 7'(X) when X is finite.

The rank of a semigroup S is the smallest number of elements required to generate
S and is denoted by rank(S), that is,

rank(S) = min{|A| : AC S and (A) =S }.

If S is generated by its set of idempotents E(S), then the idempotent rank of S is
defined by
idrank(S') = min{|A| : A € E(S) and (A) = S}.
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It is known that rank(7},) = 3 when n > 3 and that T}, has no idempotent rank for
n>2.
For a fixed nonempty subset Y of X, let

T(X,Y)={aeT(X): Xa C Y},

where Xa denotes the range of @. Then T(X,Y) is a subsemigroup of 7'(X). In
1975, Symons [12] described all the automorphisms of 7'(X, Y). He also determined
when T'(X;, Y;) is isomorphic to T(X>, Y>). In 2005, Nenthein, Youngkhong and
Kemprasit [6] characterized the regular elements of T(X, Y).

In 2008, Sanwong and Sommanee [9] defined

F(X,Y)={aeT(X,Y): Xa C Ya)

and showed that F(X, Y) is the largest regular subsemigroup of T(X, Y). They also
determined a class of maximal inverse subsemigroups of 7'(X, Y) and characterized its
Green’s relations.

In 2011, Mendes-Gongalves and Sullivan [4] determined all the ideals of T'(X, Y).
In the same year, Sanwong [8] described Green’s relations, ideals and all the
maximal regular subsemigroups of F(X,Y). Also, the author proved that every
regular semigroup S can be embedded in F(S L S). Later, in 2013, Sommanee and
Sanwong [10] computed the rank of F(X,Y) when X is a finite set. Moreover,
they obtained the rank and idempotent rank of its ideals. In 2014, Fernandes and
Sanwong [2] computed the rank of T(X, Y).

For a vector space V over a field F, let T(V) be the set of all linear transformations
from V into V. It is known that T(V) is a regular semigroup under composition of
functions (see [3, page 63]).

For a fixed subspace W of V, let

T(V,W)={aeT(V): Va < W}

Then T(V, W) is a subsemigroup of 7(V). In 2007, Nenthein and Kemprasit [5]
proved that @ € T(V, W) is a regular element of 7(V, W) if and only if Va = Wa. As
a consequence, they showed that T(V, W) is regular if and only if either V = W or
W = {0}. Later, in 2008, Sullivan [11] proved that the set

O={aeT(V,W):Va < Wa}

consisting of all regular elements in 7(V, W) is the largest regular subsemigroup
of T(V,W) (see [11, Lemma 1]). This semigroup plays a crucial role in the
characterization of Green’s relations on T(V, W). The author also showed that Q is
always a right ideal of T'(V, W) and described all the ideals of Q and T'(V, W).

Here, we determine all the maximal regular subsemigroups of Q when W is a finite-
dimensional subspace of V over a finite field. Moreover, we compute the rank of Q
when W is an n-dimensional subspace of an m-dimensional vector space V over a finite
field F with g elements.
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2. Preliminaries and notation

For convenience, we adopt the convention introduced in [1, page 241]: namely, for
a € T(X), we write
)
a =
a;

and take as understood that the subscript i belongs to some (unmentioned) index set /,
that the abbreviation {a;} denotes {a; : i € I}, that Xa = {g;} and that A; = a;,a™', the set
of all inverse images of a; under a.

Similarly, we can use the above notation for a linear transformation in 7'(V), where
V is a vector space. To construct a map a € T(V), we first choose a basis {e;} for V
and a subset {i;} of V and then let e;a = u; for each i € I; we then extend this action by
linearity to the whole of V. To shorten this process, we simply say, given {e;} and {a;}
within context, that @ € T'(V) is defined by letting

In this paper, a subspace U of a vector space V generated by a linearly independent
subset {e;} of V is denoted by (e;) and, when we write U = (e;), we mean that the set
{e;} is a basis of U with dim U = |I|. For a € T(V), if we write Ua = (u;a), it means
that the set {u;a} is a basis of the subspace Ua of V and that u; € U for all i.

Let {«;} be a subset of a vector space V. The expression }’ a;u; denotes a finite linear

combination
ai Ui + a,u;, + -+ a;u;,
for some n € N, u;,, u;,, ..., u;, € {u;} and scalars a;,,a,,, . .., a;,.
A vector space V is the internal direct sum of a family {S'{, S, ...,S,} of subspaces

of V, written as
V=8§S105,%---0S5,

iftV=_{sg+---+s,:5€S5;}and §;N(X;4 S ;) ={0}. Notice thatif V=5 & T for
some subspaces S and T of V, then T is called a complement of S in V.

Lemma 2.1 [13, Theorem 6]. Let V be an n-dimensional vector space over a finite
field F. Let U be any k-dimensional subspace of V. Then there are |F|K"™® distinct
complements of U in V.

LemmA 2.2. Let U,V and W be subspaces of a vector space S such that S =U & V. If
VCW, thenW=UnW)aV.

