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Reverse Hypercontractivity for
Subharmonic Functions

Leonard Gross and Martin Grothaus

Abstract. Contractivity and hypercontractivity properties of semigroups are now well understood

when the generator, A, is a Dirichlet form operator. It has been shown that in some holomorphic

function spaces the semigroup operators, e−tA, can be bounded below from Lp to Lq when p, q and t

are suitably related. We will show that such lower boundedness occurs also in spaces of subharmonic

functions.

1 Introduction

A Riemannian manifold, (M, g), equipped with a smooth probability measure µ,
posseses a natural second order elliptic operator, d∗d, acting on functions. The
adjoint d∗ is to be computed here with the help of the measure µ: one regards
d as a densely defined operator in L2(M, µ) into the space of 1-forms which are

square integrable with respect to µ in order to compute its adjoint. Such opera-
tors, d∗d, so called Dirichlet form operators, or operators in divergence form, have
been studied intensely because they show up in so many different areas of mathemat-
ics. Typically, one chooses a self-adjoint version A of the differential operator d∗d on

L2(M, µ). For example one might impose Dirichlet or Neumann boundary condi-
tions if M is not complete. The nonnegative operator A generates a semigroup e−tA

whose properties have been widely explored and already expounded in many texts,
e.g., [BH, Da80, Da89, Fu80, HP, MR, Si]. Among other issues are the boundedness

properties of the semigroup, not only in L2(µ) but also in the Lp spaces and Sobolev
spaces. In particular, hypercontractivity is concerned with boundedness of the semi-
group operators e−tA from Lp to Lq. When M = C

n with its standard metric and µ
is Gauss measure then the semigroup operator e−tA can actually be bounded below

from Lp to Lq if p, q and t are properly related and the semigroup is restricted to act
only on holomorphic functions. This is reverse hypercontractivity in these holomor-
phic function spaces. This phenomenon was discovered by E. Carlen [Ca].

In [GGS] it was shown that Carlen’s reverse hypercontractivity in holomorphic

function spaces could be understood as a problem in estimating the Lp norm of a
Radon–Nikodym derivative ‖dψ∗µ/dµ‖p for some diffeomorphism ψ of M. The
reason for this is that over C

n the second order terms in d∗d amount to the Laplacian,
which annihilates holomorphic functions. Thus d∗d reduces to a first order differen-

tial operator, X, on holomorphic functions. As a result, the semigroup reduces to a
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composition operator:

(1.1) e−tA f = f ◦ exp (−tX)

on holomorphic functions. Here exp (−tX) is the flow induced by the vector field−X.
The purpose of this paper is to extend the reverse hypercontractive inequalities of

[Ca] and [GGS] from holomorphic functions to subharmonic functions. Of course
if f is a harmonic function on R

n then the heuristic argument leading to (1.1) still
applies. But the natural environment for our results seems to be the class of subhar-
monic functions. In the class of subharmonic functions the reduction of the semi-

group to a composition operator as in (1.1) no longer holds. Instead we will establish
an inequality

(1.2) e−tA f ≥ f ◦ exp (−tX)

for subharmonic functions f . We will refer to the inequality (1.2) as relative subhar-
monicity for the reasons explained in the introduction to [G02]. Once the inequality
(1.2) is proven, reverse hypercontractive inequalities, typically

(1.3) ‖e−tA f ‖q ≥ C(t, p, q)‖ f ‖p,

can be deduced from (1.2) by the same method used in [GGS].

The technical problems associated with proving the inequality (1.2) are prob-
lems concerning the approximation of subharmonic functions by more regular sub-
harmonic functions. The latter functions must be in the domain of A or of its
quadratic form. This requires a regularization method which decreases growth at ∞
and smooths locally while at the same time preserving subharmonicity. The usual
methods of dealing with approximation of functions by nice functions, such as func-
tions in C∞

c (M), must be modified because functions in C∞
c (M) are never subhar-

monic for the manifolds of interest. We will introduce two methods of regularization.

The first applies in one dimension. Here, the subharmonic functions are just the con-
vex functions. The key step in “regularizing” a convex function in one dimension will
consist in restricting the convex funtion to a large interval and then extending it lin-
early to obtain a slower growing convex function. Our main result in one dimension

is Theorem 2.8, which will be shown in Section 5 to yield (1.2) and eventually, in
Section 6, to yield (1.3). This will be carried out in Section 3.

In the second method of regularization, which is applicable on R
n, we will com-

bine convolution with composition: f → (ϕ ∗ f ) ◦ exp(−tX). Convolution by

itself does not act as a bounded operator in L2(R
n, µ) because any translate of a

typical measure µ of interest has an unbounded density with respect to µ. But the
combined operation does act boundedly on L2(µ) under some simple conditions
on the relation between X and µ. In this method we will rely on the estimates of

‖d(exp (tX))∗µ/dµ‖p established in [GGS]. We will take advantage here of the fact
that these estimates are sensitive to the sign of X. This will be carried out in Section 4.

