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Abstract

Some optimal choices for a parameter of the Dai–Liao conjugate gradient method are
proposed by conducting matrix analyses of the method. More precisely, first the `1 and
`∞ norm condition numbers of the search direction matrix are minimized, yielding two
adaptive choices for the Dai–Liao parameter. Then we show that a recent formula for
computing this parameter which guarantees the descent property can be considered as a
minimizer of the spectral condition number as well as the well-known measure function
for a symmetrized version of the search direction matrix. Brief convergence analyses are
also carried out. Finally, some numerical experiments on a set of test problems related to
constrained and unconstrained testing environment, are conducted using a well-known
performance profile.
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1. Introduction
We consider the unconstrained optimization problem

min
x∈Rn

f (x), (1.1)

in which f : Rn → R is continuously differentiable and an analytic expression of its
gradient is available. As a class of efficient techniques for solving the large-scale cases
of problem (1.1), conjugate gradient (CG) methods are useful tools due to low memory
requirements and strong global convergence properties [7, 19]. These methods are
specified by iterative formulas in the form

x0 ∈ R
n, xk+1 = xk + sk, sk = αkdk, k = 0, 1, . . . ,

where αk is a step length to be computed by a line search along the direction dk, defined
by

d0 = −g0, dk+1 = −gk+1 + βkdk, k = 0, 1, . . . ,
in which gk = ∇ f (xk) and βk is a scalar called the CG (update) parameter [15].
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Employing the features of the quasi-Newton methods [21], Dai and Liao [9] (DL)
proposed one of the well-known CG parameters

βDL
k =

gT
k+1yk

dT
k yk

− t
gT

k+1sk

dT
k yk

, (1.2)

where yk = gk+1 − gk and t is a nonnegative parameter, being an extension of the
Hestenes–Stiefel parameter [16]. Note that if the line search fulfils the popular strong
Wolfe conditions [19]

f (xk + αkdk) − f (xk) ≤ δαkdT
k gk, (1.3)

|dT
k ∇ f (xk + αkdk)| ≤ −σdT

k gk (1.4)

with 0 < δ < σ < 1, then dT
k yk > 0 and so the parameter in (1.2) is well defined. We

observe that the efficient CG methods proposed by Hager and Zhang [13] and Dai
and Kou [8] can be regarded as adaptive versions of the DL method satisfying the
sufficient descent property. However, numerical behaviour of the this method is very
dependent on the parameter t, for which finding appropriate choices has attracted
special attention, even considered as an open problem [1].

Recently, based on a matrix point of view, Babaie-Kafaki and Ghanbari [2–5]
proposed several adaptive choices for the parameter t in (1.2) (see also the article by
Fatemi [11]). More precisely, they noted that search directions of the DL method can
be written as

dk+1 = −Qk+1gk+1, k = 0, 1, . . . ,

in which

Qk+1 = I −
skyT

k

sT
k yk

+ t
sksT

k

sT
k yk

(1.5)

is called the search direction matrix. Then they suggested several choices for t by
minimizing some upper bounds for the condition number of Qk+1 [2, 4] as well
as approaching Qk+1 to some well-known matrices (such as the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) updating formula) as much as possible [4, 5]. Moreover,
symmetrizing the matrix Qk+1, Babaie-Kafaki and Ghanbari showed that the following
family of choices for t guarantees the descent property

tp,q
k = p

‖yk‖
2

sT
k yk
− q

sT
k yk

‖sk‖
2 , (1.6)

where p ≥ 1/4 and q ≤ 0 are real parameters and ‖ · ‖ denotes the Euclidean norm [3].
Here, conducting matrix analyses on the search direction matrix of the DL method,

we propose several choices for the parameter t in (1.2). More precisely, in Section 2 we
suggest two adaptive choices for the DL parameter by minimizing the `1 and `∞ norm
condition numbers of Qk+1. In Section 3 we discuss optimality of the formula (1.6)
with appropriate choices for the parameters p and q in the sense of minimizing the
spectral condition number as well as the measure function of Byrd and Nocedal [6] for
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a symmetrized version of Qk+1. In Section 4 we make some comparative numerical
experiments and report the results. Finally, we present the concluding remarks in
Section 5. Hereafter, we assume that the strong Wolfe line search conditions (1.3)
and (1.4) are satisfied.