Proor. It is clear that (UNW)NVCUNV ={0}. Let we WCS =U@a®YV. Then
we can write w=u+v for some ue U and veV. Since we Wand veVCW,
we obtain u =w — v € W, which implies that w=u +v e (U N W)+ V. Hence
W=UnWw)aV. O
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Throughout the rest of the paper, we let V be a vector space and W be a fixed
subspace of V. For @ € T(V), the kernel of ¢ iskera = {ve V : va =0}. Since W C V,
we obtain Wa C Va. Hence

O={acT(V,W):VaC Wa}={aeT(V,W): Va=Wal.
The following characterization of Green’s relations on 7'(V) is well known (see [3,
page 63]). For a,f € T(V):

(1) aLpifandonlyif Va =Vg;
(2) aRpif and only if ker @ = ker 3;
3) aPDgif and only if dim(Va) = dim(Vp); and
“4 D=J.
Since Q is a regular subsemigroup of 7(V), we obtain by Hall’s Theorem [3,
Proposition 2.4.2] that

alLBin Qifandonlyif Va = VB and «aRBin Q if and only if ker o = kerS.

From [11, Lemma 5], @96 in Q if and only if dim(Va) = dim(Vp) and it D =g
on Q. Thus, we get the following description of Green’s relations on Q.

Lemmva 2.3. Let a, B € Q. Then:

(1) aLpBifandonlyifVa =Vg;
(2) aRpBifand only if ker a = ker 3;
(3) aDBifand only if dim(Va) = dim(VB); and

@ D=J.
Moreover, the author in [11] described the ideals of Q as given by the following
theorem.

TueOREM 2.4 [11, Theorem 8. The ideals of Q are precisely the sets
Oy ={ae Q:dim(Va) <k},
where 0 < k < dim(W).

Throughout the rest of the paper, W is a subspace of V over a field F, with
dim W = n. If n is finite, define

Jk) ={a € Q:dim(Va) = k},

where 0 < k <n=dim W. Then J(k) is a J -class of Q. Moreover, each J(k) contains
at least one idempotent. Indeed, let {wy, ..., w;} be a linearly independent subset of a
basis of W. Thus, we can write V = (wy,...,w) ® (v;) for some subspace (v;) of V

and define
(W1 e Wi Vj)
€= .
wi - wp 0
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Then € is an idempotent in Q with dim(Ve) = k: that is, € is an idempotent in J(k). In
particular, J(0) = {Oy}, where Oy denotes the linear transformation of V with range {0}.
We note that Va = W for all a € J(n) since Va € W and dim(Va) = n =dim W is
finite. It follows that J(n) consists of a single £-class.
For every k such that 0 < k < n, we let Qy be defined as in Theorem 2.4. Then

Or=JO)UJ)U---U J(k)

and, clearly, O, = Q.
Since Q is regular and Qy is an ideal of Q by Theorem 2.4, we obtain that Oy is a
regular subsemigroup of Q. Hence the following lemma.

Lemma 2.5. Oy is a regular subsemigroup of Q.
We state and prove the following lemmas which will be used in this paper.
Lemma 2.6. If € € T(V) is an idempotent, then ker e N Ve = {0}.

Proor. Assume that € is an idempotent in 7(V). In general, 0 € kere N Ve. Let u €
kere N Ve. Then ue = 0 and u = ve for some v € V. We obtain u = ve = (ve)e = ue = 0,
which implies that ker e N Ve = {0}. O

Lemmva 2.7. If @ € Q and Va = Wa = (w;a), where w; € W for each i, then {w;} is
linearly independent and V = ker a @ (w;).

Proor. See the proof as given in the converse part of [11, Lemma 1]. O

We will denote the set of all automorphisms of V over a field F by GL(V) and the set
of n X n invertible matrices with coefficients in a field F' with g elements by GL(#, g).

It is well known that GL(V) is a group under the composition of functions and that
GL(n, g) is a group under matrix multiplication, with the identity matrix as the identity.
GL(n, q) is called the general linear group of degree n. If V is an n-dimensional vector
space over a finite field F with |F| = ¢, then GL(V) and GL(n, ¢g) are isomorphic (see
[7, page 219]). Furthermore, |GL(n, 9)l = (¢" — 1)(¢" — 9)(¢" — ¢*)--- (¢" — ¢" ")
(see [7, Theorem 8.5]).

3. More results on O

In this section, we characterize the #{-classes of Q and, using this, we show that the
J -class consisting of all mappings @ in Q whose range has maximum dimension 7 is
a regular subsemigroup of Q. By Lemma 2.3, for o, € Q,

aHB if and only if Vo = VB and kera = kerp.

Lemma 3.1. Let € € Q be an idempotent. Then H, = {e€o : 0 € GL(Ve)}.
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Proor. We note that, for each o € GL(Ve), (Ve)o = Ve and eo: V — V is a linear
transformation such that V(eo) = (Ve)o = Ve C W and V(eo) = (Ve)o = (We)o =
W(eo). Hence eo € Q for all o € GL(Ve).

Let o € GL(Ve). Then, for each v € ker €0, veo = 0 = 0o, which implies that ve = 0
since o is injective. Thus v € ker € and so ker eo C ker €. In general, ker € C ker eo.
Hence ker eo = ker €. Since Veo = Ve, it follows that eo € H..