It has already been observed in [GS] and [So] that the constants C(t, p, q) in (1.3)
which were found in [GS] and [GGS], yield reverse hypercontractive inequalities in
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the holomorphic category which are not saturated by any holomorphic functions.
In the present paper we have a larger class of functions than the absolute value of

holomorphic functions. Yet we still do not have saturation in this larger class in spite
of having the same constants as for the smaller class. In Section 6 we will establish
(1.3) with bigger constants in the class of α-subharmonic functions on R

n. These are
the functions satisfying ∆ f ≥ α f for α ≥ 0. Yet we still do not have saturation. The

optimal constant, C(t, p, q), in (1.3) is therefore still unknown.

2 Notation and Some Statements of Results

Let M be an n dimensional Riemannian manifold with smooth Riemannian metric g.
Denote by µ a probability measure on M. We assume throughout that µ has a strictly
positive smooth density in each coordinate chart. For 1 ≤ p ≤ ∞, Lp(M, µ) will
denote the Banach space of real p-th power integrable functions with norm ‖ · ‖p.

Associated to the triple (M, g, µ) is the pre-Dirichlet form

(2.1) Q0( f , ϕ) =

∫

M

h(d f , dϕ) dµ, f ∈ C∞(M), ϕ ∈ C∞
c (M),

where h is the dual Riemannian metric to g on the dual spaces T∗(M). The differen-
tial operator

d∗d : C∞(M) → C∞(M)

is defined by

(2.2)

∫

M

(d∗d f )ϕ dµ =

∫

M

h(d f , dϕ) dµ, f ∈ C∞(M), ϕ ∈ C∞
c (M).

Next we pick a version of d∗d which is a nonnegative self-adjoint operator in
L2(µ). Denote by (Q,D(Q)) the closure of the pre-Dirichlet form (Q0,C

∞
c (M)) in

L2(µ). Then there is a unique, nonnegative self-adjoint operator (A,D(A)) (Fried-
richs extension) in L2(µ) such that

Q( f , g) =

∫

M

(A f )g dµ, ∀ f ∈ D(A), g ∈ D(Q).

If M is not complete then this version of d∗d corresponds to choosing Dirichlet
boundary conditions.

D(Q) is a Hilbert space in the energy norm
√

‖ · ‖2
2 + Q; see e.g., [BH, Da89, Fu80,

MR, Si].

The semigroup Tt := e−tA, t ≥ 0, is a contraction on L2(µ), i.e., ‖Tt f ‖2 ≤ ‖ f ‖2

for all f ∈ L2(µ). Furthermore, by the Beurling–Deny theorem, Tt has an extension
to Lp(µ) for p ∈ [1, 2) and ‖Tt f ‖p ≤ ‖ f ‖p for all 1 ≤ p ≤ ∞. This semigroup is
strongly continuous on Lp(µ) for 1 ≤ p < ∞. Denote by (Ap,D(Ap)) the generator

of Tt in Lp(µ) for 1 ≤ p < ∞. Then Tt f = e−tAp f for all f ∈ Lp(µ) and D(Ap) ⊂
D(Aq) if ∞ > p ≥ q ≥ 1. Of course A2 = A.

If µ is the Riemann–Lebesgue measure on M (and therefore not a finite measure
in the cases of interest to us) the differential operator d∗d is just the Laplace–Beltrami
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operator. Otherwise d∗d differs from the Laplace–Beltrami operator by a first order
operator.

We are going to choose a decomposition

(2.3) d∗d = −L + X

in which X is a first order differential operator on M. But L will not necessarily be the
Laplace–Beltrami operator. Such a decomposition arose in [G99, G02], where M was
a complex manifold and L was the Hermitian Laplacian, which happens to coincide
with the Laplace–Beltrami operator only when (M, g) is Kähler. In the present work

this decomposition will not be so natural.
In all of our examples the manifold M will be either R

n, a half line or the Riemann
surface for z1/n. In each case there is a natural Riemannian metric and a natural
Laplacian. In all cases we will use a Riemannian metric which is conformal to the

standard (or natural) one and we will then take L to be a (positive) multiple, σ(x)∆,
of the natural Laplacian. The usual condition for a C2 function to be subharmonic,
namely ∆ f ≥ 0 (weak derivatives), is then equivalent to σ(x)∆ f ≥ 0 (weak deriva-
tives), i.e., L f ≥ 0 (weak derivatives). The essential feature of the decomposition

(2.3) for us is that the flow of the vector field X maps subharmonic functions to sub-
harmonic functions.

Definition 2.1 For any second order differential operator L on M with smooth
coefficients, a function f ∈ L1

loc (M, µ) is called L-subharmonic if

(2.4) ( f , L∗φ)L2(µ) ≥ 0, ∀φ ∈ C∞
c (M)+,

where L∗ is the L2(µ) adjoint of L|C∞
c (M). S will denote the space of L-subharmonic

functions on M.

In particular, if f ∈ C2(M) and (2.3) holds then (2.4) is equivalent to

(2.5) (X − d∗d) f ≥ 0.

It will be useful to rewrite (2.4) in terms of the operators that we will actually deal
with. Aside from domains, the equation (2.3) may be written L = X − A, where A is

the self-adjoint version of d∗d described above. Thus (2.4) is the weak version of

(2.6) (X − A) f ≥ 0.