2. Two adaptive choices for the Dai–Liao parameter based on the `1 and `∞
norm condition numbers

First, we briefly present some properties of the two nonsmooth matrix norms `1
and `∞. Then we obtain an optimal choice for the DL parameter by minimizing the `1
norm condition number of the search direction matrix Qk+1 given by (1.5). In a similar
scheme, an optimal choice for t is given by minimizing the `∞ norm condition number
of Qk+1.

As is well known, for a matrix A = [ai j] ∈ Rn×n,

‖A‖1 = max
j=1,2,...,n

Σn
i=1|ai j|, ‖A‖∞ = max

i=1,2,...,n
Σn

j=1|ai j|.

Hence, if A = xyT with the arbitrary vectors x, y ∈ Rn, then

‖A‖1 = ‖x‖1‖y‖∞, ‖A‖∞ = ‖x‖∞‖y‖1.

When A is nonsingular, we denote its `1 and `∞ norm condition numbers [20],
respectively, by

κ1(A) = ‖A‖1‖A−1‖1 and κ∞(A) = ‖A‖∞‖A−1‖∞.

These are effective tools to measure sensitivity of the solution to data perturbations
in matrix-based numerical problems [20]. A matrix with a large condition number
is called ill-conditioned, since instability may occur in the corresponding matrix
computations. Considering this fact, here we determine the parameter t in (1.2) to
minimize an upper bound on the `1 and `∞ norm condition numbers of the matrix
Qk+1, making the matrix well-conditioned.

Based on the above discussion,

‖Qk+1‖1 ≤ 1 +
‖sk‖1‖yk‖∞

sT
k yk

+ t
‖sk‖1‖sk‖∞

sT
k yk

.

Also, from the Sherman–Morrison formula [19],

Q−1
k+1 = I +

1
t

skyT
k

‖sk‖
2 −

sksT
k

‖sk‖
2

and, therefore,

‖Q−1
k+1‖1 ≤ 1 +

1
t
‖sk‖1‖yk‖∞

‖sk‖
2 +

‖sk‖1‖sk‖∞

‖sk‖
2 .

Hence,
κ1(Qk+1) ≤ h(t) + ζ, (2.1)
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where ζ is a positive constant and

h(t) =
1
t
‖sk‖1‖yk‖∞

‖sk‖
2

(
1 +
‖sk‖1‖yk‖∞

sT
k yk

)
+ t
‖sk‖1‖sk‖∞

sT
k yk

(
1 +
‖sk‖1‖sk‖∞

‖sk‖
2

)
, t > 0.

Then, after some algebraic manipulations,

t∗k1
= arg min

t
h(t) =

√
‖yk‖∞

‖sk‖∞

( sT
k yk + ‖sk‖1‖yk‖∞

‖sk‖
2 + ‖sk‖1‖sk‖∞

)
(2.2)

is a minimizer of the upper bound of the `1 norm condition number given by (2.1).
Also, if we conduct a similar analysis using the `∞ norm, then

t∗k2
=

√
‖yk‖1

‖sk‖1

( sT
k yk + ‖sk‖∞‖yk‖1

‖sk‖
2 + ‖sk‖∞‖sk‖1

)
(2.3)

as a minimizer of an upper bound of κ∞(Qk+1).
Now assume that the level set L = {x | f (x) ≤ f (x0)} is bounded and also, in a

neighbourhood N of L, f is continuously differentiable and its gradient is Lipschitz
continuous. Consider a CG method with the parameter βDL

k defined by (1.2) in which
for all k ≥ 0, t = t∗k1

or t = t∗k2
as defined by (2.2) or (2.3), respectively. It can be shown

that there exists a positive constant M as an upper bound of t∗k1
and t∗k2

. Hence, if
the search directions are descent directions and the step lengths are determined to
satisfy the strong Wolfe conditions (1.3) and (1.4), then a result of Dai and Liao [9,
Theorem 3.3] ensures the global convergence of the method for uniformly convex
objective functions. Furthermore, if the CG parameter (1.2) is truncated as

βDL+
k = max

{gT
k+1yk

dT
k yk

, 0
}
− t

gT
k+1sk

dT
k yk

with t = t∗k1
or t = t∗k2

, and the search directions satisfy the sufficient descent condition,
then another result of Dai and Liao [9, Theorem 3.6] ensures the global convergence
of the method for general objective functions.