On the other hand, let « € H.. Then Va = Ve and kera = kere. Since € is
the identity in the group H., ex = a. Let o be a restriction of @ to Ve. Then
o = alye: Ve » Vislinear and (Ve)o = (Ve)a = V(ea) = Va = Ve: thatis, o: Ve —
Ve is surjective. To show that o is injective, let u,v € Ve be such that uo = vo.
Thus ua = va, and it follows that u — v e kera = kere. So u —v € kere N Ve = {0}
by Lemma 2.6, which implies that u = v. Hence o € GL(Ve). For each r €V,
(te)o = (te)a = t(ea) = ta. Hence a = €o. O

For each idempotent € € Q, it is easy to verify that H, = GL(Ve) by mapping
eo — o for all o € GL(Ve). This gives the following lemma.

Lemma 3.2. Let € € Q be an idempotent. Then H. = GL(Ve).

Now suppose that dim W = n < 8y. Then the results for the J-class J(n) are as
follows.

Tueorem 3.3. Suppose that dim W = n < 8y and let {€, : p € P} be the set of all
idempotents in J(n). Then
Joy = JHe,

peP

is a disjoint union of groups, all of which are isomorphic.

Proor. Since {e, : p€ P} #0 and H CJ, Upep He, € J(n). Now, let a € J(n).
Then dim(Va) = n. We suppose that ker o = (u;) and Va = Wa = (w;a), where
wj € W. Then |J| = dim({(w;e)) = dim(Va) =n and V = kera & (w;) = (u;) ® (w;),
by Lemma 2.7. We can write
_(w Wi
= (O wja)

_ % W
E_(O W)'
Then € is an idempotent in Q such that Ve = (w;): thatis, dim(Ve) = |J| = n. Hence € is
an idempotent in J(n) and, as observed before, Ve = W. Since ker @ = (i;) = ker € and

Va =W = Ve, this implies that @ € He C U pep He,: thatis, J(n) C | ,ep He,. Therefore
J(n) = Upep He, and He, = GL(Ve,) = GL(W) for all p € P, by Lemma 3.2. O

and define

Lemma 3.4, Let € and €; be idempotents in J(n) and let o € GL(W). Then €0¢€; = g0
and €€; = €;.
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Proor. Let v € V. Then ve; € Vg = W, and so (ve)o € W = Ve;. Thus vgo = ue;
for some u € V, and it follows that veoe; = (uej)e; = ue; = veo (since €; is an
idempotent). Thus €;0€; = go. In particular, if o = 1y € GL(W), then glwe; = glw:
that iS, €€j = €. m}

Lemma 3.5. Suppose dim W = n < Ny and let {€, : p € P} be the set of all idempotents
in J(n). Then {€, : p € P} is a left zero semigroup and H, H,, = He, for all i, j € P.

Proor. Assume that ¢ and €; are idempotents in J(n). Then €€; = ¢ (by Lemma 3.4),
and so {€, : p € P} is a left zero subsemigroup. Let @ € H,, and 8 € H,,. Then a = €0
and § = €;0 for some 0,6 € GL(V¢) = GL(Ve;) = GL(W) by Lemma 3.1. From
Lemma 3.4, it follows that a8 = (g,0)(€;0) = (€0)0 = €(00), where o6 € GL(W) =
GL(Ve), so aff € H, and H H,, C H. On the other hand, lety € H,,. By Lemma 3.1,
there is p € GL(Ve) = GL(W) such that y = gp. Lemma 3.4 implies that y = €;pe; =
(€p)ej = yej € HeH,. |

Since J(n) = U ep He,, where {€,: p € P} is the set of all idempotents in J(n), and
HH, = H, for all idempotents €;, €; in J(n), it follows that J(n) is a subsemigroup of
Q. Moreover, it is easy to see that J(n) is regular since J(n) is a union of groups. This
gives the following theorem.

THeOREM 3.6. J(n) is a regular subsemigroup of Q.

4. Maximal regular subsemigroups

In this section, let n > 0 be an integer and let W be an n-dimensional subspace of V
over a finite field F. We will describe all maximal regular subsemigroups of Q. To do
this, we need the following preliminary Lemma.

Lemma 4.1. J(n— 1) € J(m)aJ(n) forall @ € J(n — 1).

Proor. Let @ € J(n — 1) and write Va = Wa = (w;a), where {w;} is a linearly
independent subset of W, with |I| =n — 1. Then, by Lemma 2.7, V = ker a & (w;).
By Lemma 2.2, W = (kera N W) & (w;) and dim(kera N W) = 1 since dim(W) =n
and dim({w;)) =n—1. We let kera N W = (u) for some u € kera N W C ker @ and
write ker & = (u) @ (u;) for some subspace (u;) of kera. Thus W = (u) ® (w;) and
V = (u) ®(u;) ® (w;). So we can write

= u uj wi
0 0 wil
Let B be any element in J(n — 1). As above, VB = Wg = (w) for some w, € W,

V=kergo(w)),kerpN W = (u’) for some u’ € kerN W, kerf = (u') ® (u}) for some
subspace (u}) of kerB,and V = (u') ® (u?) ® (w;). Hence, we can write

uw o u, wl
= iV
B ( 0 O wl’ﬁ) )
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Since |I| = n — 1, there are w and w’ in W such that W = (w;a) ® (w) and W =
wipyow). Let V=W (v;) = (wa)®(w)®(v;) for some subspace (v;) of V.
Define y,6 € T(V, W) by

w, u w, Vi W wia
— J i e !
Y (O u w,-) and 6 (O wo wip )
It is easy to verify that Vy = Wy = (u) @ (w;) = Wand V6 = Wo = (W) @ (wB) = W.