That is,

(2.7) ( f , (X∗ − A)φ)L2(µ) ≥ 0 ∀φ ∈ C∞
c (M)+.

In particular, if f ∈ D(A) ∩ D(X) then (2.6) holds when f is L-subharmonic. Here
D(X) refers to the domain of (X∗|C∞

c )∗.
Let us observe immediately that in order for (1.2) to hold for all t ≥ 0, it is nec-

essary for f to be L-subharmonic. To be specific, assume that f ∈ Lp for some
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p ∈ [1,∞] and that (1.2) holds for all t ≥ 0. If φ ∈ C∞
c and φ ≥ 0 then

( f , (e−tA − (e−tX)∗)φ) = (e−tA f − f ◦ e−tX, φ) ≥ 0. Since this inequality is equality

when t = 0, we may divide by t and take the limit as t ↓ 0 to find (2.7). Therefore f

is L-subharmonic.
We will always assume that the flow of the vector field X, exp(tX), exists for all

t ∈ R.

We also assume throughout that the flow of X leaves L-subharmonic functions invari-

ant. That is, if f is in S then so is f ◦ exp(tX) for all t ∈ R.

Example 2.2 (Measures on R
n) Let M = R

n and let σ be a strictly positive function
in C∞(R

n). We define a Riemannian metric g by

(2.8) gx(∂/∂xi , ∂/∂x j ) = δi j/σ(x).

Then the dual metric is
hx(dxi, dx j) = δi jσ(x).

We take

(2.9) µ = ρ(x)dx

where ρ is in C∞(R
n) and is strictly positive.

It will be convenient to express the operator d∗d in terms of ρ and w, where

(2.10) w(x) := σ(x)ρ(x), x ∈ R
d.

An integration by parts yields

(2.11) d∗d f = −σ∆ f + X f , f ∈ C∞(R
n),

where the smooth vector field X is given by

(2.12) X = −

n
∑

i=1

ρ−1(∂w/∂xi)∂/∂xi .

This choice of X gives

(2.13) L f = σ∆ f , f ∈ C∞(R
n).

In this example and also on (0,∞), we will always choose ρ and σ to be related in
such a way that (2.12) reduces to

(2.14) X = c

n
∑

i=1

x j∂/∂x j , for some c > 0.

Then the flow of X is given by

(2.15) exp(tX)x = etcx, t ∈ R, x ∈ R
n.

https://doi.org/10.4153/CJM-2005-022-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-022-2


Reverse Hypercontractivity for Subharmonic Functions 511

By the chain rule,
∆( f ◦ exp(tX)) = et2c(∆ f ) ◦ exp(tX).

Hence if L f ≥ 0 then L( f ◦ exp(tX)) ≥ 0. So the flow preserves L-subharmonicity.
Here is a class of densities ρ and metrics σ which yield (2.14). Let ϕ : [0,∞) →

(0,∞) be infinitely differentiable. Assume that ϕ ′(s) < 0 for all s ∈ [0,∞) and that
ϕ(s) → 0 as s → ∞. Define

w(x) = ϕ(|x|2),(2.16)

ρ(x) = −bϕ ′(|x|2), b = constant > 0,(2.17)

σ(x) = w(x)/ρ(x).(2.18)

Then ∂w/∂x j = 2x jϕ
′(|x|2) = −x j(2/b)ρ(x). So (2.14) holds with c = 2/b. The

constant b may be chosen to normalize ρ. In dimension two no further restrictions
need be placed onϕ, because

∫

R2 ρ(x) dx = bπϕ(0) <∞. In higher dimensions,ϕ(s)
must go to zero fast enough to make ρ integrable. A straightforward computation for

n ≥ 3 shows that
∫

Rn ρ(x) dx = const
∫ ∞

0
s

n−4
2 ϕ(s) ds when lims→∞ s

n−2
2 ϕ(s) = 0. So

ρ will be integrable if this limit relation holds and
∫ ∞

0
s

n−4
2 ϕ(s) ds <∞.

Remark 2.3 The examples for w, ρ, σ in (2.16)–(2.18) are all radial. This is actually
forced by (2.14) in dimension n ≥ 2. Indeed, (2.12) and (2.14) require grad w(x) =

−cxρ(x), which is orthogonal to any tangent direction to the sphere {|x| = r}. Hence

w is constant on this sphere and so is radial. Writing w in the form (2.16), it now
follows that grad w(x) = 2xϕ ′(|x|2). The equation grad w(x) = −cxρ(x) now forces
ρ(x) = const ϕ ′(|x|2), which is also radial. Since w = σρ we see that σ is also

radial. In dimension one ρ and σ need not be symmetric. This will be elaborated in
Theorem 2.8.

Example 2.4 (Half line) Let M = (0,∞). Choose a strictly positive function ρ ∈
C∞((0,∞)) such that

∫ ∞

0
ρ(s) ds = 1 and

∫ ∞

0
sρ(s) ds <∞. Define σ by

(2.19) σ(x)ρ(x) =

∫ ∞

x

sρ(s) ds, x > 0.