3. On optimality of the formula (1.6)

In this section we show that appropriate choices for the parameters p and q in (1.6)
may enhance numerical stability of the DL method in the sense of decreasing the
condition number of a symmetrized version of Qk+1, that is,

Ak+1 =
Qk+1 + QT

k+1

2
= I −

1
2

skyT
k + yksT

k

sT
k yk

+ t
sksT

k

sT
k yk

,

which is shown to be positive definite when

t >
1
4

(
‖yk‖

2

sT
k yk
−

sT
k yk

‖sk‖
2

)
, (3.1)

guaranteeing the descent property [3].
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As shown by Babaie-Kafaki and Ghanbar [3], the matrix Ak+1 has n − 2 eigenvalues
being equal to 1 and, also,

tr(Ak+1) = n − 1 + t
‖sk‖

2

sT
k yk

, (3.2)

det(Ak+1) =
1
4

+ t
‖sk‖

2

sT
k yk
−

1
4
‖sk‖

2‖yk‖
2

(sT
k yk)2

, (3.3)

where tr(·) and det(·) stand for the trace and determinant of a matrix, respectively. So,
after some algebraic manipulations, the two other eigenvalues λ+

k and λ−k of Ak+1 are
computed as

λ±k =
1
2

(
1 + t

‖sk‖
2

sT
k yk

)
±

1
2

√(
t
‖sk‖

2

sT
k yk
− 1

)2
+
‖sk‖

2‖yk‖
2

(sT
k yk)2

− 1,

for which, when inequality (3.1) holds, it follows that 0 < λ−k ≤ 1 ≤ λ+
k . Thus,

κ(Ak+1) =
λ+

k

λ−k
,

where κ(·) stands for the spectral condition number. Now, minimizing κ(Ak+1),

t∗k3
= arg min

t
κ(Ak+1) =

1
2
‖yk‖

2

sT
k yk

+
1
2

sT
k yk

‖sk‖
2 , (3.4)

ensuring optimality of the choice (p, q) = (1/2, −1/2) in equation (1.6). In what
follows, based on a different strategy, we achieve another optimal choice for (p, q).

In an analysis on the convergence of the quasi-Newton methods, Byrd and Nocedal
[6] introduced the following function on the set of positive-definite matrices:

ψ(A) = tr(A) − ln(det(A)),

where A ∈ Rn×n is an arbitrary symmetric matrix with the eigenvalues λ1 ≥ · · · ≥λn >0.
The definition of ψ(·) originates from the work of Powell [18], in which the trace and
determinant of the Hessian approximation given by the quasi-Newton methods have
been combined using the arithmetic–geometric mean inequality. Note that ψ(A) > 0,
because

ψ(A) =

n∑
i=1

(λi − ln λi).

Note that for all z > 0, the function ω(z) = z − ln z is a strictly convex function with
the minimum value 1 at z = 1. So, ψ(A) ≥ n and, as pointed out by Byrd and Nocedal
[6], ψ(A) can be considered as a measure of closeness of the matrix A to the identity
matrix for which ψ(I) = n. Furthermore, ω(z) > ln z; thus,

ψ(A) ≥ ln λ1 − ln λn = ln
λ1

λn
= ln κ(A),

which shows that ψ(A) is large when A is an ill-conditioned matrix. Hence, small
values of ψ(A) are favourable in actual computations. Based on this fact and
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Table 1. Test problems data.