It follows that y, 6 € J(n). Moreover, 8 = yad € J(n)aJ(n). Therefore J(n — 1) C
Jm)aJ(n). ]

THEOREM 4.2. The set Q,— U J(n) is a maximal regular subsemigroup of Q.

Proor. Since O, is an ideal of Q and J(n) is a regular subsemigroup of Q, Q,-» is
a regular subsemigroup of Q and so Q,—» U J(n) is a regular subsemigroup of Q. To
show that Q,_» U J(n) is a maximal regular subsemigroup of Q, suppose that there
is a regular subsemigroup S of Q such that Q,», U J(n) €S € Q. Thus there exists
aeJmn—-1)NnS. Let B8 be any element in J(n — 1). Then, by Lemma 4.1, there
are y,0 € J(n) C S such that 8 =yad € S. Hence J(n— 1) C S, and it follows that
S=0. O

In what follows, let E(J(n)) = {€,, : p € P} be the set of all idempotents in J(n). For
each €, € E(J(n)), H, = GL(Ve,) = GL(W) by Lemma 3.2. Since GL(W) = GL(n, q)
is a finite group, where g = |F|, it follows that H, is a finite group for all p € P. Let
U be a maximal subgroup of GL(W) and let ®,: He, — GL(W) be an isomorphism
defined by €,0 — ¢ for all 6 € GL(W). Let

M,=U®," ={g,6:6¢€U).
Then M), is a maximal subgroup of H,, for all p € P.

Lemma 4.3. Let M, be defined as above and let M = \J,ep M. Then M is a maximal
regular subsemigroup of J(n).

Proor. Clearly, M C J,ep He, = J(n). Let @, € M. Then @ € M, and B € M, for
some p, g € P. We can write a = €,0" and 8 = €6 for some o, 6 € U. It follows, from
Lemma 3.4, that a8 = (€,0)(¢;0) = €,00 = €,(06), where 06 € U. Thusaf e M, C M
and so M is a subsemigroup of J(n). In addition, M is regular since each M, is a group.

We prove the maximality of M. Let T be a regular subsemigroup of J(n) such
that M C T C J(n). Leta €T\ M. Then « € H, \ M, for some p € P. It is clear
that the semigroup (M, U {a}) of J(n) generated by M, U {e} is contained in T. It
is well known that every finite subsemigroup of a group is a subgroup. Therefore,
since He, is a finite group, its subsemigroup (M), U {a}) is a subgroup of H,, such that
M, &M,V {a}) C H,. Thus H., = (M), U {a}) by the maximality of M,. Let B be
any element in J(n). Thus B € H,, for some g € P, and we write 8 = g0 for some
p € GL(W). Since €6, = ¢; by Lemma 3.4, we get that 8 = g0 = (g;€,)p = €,(€pp)
such that , € M, C T and eyp € H,, = (M, U{a}) CT. Hence BT and J(n) C T.
Therefore T = J(n). O
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TueEOREM 4.4. Let M be as in Lemma 4.3. Then Q,-1 U M is a maximal regular
subsemigroup of Q.

Proor. Since the ideals Q,-; and M are regular subsemigroups of Q, we obtain that
Q-1 U M is aregular subsemigroup of . We prove that @,_; U M is maximal. Let §
be a regular subsemigroup of Q such that O, UM CS C Q. Then M C S NnJ(n) C
J(n) and § N J(n) is a subsemigroup of J(n). Clearly, S§ N J(n) =S N (U,ep He,) =
Uper(S N He,)). We show that S " He, = M), or S N H,, = H, for all pe P. Let
pePand S NH,, # M, Thus M, ¢S N H,, and there exists a € (S N He,) \ M).
Since M), is a maximal subgroup of H,, and M, ¢ (M, U {a}) C H,, we obtain
He,=(M,U{a})CS and so S NHe, = H,,. Thus S NJ(n) = Upep(S NH)is a
disjoint union of groups, which implies that S N J(n) is a regular subsemigroup of
J(n). Since M € S N J(n) € J(n) and M is a maximal regular subsemigroup of J(n) by
Lemma 4.3, we get S N J(n) = J(n). Therefore S = Q. O

Next, we prove that there are only two types of maximal regular subsemigroups of
0, as given in Theorems 4.2 and 4.4. To do this, we need the following four lemmas.

Levvia 4.5. Let T be a maximal regular subsemigroup of J(n) = Upep He,. Let
R={reP:TNnH,#0}and T, =T NH,, for all r e R. Let ®, be defined as in
Lemma 4.3 (p € P) and let T,®, =V, in GL(W) for all r € R. Then:

(1) V.,=Vsforallr,seR; and
(2) T, are maximal subgroups of H, for all r € R.

Proor. We note that 7, is a subgroup of H, for all » € R since T N H,, is a finite
subsemigroup of H, . In addition, T, = {0 : o € V,}, where ¢, is an idempotent of
H..