Then (σρ) ′(x) = −xρ(x) and (2.12) therefore reduces to X = x d/dx. So d∗d =

−L + X with L = σ(x)d2/dx2. The flow of X is exp(tX)(x) = et x, which exists for
all time. The L-subharmonic functions are those locally L1 functions on (0,∞) such
that f ′ ′(x) ≥ 0 (in the sense of weak derivatives). After modification on a set of
measure zero such a function can be chosen to be continuous, (see Remark 3.1). The

condition weak f ′ ′ ≥ 0 is then equivalent to the requirement that f be convex. The
flow of X clearly preserves convexity.

Example 2.5 (A Riemann surface, [G02]) Let n be an integer ≥ 2. Denote by Mn

the n-sheeted Riemann surface assosiated to z1/n considered as a two-dimensional
real manifold. Write R

2∗
= R

2 − {0}. Mn is a covering space of R
2∗ with n leaves.
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Let α : Mn → R
2∗ be the natural projection. In small, connected, simply connected

coordinate charts on each sheet we can use the coordinates x, y induced by α and

also the metric induced on Mn by α from the Euclidean metric on R
2∗. Writing

∂x = ∂/∂x and ∂y = ∂/∂y, we have g(∂x, ∂x) = g(∂y , ∂y) = 1 and g(∂x, ∂y) = 0.
Then Mn is an incomplete Riemannian manifold. Let c > 0 and define

pc(z) = (2πc)−1e−|z|2/2c, z = (x, y) ∈ R
2∗.

Let µn be the measure on Mn whose local density with respect to the Riemannian

volume element, d Vol = dxdy, is

dµn/d Vol(z) = (1/n)pc(α(z)), z ∈ Mn.

Since
∫

R2∗ pc(z) dxdy = 1 we see that µn is a probability measure on Mn. Otherwise

stated, the probability density is divided equally among the n sheets. Then

d∗d f = −∆ f + X f , f ∈ C∞(Mn),

where

X f = x∂x f + y∂y f .

Using local polar coordinates, i.e., z = r(sin(θ), cos(θ)), r > 0, the flow correspond-
ing to the vector field X is given by

exp(tX)
(

r(sin(θ), cos(θ))
)

= et r(sin(θ), cos(θ)).

Choosing L = ∆, obviously the flow generated by X preserves L-subharmonicity and
exists for all time.

Notation 2.6 We will write

(2.20) SLp(µ) = S ∩ Lp(µ), 1 ≤ p <∞.

Then SLp(µ) is a closed convex cone in Lp(µ), as follows from (2.4). Our results are
largely concerned with a possibly proper subset of S ∩ Lp. Define

S
2
= L2-closure of S ∩ D(Q),

S
p

= S
2 ∩ Lp for 2 < p <∞

and S
p

= closure of S
2 in Lp for 1 ≤ p < 2.

One always has S2 ⊂ SL2(µ), as is clear from the definitions and the fact that
SL2(µ) is closed in L2(µ). The question of equality will be a central issue for us.
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Overview 2.7 A key result in this paper is that the relative subharmonicity inequal-
ity (1.2) holds for sufficiently nice subharmonic functions f . “Nice” means that f

must be well related to the domain of A even if it is not actually in the domain of A.
In Section 5 we will show that (1.2) holds for all f in S2, but we will see in Theorem
2.9 that (1.2) can actually fail if f is merely in S ∩ L2. For this reason it is important
to know when S2 and S ∩ L2 coincide. Sections 3 and 4 are devoted to proofs that

these spaces coincide under some conditions on M, g, and µ. To begin with, the next
theorem shows that they always coincide on the line. On the other hand, Theorem
2.9 shows that they can easily fail to coincide on the half-line and that (1.2) can then
fail. This is, of course, a boundary effect.

The next two theorems concern the relation between S2 and S∩ L2 in one dimen-

sion.

Theorem 2.8 Let M = R and let (g, µ) be as in (2.8) and (2.9). Assume that

σ(x)ρ(x) → 0 as x → ±∞ and that (σρ) ′(x) = −xρ(x). Then X = xd/dx and

S
2

= SL2(µ).

If
∫ ∞

0
x2ρ(x) dx =

∫ 0

−∞
x2ρ(x) dx = ∞ then S

2
= {constants}. Otherwise S

2 is

infinite dimensional.

This will be proven in Section 3 by a regularization procedure which consists in
restricting a convex function to an interval and then extending it linearly to a convex
function of possibly slower growth.

In the opposite direction we have the following negative theorem for the half line.
It will also be proven in Section 3.

Theorem 2.9 Take M = (0,∞). Suppose that g and µ := ρ(x)dx have the standard

form, (2.8) and (2.9) on (0,∞). (cf. Theorem 2.8 for one dimension.). Assume that
∫ ∞

0
x2ρ(x) dx <∞. Then

S
2 $ SL2(µ).

In particular the constant function f ≡ 1 is in SL2(µ) but not in S
2. Moreover the

inequality (1.2) fails for this function.

