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A sequence of integers 0 < ax < a2 < • • • no term of which divides
any other will be called a primitive sequence. Throughout this paper
cx,c2, • • • will denote suitable positive absolute constants. Behrend [1]
proved that for every primitive sequence

(1) fA{x) = 2 7 < Ci log x\(log log *)*.

Sivasankaranarayana Pillai observed that (1) is in a sense best possible.
He showed that there is a c2 so that for every x there is a primitive sequence
ax < • • • < ak ^ x for which

(2) fA(x)>c2logxl(loglogx)i.

In the present paper we are going to prove the following

THEOREM 1. Let A be an infinite primitive sequence. Then

(3) /,,(*) = o (log z/(log log s)J).

Our Theorem shows that though for a finite primitive sequence (1)
is best possible, it can nevertheless be improved for infinite primitive
sequences.

Before proving our Theorem we show that it is best possible. In fact
we shall show that if h{x) -> oo arbitrarily slowly, then there exists a
primitive sequence A so that

(4) lim sup fA(x)h{x) (log log a;i)/log x — oo.

We only outline the proof of (4) since the details can easily be filled
in by the reader using the methods of [3]. Let xx < x2 < • • • tend to infinity
sufficiently fast. In the interval {xv_1, xv) our sequence consists of the
integers having exactly [log log #„] distinct prime factors greater than
JC,_I (and no prime factor ^ a^-i) • A simple computation shows that if
x, -> oo sufficiently fast (depending on h(x)) then (4) holds.
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To prove Theorem 1 we assume that there is a primitive sequence
A = {a, < a2 < • • •} for which (3) does not hold and we will obtain a
contradiction. First of all we observe that if a sequence A exists for which
(3) does not hold, we can assume that there is such a sequence all whose
terms are squarefree. Put

A = \JA™

where the greatest square factor of the integers of Aw is A2. It easily follows
from 221i. V^2 < °° a n d (!) * n a t ^ ^ does n ° t satisfy (3) then for some
fixed k0, .4(*o) also does not satisfy (3). Put

Clearly a^»' = k% bf where bt is squarefree and bx < b2 < • • • evidently
does not satisfy (3).

Henceforth we assume that A is a primitive sequence of squarefree
numbers for which (3) does not hold. Then there clearly exists a sequence
x\ < X2 < *'" tending to infinity sufficiently fast (this will be specified
later) so that

(5) 2 ~> c3 log x,l (log log «,)*.
a

We shall show that (5) leads to a contradiction and this will prove Theorem 1.
We need the following crucial

LEMMA 1. Let u <w ^.y, where w is sufficiently large compared to u.
Let {the a's are squarefree)

ah < w, a( \ af, 1 ^ t < j ^ k(6)

and

(7)

Denote by h

u <

< ••

Ca1<---

v 1

I - > C 3

• < b, ^ y

*W(log log w)i.

< b, ^ y the integers of the form

atQm, Qm^y\ai,

where all the prime factors of Qm are greater than u. Then

2 r A g y

where c4 depends only on c,.
Assume that Lemma 1 has already been proved then we prove Theorem

1 as follows: Let Ac4 > 2, y = xx. For each 1 g v ^ A w e denote by B{v) the
sequence of integers b[v) < • • • < &<"> of the form
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«<Q$, *v-x < « , < * „ Q% < xjat

where all prime factors of Q$ are greater than xv_x. By Lemma 1 we have

(8) IjL>cJogy.
<=i °i

Now we show that

(9) B<"> n £<"'> = 0 if v # v';

in other words b[r) =£ 6j*'' if v' > r. If (9) would be false we would have
aiQ{m = a)Q(n) o r ai\aiQ(n)- But by our definitions ai<xv, at> xv,_x 5; a;,,,
thus a, < a, and hence a^as. On the other hand all prime factors of
Q{*"> are greater than xv,_x 2> xv. Thus (ai( ^J,"'') = 1, hence aJcijQW
implies aja,, an evident contradiction. Hence (9) is proved. Clearly b\v) < y
for v ̂  A. Thus by (8), (9) and Ac4 > 2,

2 l o g y > 2 4^ 2 I j4j^
« V * K=l < - l 0<

an evident contradiction which proves Theorem 1.