(1) Assume that r, s € R and ¢,, € are idempotents of T, and T, respectively. Let
o€V, Then o €T, and €0 = €(6,0) € T,T. CT. Hence e,c € T N H,, =T, and
this implies that o € V; and hence V, C V. Similarly, we can show that V; C V,.
Therefore V, = V.

(2) Suppose that there exists s € R such that 7' is not a maximal subgroup of H, .
Then T is properly contained in a maximal subgroup N; of H.. Let U = N;®, C
GL(W). Thus U is a maximal subgroup of GL(W) such that V, = T,®; ¢ N,®, = U.
Now, let M = Upep M,, where M, = Ud);1 for all p € P. Thus M is a maximal regular
subsemigroup of J(n) by Lemma 4.3. Since 7,®, =V, =V, C U for all r € R by (1),
it follows that T, ¢ U®; ! = M, forallr€R. So T = U, Tr € U,eg M, C Uper M), =
M ¢ J(n), which contradicts the maximality of 7. Hence T, is a maximal subgroup of
H, forevery r € R. ]

Lemva 4.6. T is a maximal regular subsemigroup of J(n) if and only if there is a
maximal subgroup U of GL(W) such that T = J,ep M, where M, = U d);l for all
p€EP.
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Proor. One direction is clear by Lemma 4.3. Now, let 7 be a maximal regular
subsemigroup of J(n). Let R={re P: TN H, #0}. If R=0, it is clear that T = 0,
which is a contradiction. Thus R # ( and there is r € R such that 7, =T N H, # 0.
By Lemma 4.5(2), T, is a maximal subgroup of H.. It follows that 7,®, =V, is a
maximal subgroup of GL(W). Let U =V, and M, = U@;l for all p € P. We claim
that T = J,ep M),. Let@ € T. Then @ € T N H,, for some s € P. Since T N H # 0,
s€Rand T =T N H is amaximal subgroup of H,, by Lemma 4.5(2). Let T,®; = V.
Then, by Lemma 4.5(1), V, = V, and so a®, € T;®; = V; = V, = U. This implies that
aeUD;' = M, C Upep M), and hence T C pep M. Since |J,ep M), is a maximal
regular subsemigroup of J(n) containing 7 by Lemma 4.3, we obtain 7' = | ,ep M), by
the maximality of 7. O

Lemma 4.7. ForO <k <n -1, Qr = {(J(k)).

Proor. Let 0 <k <n-—1and a € Q. If @ € J(k), then a € (J(k)). Now, let @ € Qy_;.
Then « € J(¢) for some 0 <t < k — 1, that is, dim(Va) = t. Suppose that Va = Wa =
(w;a), where w; € W and |I| =¢. Then, by Lemma 2.7, V = kera ® (w;). Since
w)) CW, W =(kera N W) ® (w;) by Lemma 2.2. If dim(ker@ N W) < 1, then

t+2<k+1<n=dimW)=dimkeranNnW)+|I|<1+¢,

which is a contradiction. Hence dim(ker @ N W) > 2 and so there are distinct u, v in a
basis of ker@ N W. Thus {u, v} is linearly independent and we write ker @ = (u, v) ® (v)
for some subspace (v;) of ker @. It follows that V = (u, v) & (v,) & (w;) and we can write

(uovovg owy
0 0 0 wel
We let W = (w;a) @ (w;) for some subspace (w;) of W. Since |I| =t < n, {w;} # 0 and
there exists w € {w;} \ {w;a} such that {w, w;a} is linearly independent. Define 8,y € Q

by
u v vy w fuovoove owy
B_(O u 0 W,-) and 7/_(0 w 0 w,-oz)'
Then a = By such that VB = (u, w;) and Vy = (w, w;a): that is, dim(VB) = dim(V7y) =
|7l + 1 =t + 1. By the principle of induction on ¢, we conclude that Q; = (J(k)) for all
0<k<n-1. O

Lemma 4.8. Let S be a maximal regular subsemigroup of Q. Then the following
statements hold.

(1) IfSnJn)=Jn),thenS NJn—1)=0.

2) IfS nJ(n) € J(n), then S N J(n) is a maximal regular subsemigroup of J(n).
Proor. We note that S N J(n) # 0. In fact,if S N J(n) =0,thenS € Q,.1 C Q.1 UM C
Q, where M is a maximal regular subsemigroup of J(n) as defined in Lemma 4.3.

By Theorem 4.4, Q,-1 U M is a regular subsemigroup of Q, which contradicts the
maximality of S.
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(1) Assume that S N J(n) = J(n). Thus J(n) €S. We suppose that there is
aeSNJn-1)CJmn—-1). Then, by Lemma 4.1, J(n — 1) C J(n)aJ(n) CSaS C S
and it follows from Lemma 4.7 that

On1=(J(n-1))CS.

Then Q=Q,.1 UJn)CS UJn) =S since J(n) €S, and hence S = @, which
contradicts the maximality of S. Therefore S N J(n — 1) = 0.