Remark 2.10 D(Q) is always dense in L2. But S∩D(Q) need not be dense in S∩L2.
This is what happens in the one dimensional examples described in Theorem 2.9.
One sees in these examples how SL2

⊖ S2 detects the boundary of (0,∞). This sense

in which subharmonic functions detect the boundary is similar to that described in
[G99, G02] for holomorphic function spaces. For example it was shown in [G02,
Theorem 6.2] that for the Riemann surface of Example 2.5, the boundary at z = 0 is

“detected” in the holomorphic category. We believe that the boundary is also detected
in the subharmonic category, i.e., S2 6= SL2. But we do not have a proof.

Remark 2.11 We are going to prove in Section 4 a theorem of the form

S
2(R

n, σ, µ) = SL2(R
n, σ, µ)

https://doi.org/10.4153/CJM-2005-022-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-022-2


514 L. Gross and M. Grothaus

for a class of measures µ and metrics σ which satisfy some regularity conditions. The
proof will use a very different regularization method from the proof of Theorem 2.8.

3 The Space S2 in One Dimension

Our main objective in this section and the next is to prove that

S
2(M, g, µ) = SL2(M, g, µ)

for several different classes of manifolds without boundary. In each case, we need to
use a regularization method which produces a smooth subharmonic approximation
to a given subharmonic function in L2. By smooth we mean slow growth near ∞
as well as locally smooth: the smoothed subharmonic function must lie in D(Q).

We are going to describe two different regularization methods. The first will be ap-
plied in one dimension, in this section, to prove Theorem 2.8. Here we will take a
subharmonic (≡ convex) function on R, restrict it to an interval, and then extend
the restriction linearly to produce a convex support function of linear growth. This

method seems limited to one dimension.

At the end of this section we will prove that S
2 6= SL2 on the half line, as asserted

in Theorem 2.9.

Remark 3.1 In both of our one dimensional theorems, on the line and on the half-
line, L is given as in Examples 2.2 and 2.4. Thus in both cases L f (x) = σ(x) f ′ ′(x)

for f ∈ C∞(M), where M = R or (0,∞). If f ∈ L1
loc (M) then, by Definition

2.1, f is L-subharmonic if and only if
∫

M
f (x)(d2/dx2)(σ(x)ρ(x)φ(x)) dx ≥ 0 for all

φ ∈ C∞
c (M) with φ ≥ 0. Since σρ is bounded away from zero on compact sets and

is itself in C∞(M), we see that f is L-subharmonic if and only if

(3.1)

∫

M

f (x)ψ ′ ′(x) dx ≥ 0 ∀ψ ∈ C∞
c (M) with ψ ≥ 0.

This assures that, after modification on a set of measure zero, f is simply a convex

function.

Here is a sketch of a proof of this assertion. It suffices in both cases just to take
M := (a ′, b ′) to be a bounded interval and then to show that if f ∈ L1

loc(M) (for
Lebesgue measure) and satisfies (3.1), then on any compact interval [a, b] ⊂ (a ′, b ′),
f can be modified on a set of measure zero so as to become a convex (and therefore

continuous) function. To this end choose ǫ > 0 such that [a − 4ǫ, b + 4ǫ] ⊂ (a ′, b ′)
and choose a sequence φn ∈ C∞(R) such that φn ≥ 0,

∫

R
φn dx = 1 and support

φn ⊂ [−1/n, 1/n] ∩ [−ǫ, ǫ]. Since f ∈ L1([a − 4ǫ, b + 4ǫ]), the convolutions fn =

φn ∗ f are well defined on the interval I ≡ (a − 3ǫ, b + 3ǫ). They are in C∞(I) and

satisfy f ′ ′
n ≥ 0 on I by (3.1). Moreover, fn converges to f in L1(I). Suppose that

a ≤ x < y ≤ b ≤ s ≤ b + ǫ and b + 2ǫ ≤ t ≤ b + 3ǫ. Since fn is convex on I we have

fn(y) − fn(x)

y − x
≤

fn(t) − fn(s)

t − s
.
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Integrating this inequality with respect to s and t over the two intervals b ≤ s ≤ b + ǫ
and b + 2ǫ ≤ t ≤ b + 3ǫ, we find inequalities whose right-hand sides are integrals

that converge to
∫ b+ǫ

b
ds

∫ b+3ǫ

b+2ǫ
dt f (t)− f (s)

t−s
. In particular these integrals are uniformly

bounded in n. A similar argument applies to the left of a yielding constants A and B

such that

(3.2) A ≤ ǫ2 fn(y) − fn(x)

y − x
≤ B, a ≤ x < y ≤ b.

The functions fn are therefore uniformly Lip 1 on [a, b]. Multiply (3.2) by y − x,
put y = b and integrate with respect to x over the half interval [a, (a + b)/2] to

find that the sequence fn(b) is uniformly bounded above. A similar argument shows
that { fn(a)} is bounded below. Thus the sequence fn|[a, b] is equicontinuous and
uniformly bounded. A subsequence therefore converges uniformly to a continuous,
and clearly convex function g on [a, b]. Of course f = g a.e. on [a, b].