Thus to prove Theorem 1 we only have to prove Lemma 1. We first
assume y = w and prove the Lemma in this special case. The general
case will follow easily. Denote by dx{n) the number of divisors of n amongst
the au 1 ̂  i ^ k, d2{n) denotes the number of divisors of n amongst the
b's. The number of divisors d(n) of the squarefree integer n clearly equals
2"<") where v(n) is the number of distinct prime factors of n. Clearly

» . I-J0-1 < i

n=l <=1 U \ J »=1 0t

Thus to prove Lemma 1 in the case y = w it will suffice to show that

(10) 2 ^ M > Hw log w-
n-1

Denote by nx < n2 < • • • < « , < w the sequence of integers satisfying

(11) v(nt) > log log w and ^(n,) > c,2"B'>/j'(n1)*

where c6 is a sufficiently small constant which will be determined later.
Clearly

(12) 2 ^(W<) = 2 dx{n)- 2 ' rfx(n)- 2 " 4i(«)

i=l n-1

where in 2'» M ̂  ^ an<l v(n) ^ log log w, and in 2 "

(13) n^w, v(n) > loglogie;, dx{n) ^ c62
>><n»/(»'(»))* < c62»<">/(loglogie')*.
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From (7) we evidently have

(14)

Clearly

(15)

From (12)

(16)

n = l

we have

<2ce

„ 2"<») ^ c8

»-i (log log w)i ~~~ (log log w

,W log WJ(log log B>)i.
)* „?! «

From (12), (14), (15) and (16) we have for c6 < c3/10

(17) 2 ^(n,) > ^ te- log zeV(log log M>)4.

Thus to prove (10) we only have to show that for 1 ^ i ^ t

(18) <22(W<) > MxKHvK))* >

The last inequality of (18) follows from (11), (17) and (18) clearly imply (10).
To prove (18) let

be the prime factors of nt. Clearly rx < u, further by (11)

r2 > log log w—u > % log log w > rx

if w is sufficiently large (e.g. w > exp exp 2M). Let ax, • • •, a, be the divisors
of n4 amongst the a's. By (11)

To obtain a lower bound for the number of b's dividing nf, we multiply
each a/»< by all the products of the q's which do not divide a. To show
(18) we prove the following combinatorial

LEMMA 2. Let S = Sx u S2,S1riS% = 0. The elements of Sx are ex, • • •, ek,
the elements of S2 are flt • • -, /,. Assume I ^ k. Let AtCS, 1 ^ i ^ r,

(19) r>c9 2^l{k+l)i

be subsets of S no one of which contains any other. Denote by By, • • •, Btall
the (distinct) suh&ets of S of the form
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(20) A{ u R, l^i-^r, RCS2

where in (20) R runs through all the 2! subsets of S2. Then

t > clo2*+«.

(18) immediately follows from Lemma 2 (to see this it suffices to
identify the p's with the e's and the q's with the /'s (19) is satisfied because
of (11).) Thus to complete the proof of Theorem 1 it suffices to prove
Lemma 2.

Before proving Lemma 2 we first need

LEMMA 3. Let

D(CS2, l ^ i ^ j , j>c12
illi

be subsets of the set S2 having I elements where no D contains any other. Let
E1, • • •, Et be the set of all subsets of S2 which contain at least one D. We have

S > cu2l .

Denote by ar(") the number of those Dt for which \D{\ = r and by
/3r(") the number of the Ef satisfying |£ | = r (\A\ is the number of elements
of A). We first show

(21) & 2 = 2 « , .

Lemma 3 can be deduced from (21) by a simple computation which
we leave to the reader.

To prove (21) it clearly will be sufficient to show that

Consider all the E's with \E\ — r—1. Their number is /?r_i("_i). Con-
sider now all sets of r elements which contain one of these £'s. Their number
•s A—i(?-i)(w~r+l) a n ( i the same set occurs at most r times. Therefore
the number of these sets is at least

o /» v n—r+1
Pr-xW-l) " = Pr-l(r)-

These /?,_!(") sets are all E's satisfying |£ | = r and by assumption
none of them are D's having r elements. Hence (21) is evident, and thus
Lemma 3 is proved.