(2) Assume that S N J(n) € J(n). Since S N J(n) #0, S N J(n) is a subsemigroup
of Jm)and S N H,, # O forsomer e P. LetR={re P:S NH, #0}. Thus S N J(n) =
Urer(S N He). Since S N H, is a finite subsemigroup of H,, for all r € R, it follows
that § N H,, is a subgroup of H,, for all r € R and hence § N J(n) = J,x(S N He,)
is a disjoint union of groups. Thus § N J(n) is a regular subsemigroup of J(n). If
S N J(n) is not maximal under these conditions, then there exists a maximal regular
subsemigroup 7 of J(n) such that S N J(n) C T € J(n). Itis easy to see that Q0,1 U T is
aregular subsemigroup of Q with S € Q,_; UT ¢ Q, which contradicts the maximality
of §. Therefore S N J(n) is a maximal regular subsemigroup of J(n), as required. O

TuEOREM 4.9. Let S be a maximal regular subsemigroup of Q. Then S is either of the
Sform:

(1) Qu2UJ(n); or
2) Qn-1 UM, where M is a maximal regular subsemigroup of J(n) as defined in
Lemma 4.3.

Proor. By Theorems 4.2 and 4.4, Q,, U J(n) and Q,-; UM are maximal
subsemigroups of Q. Conversely, we consider two cases.

Casel. SNJmn)=Jmn). Then S NJ(n—1)=0by Lemma 4.8(1). Thus S € Q,,» U
J(n), where Q,_» U J(n) is a maximal regular subsemigroup of Q by Theorem 4.2.
Hence S = Q,,., U J(n).

Case 2. S NnJ(n) € J(n). Then, by Lemma 4.8(2), S N J(n) is a maximal regular
subsemigroup of J(n). It follows from Lemma 4.6 that S N J(n) = UJ,ep M), Where
M, = U@;l for all p € P with a maximal subgroup U of GL(W). We let M = | ,ep M.
Then M =S NnJ@n) and S € 0,1 UM such that Q,_; UM is a maximal regular
subsemigroup of Q by Theorem 4.4. Hence S = 0,1 U M. O
Next, we consider the case when V = W and V is a finite-dimensional vector space
with dim V = n. Clearly, Q = T(V) and J(n) = {& € T(V) : dim(Va) = n}. For each
a € J(n), Va = V, which implies that @: V — V is a bijective linear transformation.
Hence J(n) = GL(V). The following corollary comes directly from Theorem 4.9.

CoroLLARY 4.10. Let V be an n-dimensional vector space over a finite field F and let
S be a maximal regular subsemigroup of T(V). Then S is either of the form:

(1) Ou2 UGL(V); or
(2) Qn-1 UM, where M is a maximal subgroup of GL(V).
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5. Rank and idempotent rank of Q

In this section, we aim to find the rank and idempotent rank of Q. Suppose that W
is an n-dimensional subspace of an m-dimensional vector space V over a finite field
with ¢ elements.

Lemma 5.1. Leta € J(n — 1). Then Q = (J(n) U {a}). Hence rank(Q) < rank(J(n)) + 1.

Proor. By Lemmas 4.1 and 4.7, J(n — 1) € J(m)aJ(n) C (J(n) U {a}) and Q,_; =
(J(n—=1)) C(J(n) U {a}). Thus

Q=0,-1UJm) S Ulah)UJ(n)={J(n)Ula}),
since J(n) C (J(n) U {a}). Hence Q = (J(n) U {a}), and it follows that rank(Q) <
rank(J(n)) + 1. O

Forn > 1, (J(n)) = J(n) # Q and an element in J(n) cannot be written as a product
of some elements in Q,,_; since Q,_; is an ideal. Thus

rank(Q) > rank(J(n)) + 1.
Therefore, by Lemma 5.1, we obtain the following lemma.
Lemma 5.2. For n > 1, rank(Q) = rank(J(n)) + 1.

To determine the rank of Q, we need to find the rank of J(n). We know that, for
each a e J(n), Va = Wa =W. Let W = Wa = (w;a), where w; € W for all i. Then,
by Lemma 2.7, {w;} is linearly independent and V = ker a & (w;). Since (w;) € W and
dim({w;)) = |I| = dim({w;a)) = dim(W) = n is finite, W = (w;). Hence V = kera® W
and dim(ker @) = m — n for all @ € J(n).

Lemma 5.3. Let €, € € E(J(n)). Then €; = €; if and only if ker €; = ker €;.

Proor. Assume that ker ¢ = ker¢;. Thus €Re€;. Since Ve; = W = Ve, .L¢€;, which
implies that He;. Hence € € H, and so € = ¢; since the group H-class H,, contains
only one idempotent €;. The converse is clear. O

Turorem 5.4. J(n) has ¢""" distinct H-classes.