Proof of Theorem 2.8: Support function regularization in one dimension

Case (i):

(3.3)

∫ ∞

−∞

x2ρ(x) dx <∞.

Let w(x) = σ(x)ρ(x) as in (2.10). For 0 ≤ x ≤ a we have w(a)−w(x) = −
∫ a

x
sρ(s) ds

because w ′(x) = −xρ(x). Since w(a) → 0 as a → ∞, monotone convergence
yields w(x) =

∫ ∞

x
sρ(s) ds for x ≥ 0 and therefore for all x. Hence

∫ ∞

0
w(x) dx =

∫ ∞

0

∫ ∞

x
sρ(s) dsdx =

∫ ∞

0

∫ s

0
sρ(s) dxds =

∫ ∞

0
s2ρ(s) ds < ∞. A similar argument on

(−∞, 0] then gives
∫ ∞

−∞
w(x) dx <∞.

We assert that if f ∈ C∞(R) and has bounded first derivative f ′, then f ∈ D(Q).

Indeed, choose ψ in C∞
c (R)+ with ψ = 1 on [−1, 1] and ψ = 0 outside [−2, 2]. Let

ψn(x) = ψ(x/n). Then ψn converges to one boundedly as n → ∞ and ψ ′
n(x) con-

verges to zero for each x. Moreover, |xψ ′
n(x)| = |(x/n)ψ ′(x/n)| ≤ 2 supy∈R

|ψ ′(y)|.

So xψ ′
n(x) converges to zero boundedly. Since f ′ is bounded, | f (x)| has at most linear

growth at ±∞. Hence f (x)ψ ′
n(x) converges to zero boundedly. In view of (3.3) and

the linear growth of f , we see that f ∈ L2(µ) and fψn converges to f in the L2(µ)
sense. Moreover,

Q( fψn − fψk) =

∫

R

[

f ′(x)
(

ψn(x)−ψk(x)
)

+ f (x)ψ ′
n(x)− f (x)ψ ′

k(x)
] 2
σ(x)ρ(x) dx.

But f ′(x)(ψn(x)−ψk(x)) goes to zero boundedly, as does also fψ ′
n and fψ ′

k, as n and
k → ∞. Since

∫ ∞

−∞
σ(x)ρ(x) dx < ∞, fψn is a Cauchy sequence in Q norm. Hence

f ∈ D(Q).

Now suppose that f ∈ SL2(µ). Define a sequence of convex functions fn as fol-
lows. Let fn(x) = f (x) for |x| ≤ n and let fn(x) = f (n) + α(x − n) for x > n and
fn(x) = f (−n) + β(x + n) for x < −n. We may choose α and β so that fn is convex
and fn ≤ f . For example, choose α = f ′(n) if f ′(n) exists and otherwise choose α
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to be the slope of any support line of the convex function f at n. Choose β similarly.
Then fn(x) increases to f (x) for all x. Moreover each fn is linear (actually affine) on

the intervals (−∞,−n] and [n,∞). We assert that fn ∈ S
2. To see this, choose an

approximate identity ϕk ∈ C∞
c (R)+ with supp ϕk ⊂ [−k−1, k−1]. It is straightfor-

ward to verify that ϕk ∗ fn is affine on each interval (−∞,−(n + 1)] and [n + 1,∞)
using the identity

(3.4) (ϕk ∗ (ay + b))(x) = ax + b − a

∫ k−1

−k−1

ϕk(s)s ds.

So ϕk ∗ fn has bounded derivative and is therefore in D(Q) by what was proved in

the previous paragraph. Moreover ϕk ∗ fn converges to fn in L2(µ), as is clear from
(3.4) and the fact that fn is continuous on [−(n + 1), n + 1]. So fn ∈ S2. Finally,
the inequality | f − fn|

2 ≤ | f − f1|
2 shows that fn → f in L2(µ) by dominated

convergence. Hence f ∈ S
2. Therefore S

2
= SL2 and in particular the functions

a|x − b| are in S2 for all a > 0 and b ∈ R. So S2 is infinite dimensional.

Case (ii):

(3.5)

∫ 0

−∞

x2ρ(x) dx =

∫ ∞

0

x2ρ(x) dx = ∞.

Suppose that f ∈ SL2(µ). Since f is L-subharmonic, it has a version which is convex

and continuous. We pick this version and denote it also by f . If f is not constant,
then there are two distinct points x0 and x1 with x0 < x1 such that f (x0) 6= f (x1).
Let α = ( f (x1) − f (x0))/(x1 − x0). Assume first that α > 0. Since f is convex,
we have f (x) ≥ f (x1) + α(x − x1) for x ≥ x1. The right side is positive for large

positive x and is not in L2(µ) by (3.5). Hence f is not in L2(µ). Similarly, if α < 0
then f (x) ≥ f (x0) + α(x − x0) for x ≤ x0, and the right side is positive for large
negative x and is also not in L2(µ). So f is constant.