Function n Function n Function n

ARGLINA 200 DIXMAANK 3000 MANCINO 100
BDEXP 5000 DIXMAANL 3000 MOREBV 5000
BIGGSB1 5000 DIXON3DQ 10 000 MSQRTALS 1024
BQPGABIM 50 DMN15103 99 MSQRTBLS 1024
BQPGASIM 50 DQDRTIC 5000 NCB20 5010
BROYDN7D 5000 DQRTIC 5000 NCB20B 5000
BRYBND 5000 DRCAV1LQ 4489 NONCVXU2 5000
CHAINWOO 4000 DRCAV2LQ 4489 NONDQUAR 5000
CHENHARK 5000 DRCAV3LQ 4489 PENALTY2 200
CHNROSNB 50 EDENSCH 2000 POWELLSG 5000
CLPLATEB 5041 EG2 1000 POWER 10 000
COSINE 10 000 EIGENALS 2550 QUARTC 5000
CRAGGLVY 5000 EIGENBLS 2550 SCHMVETT 5000
CURLY10 10 000 EIGENCLS 2652 SENSORS 100
CURLY20 10 000 ENGVAL1 5000 SINQUAD 5000
CURLY30 10 000 ERRINROS 50 SPARSQUR 10 000
DECONVU 63 EXTROSNB 1000 SPMSRTLS 4999
DIXMAANA 3000 FLETCBV2 5000 SROSENBR 5000
DIXMAANB 3000 FLETCBV3 5000 TESTQUAD 5000
DIXMAANC 3000 FLETCHBV 5000 TOINTGOR 50
DIXMAAND 3000 FLETCHCR 1000 TOINTGSS 5000
DIXMAANE 3000 FMINSRF2 5625 TOINTPSP 50
DIXMAANF 3000 FMINSURF 5625 TOINTQOR 50
DIXMAANG 3000 FREUROTH 5000 TRIDIA 5000
DIXMAANH 3000 GENHUMPS 5000 VARDIM 200
DIXMAANI 3000 GENROSE 500 VAREIGVL 50
DIXMAANJ 3000 LIARWHD 5000 WOODS 4000

considering equations (3.2) and (3.3), after some algebraic manipulations,

t∗k4
= arg min

t
ψ(Ak+1) =

1
4
‖yk‖

2

sT
k yk

+
3
4

sT
k yk

‖sk‖
2 . (3.5)

Thus, the choice (p, q) = (1/4,−3/4) in (1.6) is optimal in the sense of minimizing the
measure function of Byrd and Nocedal [6].

4. Numerical experiments

Here, we computationally compare performance of the DL method with the
adaptive choices t∗k1

, t∗k2
, t∗k3

and t∗k4
for the parameter t in (1.2), given by (2.2), (2.3),

https://doi.org/10.1017/S1446181119000063 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181119000063


[7] Matrix analyses on the Dai–Liao conjugate gradient method 201

Figure 1. Total number of function and gradient evaluations performance profiles.

(3.4) and (3.5), respectively; the corresponding methods are respectively called DLi,
i = 1, 2, 3, 4. The runs were performed on a set of 81 unconstrained optimization test
problems of the CUTEr collection [12] with the minimum dimension being equal to 50,
as given in Table 1. For our experiments, we used a computer with a 2.3 GHz Intel
(R) CORE (TM) 2 Duo CPU, and 8 GB of RAM. We implemented the method in
MATLAB 7.7.0.471 (R2008b) running on a Centos 6.2 server Linux operating system.

In the line search procedure, the strong Wolfe conditions (1.3) and (1.4) have
been employed using an algorithm of Nocedal and Wright [17, Algorithm 3.5] with
δ = 0.0001 and σ = 0.9. Since DL1 and DL2 are not necessarily descent methods, in
these cases, when an uphill search direction was encountered, the negative gradient
was used [9].

The algorithms were stopped by reaching a maximum of 10 000 iterations or
achieving a solution with ‖gk‖ < 10−6(1 + | f (xk)|). Moreover, efficiency comparisons
were drawn using the Dolan–Moré performance profile [10] on the running time
and the total number of function and gradient evaluations being equal to N f + 3Ng,
where N f and Ng respectively denote the numbers of function and gradient evaluations
[14]. The performance profile gives, for every ω ≥ 1, the proportion p(ω) of the test
problems that each considered algorithmic variant has a performance within a factor
of ω of the best. Figures 1 and 2 demonstrate the results of comparisons.

As the figures show, the methods DL2, DL3 and DL4 are more likely competitive
with each other and, also, they outperform the method DL1. Hence, formula (2.2) fails
to introduce an appropriate choice for the DL parameter in contrast to the others. Also,
note that DL3 and DL4 are slightly preferable to DL2 with respect to the CPU time.
Thus, proper choices for the parameters p and q in (1.6) (previously proposed in [3])
may enhance efficiency of the DL method.
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Figure 2. CPU time performance profiles.

5. Conclusions

As an open problem in nonlinear conjugate gradient methods, finding proper
choices for the Dai–Liao parameter has attracted special attention. Here, based on
matrix analyses, we have suggested several adaptive choices for this parameter. More
precisely, we have focused on improving the condition number in different matrix
norms as well as minimizing a well-known measure function.

Numerical experiments have been conducted to compare the effectiveness of the
proposed choices of the Dai–Liao parameter.
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