Proor. It is clear that the number of distinct H-classes of J(n) equals |E(J(n))|. Let C
be the set of all complements of W in V. Since V = W @ ker ¢, for all €, € E(J(n)) by
the above note, it follows that kere, € C forall €, € E(J(n)). We define ¢ : E(J(n)) —» C
by €,¢ = ker ¢, for all €, € E(J(n)). By using Lemma 5.3, it is easy to see that ¢ is
injective. We prove that ¢ is surjective. Let T € C. Thus V= W& T, and we can write
W=wi,...,wyyand T = (vi,...,Vyu_n). Define

Wl - w}’t vl e vm_n
w1 e W}‘l 0 e O

Then € € E(J(n)) and kere = T. Hence €¢ = kere = T and so ¢ is bijective. Therefore
|E(J(n))| = |C] = ¢"™™ by Lemma 2.1. o
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By Theorem 5.4, |[E(J(n))| = |P| = ¢"™™. Then we can write P = {1,2,...,4""™™}.
Hence

n(m—n)

J(n) = qU H,.
i=1

Since H, = GL(V¢) = GL(W) = GL(n, q) for all 1 <i < ¢"™™, we obtain |H,| =
IGL(1n, 9| = (¢" = D)(¢" = )(q" = q*) -+~ (q" —¢"") forall 1 <i<g""™.

Lemma 5.5. Let €, € E(J(n)) and @ € J(n). Then H, = aH,,.

Proor. Assume that a € H,, for some r € P. Then, by Lemma 3.1, we can write & = €00
for some o € GL(W). Let 8 € H, = H.. Then there exists 6 € GL(W) such that 8 = €,6.
By Lemma 3.4,

ae,(07'6) = (60)e,(07'0) = (60€,)(07'6) = ()06 = €6 = 5.

Since 0'6 € GL(W), €,(07'6) € H, and B = a(€,(07'6)) € aH,,. Hence H, C aH,.
For the other containment, we let y = ad € aH,, for some A € He,. Thus 1 = €,p
for some p € GL(W). It follows, from Lemma 3.4, that y = (e.0)(eyp) = (€,0€,)p =
(e:0)p = &(op) € H,, = H, since op € GL(W). Hence aH,, C H,. O

To find the rank of J(n), we use the following theorems which appeared in [14].

Since F is a finite field with g elements, the multiplicative group F \ {0} is a cyclic
group and we let a be a generator of F \ {0}. Let E;; denote the n X n matrix over the
field F for which entries in row i and column j equal one and the others are zero.

THEOREM 5.6 [14]. For n > 3, the group GL(n, q) is generated by the two elements
A=I+E, +(a-1)Epand B=E\;+ Ex3 + -+ Eq_1y, + E,1, where [ is the identity
matrix.

TueorREM 5.7 [14]. For g > 2, the group GL(2, q) is generated by the two elements

et ol

for somer,se€F.
TueoreM 5.8 [14]. The group GL(2,2) is generated by the two elements
0 1 11
SIS
In what follows, we let W = (w, wy,...,w,). Since GL(W) = GL(n, g), we can find

an isomorphism in GL(W) which corresponds to the generators of GL(%, g), as follows.
By Theorem 5.6, for n > 3, the group GL(W) is generated by the two elements

wr w2 w3 - Wn
a =
wyp o awy wz o Wi t+wy
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and

ﬁz(wl wy wy e Wn).

Wy W3 Wwyqg -0 W)

By Theorem 5.7, for n =2 and g > 2, the group GL(W) is generated by the two

elements
w1 %)
a =
rwy Wi+ Swp

ﬂ M wo
“Naw; w
forsomer,s € F.

By Theorem 5.8, for n = 2 = g, the group GL(W) is generated by the two elements
[ )
a =
wy wip+wp
_ W1 2%
ﬁ_(wl + wy Wz).

, (W1 W2)
a = .
w2 Wi
We see that o’ = @. Hence, for n = 2 = g, GL(W) is generated by o’ and 3.
For the case when n = 1, the group GL(W) is generated by a single element. In fact,

W = {(w) and
GL(W) = {yc = (CV:VII) cceF\ {0}}.

We let a be a generator of F \ {0} and y. € GL(W) for some c € F \ {0}. Then
Ya € GL(W) and ¢ = d* for some k € NN, so it follows that y. = Y = (y,)* € (y,). Hence
GL(W) = (ya)-

From the above results, we conclude the following lemma.

and

and

Let

LemMma 5.9.
1 ifn=1,

rank(GL(W)) = {2 ifn>2

Lemma 5.10. For m > n > 1, rank(J(n)) = g""~".

Proor. Assume that A is a generating set of J(n) such that |A| = rank(J(n)). For each
iefl,...,q""™}, weleta € H,. Then @ = 318, - - - B for some Sy, ..., B € A. Since
ker B8 C ker @ and dim(ker 81) = dim(ker @) = m — n is finite (by the remark before
Lemma 5.3), ker 8 = kera. It is known that V8 = W = Va, and thus 5, € H, = H,,.
Hence AN H, # 0 for all 1 <i<g"™™, which implies that |A] > ¢"™ and so
rank(J(n)) > """,
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Next, we prove that J(n) is generated by q”(’”‘") elements. Let W = (wi,wa,...,w,)
and V =(wi,wo, ..., W) ® Vst, Va2, - - - » Viny. Define
€ = wi o Wi Vpel 0 Vm
“lw o oc-w, 0 - 0
Then ¢; is an idempotent in J(n) such that Ve = (wy,...,w,) =W and kere =

Vsl Va2, - - - » Vim). We note that H, = aH,, for all @ € J(n) by Lemma 5.5.
Now, we split the proof into four cases.