Conversely, if f is constant then clearly f ∈ SL2(µ). To show that f ∈ S2, choose

ψn as in Case (i). Then ψn converges to one boundedly and further xψ ′
n(x) ≤ C for

some constant C and all x and n. Consequently (ψ ′
n(x) − 0)2w(x) ≤ Cw(x)/x2 for

|x| ≥ 1. The left side goes to zero uniformly on R and the right side is integrable on

{|x| ≥ 1} because w is bounded. Hence Q(ψn − 1) → 0. So the constant functions
are in D(Q).

Case (iii):

(3.6)

∫ 0

−∞

x2ρ(x) dx <∞ and

∫ ∞

0

x2ρ(x) dx = ∞.

Suppose that f ∈ SL2. If x0 < x1, then the argument in Case (ii) shows that f (x1) −
f (x0) ≤ 0 because otherwise f exceeds a linearly increasing function as x → +∞
and is therefore not in L2 by (3.6). So f is nonincreasing. Let B = inf f , where B

might be finite or −∞. Let c > B and define gc(x) = max(c, f (x)). Then g is convex,
bounded below and constant on a half line to the right, say on [b,∞). Moreover f is
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the L2 limit of gc as c ↓ B, as is clear if B > −∞ because of uniform convergence and
also if B = −∞ by dominated convergence, since f is in L2. So it suffices to show

that gc is in S
2. To keep the notation simple, we will just assume that f itself is in

S ∩ L2, is constant on a half ray to the right and we will show that it is in S2. Let m

be large and positive and let hm be a convex function which agrees with f to the right
of −m, is linear to the left of −m, and is dominated above by f everywhere. Such a

function was constructed in the proof of Case (i). We have already seen in the proof
of Case (i) that, as m → ∞, hm converges to f in L2 norm. Thus it suffices to show
that hm is in S2 for each m. Again, to keep the notation simple, we may assume that
f itself is in S ∩ L2, is consant on a half line to the right, say on [b,∞], and is linear

on (−∞, a] with a < b. Now choose an approximate identity, ϕk, as in Case (i), and
let fk = ϕk ∗ f . Then fk is infinitely differentiable, is constant to the right of b + 1, is
linear to the left of a − 1 as already discussed in Case (i), and converges to f in L2 as
k → ∞, as already explained in Case (i). So it suffices to show that f is in S2 if it is

in C∞(R), is constant on an interval [b,∞), linear on an interval (−∞, a], and is in
S∩ L2. To this end, choose ψn as in Case (i) and observe that ψn(x) f (x) is in C∞

c (R).
Moreover this sequence is Cauchy in energy norm as one sees by using the argument
in Case (i) on the left half line and the argument in Case(ii) on the right half line.

Hence f is in D(Q) and is therefore in S
2.

Case (iv): The remaining case is equivalent to Case (iii) upon replacing f (x) by
f (−x).

We will need the following lemma to prove Theorem 2.9.

Lemma 3.2 Under the hypotheses of Theorem 2.9 there holds

(3.7) f (x) ≤ x‖ f ‖L2(µ)

(

∫ ∞

1

y2ρ(y) dy
)−1/2

for 0 < x ≤ 1

for any function f ∈ S2

Proof As in Case (i) of the proof of Theorem 2.8 we may write w(x) =
∫ ∞

x
sρ(s) ds.

So w is bounded away from 0 on (0, 1]. For f ∈ C∞
c (0,∞) and x ∈ (0, 1] we have

| f (x)| ≤

∫ x

0

| f ′(s)| ds ≤
(

∫ x

0

| f ′(s)|2w(s) ds
) 1/2(

∫ 1

0

w(s)−1 ds
) 1/2

.

Since the first factor is dominated by Q( f )1/2, the inequality holds for all f ∈ D(Q).
It follows that f (x) → 0 as x ↓ 0 for all f ∈ D(Q).

It suffices to prove (3.7) for any function f ∈ S ∩ D(Q) because any L2 limit of

such functions is again subharmonic and has a continuous version for which (3.7)
continues to hold.

Suppose then that f ∈ S ∩ D(Q). As we have seen, limx↓0 f (x) = 0. Defining
f (0) = 0 makes f convex on [0,∞). Fix x ∈ (0, 1] and let y ≥ 1. Since x is in the

segment [0, y], convexity of f on [0, y] gives

f (x) = f (
y − x

y
0 +

x

y
y) ≤

y − x

y
f (0) +

x

y
f (y) =

x

y
f (y).
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Hence

(3.8) y f (x) ≤ x f (y) for 0 < x ≤ 1 and y ≥ 1.

Now if f (x) < 0, then (3.7) clearly holds. If f (x) ≥ 0, then (3.8) shows that f (y) ≥ 0
also. So we may square both sides of (3.8) and integrate with respect to y over [1,∞)
to find f (x)2

∫ ∞

1
y2ρ(y) dy ≤ x2

∫ ∞

0
f (y)2ρ(y) dy. Taking the square root gives

(3.7).