We conjectured and Kleitman proved the following stronger result:
In a set S of n elements let there be given (") subsets of 5
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Denote by Elt • • •, E, those subsets of S which contain at least one of
the D's. Then

<=0

Now we prove Lemma 2. Put

At = (Af n Si) u (At n S2), 1 ^ t 5= r.

We split the class of all ̂ 4's into 2* classes Cx, • • •, C2» where two .4's belong
to the same class if they have the same intersection with Sx. Let A{ and
Ai% belong to the same class then At n S2 clearly does not contain Ai% n S2.
Hence by the theorem of Sperner [5] each class contains at most

( 2 2 ) (&

A's. From (22), (19) and / ^ k we obtain by a simple computation that
there are at least c12 2* classes which contain more than c13 2'/# ^4's. Denote
these classes by Cit, 1 gj k ^ r, r > c12 2*. By Lemma 3 the number of
B's for which B C S J U S J and B n S2 = .4 n S2 where 4 is in C<
(1 ^ A 5S r) is greater than c14 2'. Thus the number of JB's is clearly greater
than

which proves Lemma 2 and therefore Lemma 1 in the case y = w.
To prove Lemma 1 in the general case denote by 1 = tx < t% < • • •

the integers all whose prime factors are greater than w. We evidently have

(23) I^lhf
Oi b,<to 0

We already proved Lemma 1 if y = w, hence

(24) 2 ^>cls\ogw.
bi<a Of

Further we obtain by a simple computation from a result of de Bruijn
[2] that

(25) 2 T > c

Lemma 1 clearly follows from (23), (24) and (25). Thus the proof of
Theorem 1 is complete.

It is easy to see that Lemma 2 remains true for I > cwk but fails
for / = o{k).

We now state the following sharpening of Theorem 1:
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THEOREM 2. Let A be a primitive sequence, x1)x2, •'' be any sequence
satisfying

(26) log log xv+x > (1+c17) log log xv

where c17 is an arbitrary constant. Put

,

Then
00

J, £y <
v=l

where c18 depends only on c17.
We do not give the proof of Theorem 2 since it is very similar to that

of Theorem 1 and further (26) can probably be very much improved;
perhaps Theorem 2 remains true if (26) is replaced by

log log xv+x > log log xy+c19 (log log xv)i.

Theorem 1 gives the best upper bound for the growth of fA(x) for an
infinite primitive sequence. Nevertheless further questions can be asked.
A well known theorem [4] states that there is an absolute constant c20 so
that for every primitive sequence,

(27) 2-rJ—<c2o.
* aklogak

From (27) we obtain by partial summation

(28) 2M2a")/2"<c2 1.
n

Now we prove

THEOREM 3. Let g(x) be an increasing function for which

Then
]iminifA(x)lg(x) = 0.

On the other hand if gx(x) = log a;/log log x h(x) where h(x) is increasing
and gi(x) is also increasing and

(29) 2Si(2a")/2»
n

converges, then there is a primitive sequence for which

(30) Km fA(x)lg(x) = oo.
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The first part of Theorem 3 follows immediately from (28), hence we
only have to prove (29). We will leave some of the details to the reader.
Let p1 < p2 < • • • be a sequence of primes for which 2 VA < °° a n ( i
pk = (l+o{l))k\og k u(k) where u{k) = o(h(k)). By (29) such a choice is
possible. Our primitive sequence consists of the integers of the form

pkt, 1 ^ k < oo, v{t) = k2, pi it, \<*i<k.

It is not difficult to show by using the methods of [3] that the number
of a{ not exceeding x is greater than

c22a;/«(a;)logloga;.

In other words for all sufficiently large n, an < c^nuln) log log n or

M*) > C24 lQg */«(*) lQg lQg *•

In other words (30) holds. The monotonicity conditions on g(x) could no
doubt be relaxed, but we do not investigate this question.
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