Case 1. n = 1. We can see that
— W1 V2 ot V)
H5|_{yc_(cwl 0 O)CEF\{O}}
and (y.)" =y« for all ¢ € F\ {0} and k € N. Let v, be any element in H,, for some
c € F\ {0}. Since F is a finite field, there is a generator a of F \ {0} such that ¢ = af

for some k € N. Thus y, € He, and y, = y4 = (y,)*. Hence H,, is generated by vy, and
J(}’l) = <Ya, (S Eqm—l >

Case 2. n=2and g = 2. Itis known that

- _ (w1 w2 Wi wp
HEI - GL(W) - <(W2 Wl) ’ (W2 wi + W2)>.

We define vy, y; € H, by

y) = wi w2 vV s Uy and 7y, = w1 w2 Vy 0 U
! wy wi O -+ O 2 wy wi+w, 0 -+ 0)°

Thus H,, = (y1,y2). Define y; € J(n) by

y’— Wi wa < TR )
2 Wy Wip+wy wy --- Wz'

Since m > n, kery, # kere and so ¥, ¢ H.. Moreover, v, = €} = (¥1)*%).
Suppose that y5 € He, # H,, for some 2 < p < 22" Hence J(n) = (y1, &, ..., €1,
’y'z, Eptls---s 622(m—2)>.

Case 3. n=2and g > 3. By the same reason as that given in Case 2, H,, = (41, A2),
where

A = Wi W2 vz eV and A = w1 w2 vy 0 Up
! aw; wp 0 --- O 2 wy, wi+sw, 0 - 0

for some r, s € F and a is a generator of the multiplicative group of F \ {O}. We define
A, € J(n) by

pra w1 wa L2 T 7]
27 \rwy wiHswa wa e wo)’
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Then A ¢ He, and A; = €, 4] = (A)kA,, where a* = 1 € F for some k € N. Suppose that
A, € H, # H, for some 2 < p < g™ 2. Hence

J(n) =1, €,...,6 1,45, €ps1, ..., Epm2).

Case 4. n > 3. By the same reason as that given in Case 2, H, = (u;, [&2), where

U = wir wz2 o Wil Wi Vel ot VUm
1 N 0O --- 0
and
W = w1 w2 w3 s Wy Wn Vel 0 Vm
2 Wy aws, wz -+ Wy wi+w, 0 -+ 0

when a is a generator of the multiplicative group of F \ {0}. Define

r_ w1 w2 w3 e Wy Wn Vel 0 Vm
Ha Wi oawy W3 - Wuog Widw, wp o - owi)’
Then 1, ¢ He, and pp = €, = (u1)"w,. Suppose that u) € He, # He, for some 2 < p <
q""™ ™. Hence J(n) = (1, €, . .., €p—1s ty, Epils- - - » Eguinn ).
From the above four cases, we obtain that rank(J(n)) < """, O

The following theorem comes directly from Lemmas 5.2 and 5.10.
Tueorem 5.11. For m > n > 1, rank(Q) = ¢""™ + 1.

Observe that if V=W with m =n > 1, then Q = T(V) and J(n) = GL(W). By
Lemma 5.2,

rank(7'(V)) = rank(Q) = rank(J(n)) + 1 = rank(GL(W)) + 1.
Then, by Lemma 5.9, we establish the following theorem.
THeEOREM 5.12. Let V be an n-dimensional vector space over a finite field F. Then
rank(T(V)) = {i ZZ ; ;
Ifm=n=0orm>n=0,then W= {0}and |Q| = |T(V)| = 1 and hence
rank(Q) = rank(7'(V)) = 1.

We end this section by describing the idempotent rank of Q.

Clearly, if n = 0, then idrank(Q) = rank(Q) = 1. Now, assume that n > 1. Recall
that |H.| = (¢" = )(@" — q)(q" = ¢*) - (¢" — ¢" ") for all 1 <i < g"™™. We consider
three cases.

Case 1. n=1and g=2. Then Q =J(0)U J(1) = {0y} U J(1) and |H,]| = 21— 1=1:
that is, H. = {g} for all 1 <i<¢g"™™ =2""! Hence Q= {0y} U{e:1<i<2m!}
and so idrank(Q) = rank(Q) = 2! + 1.
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Case 2. n=1and ¢>3. Then |[H|=¢q¢' -1=g-1>2forall 1 <i<qg™' It
follows that (E(J(n))) = {e1, ..., m1} # J(n) and hence Q cannot be generated by its
idempotents.

Case 3. n>2. Then ¢"—1>4—-1=3 since g > 2, which implies that |H,| =
@ - -G —¢> (@ —q~H=3forall 1 <i<g"™™. Thus (E(J(n))) =
{€1,..., €po-n} # J(n) and hence Q cannot be generated by its idempotents.

This leads to the following theorem.

THEOREM 5.13.
ifn=0,

idrank(Q) =
@ 2"V 41 ifn=1andq=2.

If (n=1and q > 3) orn > 2, then Q has no idempotent rank.

In the case when V = W, Q = T(V) and m = n. Then, by Theorem 5.13, we obtain
the following corollary.

CoROLLARY 5.14. Let V be an n-dimensional vector space over a finite field F with q
elements. Then

ifn=0,

idrank(7'(V)) =
' (T 21+ 1 ifn=1andq=2.

If (n=1and q > 3) orn > 2, then Q has no idempotent rank.
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