Proof of Theorem 2.9 The constant function equal to one is in SL2 but does not
satisfy (3.7) and so is not in S2. Hence S2 6= SL2 . This completes the proof of the

first assertion of Theorem 2.9. But it may be interesting to observe that the functions
f (x) = x−a are also in SL2, for 0 < a < 1/2, but are not in S2. Now if f ≡ 1 then
f ◦ exp(−tX) ≡ 1 also. But, for any t > 0, e−tA f is in the domain of A, and therefore
goes to zero as x ↓ 0. So (1.2) cannot hold for small x.

4 S
2(R

n): Second Regularization Method for Subharmonic Functions

Convolution by a fixed function ϕ ∈ C∞
c (R

n) is not, by itself, a good smoothing

operation in L2(R
n, µ) because it is an unbounded operator for most measures of in-

terest, including Gauss measure. This results from the fact that a translate of µ has an
unbounded density with respect to µ in these important cases. We will instead com-
bine convolution with dilation. The success of this method depends on the fact that

the transform of µ by a combined translation and dilation (by the flow exp(−tX))
can have a bounded density with respect to µ. To carry this out, we begin by recalling
some results from [GGS] in the next definition and proposition.

Definition 4.1 (µ-divergence) Let V be a vector field on a manifold M. Let µ be a
probability measure on M with a smooth, strictly positive density in each coordinate
chart. The µ-divergence of V is the unique function W on M satisfying

(4.1)

∫

M

Vϕ dµ =

∫

M

ϕW dµ, ∀ϕ ∈ C∞
c (M).

For example, if M = R
n, dµ = ρdx and V =

∑n
j=1 a j(x)∂/∂x j , then (4.1) gives

µ-div V = − div V − V log ρ, which reduces to the negative of the usual divergence
of V if µ is Lebesgue measure.

Define

(4.2) B(s) := log
(

∫

M

eµ-div V/s dµ
) s

, 0 < s <∞,

and assume that

(4.3) κ := inf{s > 0|B(s) <∞} <∞.

We will use the following result from [GGS, Theorem 2.14].
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Proposition 4.2 (Lp norm of a Radon–Nikodym derivative induced by a flow )
Assume that the flow exp(tV ) exists for all t ∈ R, that µ-div V is in L1(µ) and that

(4.3) holds. Then for all t ≥ 0

(4.4) ‖d(exp(tV )∗µ)/dµ‖r ′ ≤ eΛκ(r,t), eκt < r <∞,

where r ′ is the conjugate index to r and

(4.5)

Λκ(r, t) =
1

b

∫ b

b/r

B(κ + y)

(κ + y)
dy, κ > 0,

Λ0(r, t) =
t

r − 1

∫
r−1

t

r−1
tr

B(y)

y
dy, κ = 0,

where b =
κ(r−eκt )

(eκt−1)
.

Corollary 4.3 Suppose that µ-div V is in L1(µ) and µ-div V ≤ C <∞. Then

(4.6) ‖d(exp(tV )∗µ)/dµ‖∞ ≤ etC ∀t ≥ 0.

Moreover, for 1 ≤ p ≤ ∞, and for all f ∈ Lp,

(4.7) ‖ f ◦ exp(tV )‖p ≤ etC/p‖ f ‖p ∀t ≥ 0.

Proof For t = 0, (4.6) is obvious. Suppose that t > 0. From (4.2) we find B(s) ≤
log(eC/s)s

= C for all s > 0. Hence κ = 0 by (4.3). Now (4.5) yields Λ0(r, t) ≤
(tC/(r − 1)) log r for any r > 1. Hence by (4.4)

‖d(exp(tV )∗µ)/dµ‖r ′ ≤ exp
(

tC
log(r)

r − 1

)

, ∀r > 1.

L’Hôpital’s rule shows that the limit on the right-hand side as r ↓ 1 is etC , which
proves (4.6). Now (4.7) follows, for 1 ≤ p <∞, from

‖ f ◦ exp(tV )‖
p
p ≤

∫

| f (x)|petC dµ(x).

Clearly (4.7) is correct also for p = ∞ if one interprets etC/p
= 1.

Example 4.4 Let c > 0 and let

dγc(x) = (2πc)−n/2e−|x|2/(2c)dx

denote the Gauss measure on R
n with covariance c > 0. Let g be the standard metric

on R
n. With µ = γc, (2.12) reduces to

(4.8) X = c−1

n
∑

i=1

xi∂/∂xi .
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Then (2.13) yields L = ∆. Furthermore, an integration by parts shows that

γc-div X = c−1(c−1|x|2 − n)

and
∫

Rn

eγc-div X/s dγc = e−n/(sc)(1 − 2/(sc))−n/2, sc > 2.

This integral is infinite if sc ≤ 2. Hence κ = 2/c. The inequality (4.4) was shown
in [GGS, Example 2.16] to be equality when V = X. Hence the estimate (4.4) in
Proposition 4.2 is sharp in this Gaussian case. Specifically, it was shown in [GGS,

Equation (2.47)] that

(4.9) ‖d(exp(tX)∗γc/dγc‖Lr ′ =

(

e−2t/(cr)
( r − 1

r − e2t/c

) 1−r−1
) n/2

.

We will use this later.

On the other hand, γc-div X ≥ −n/c. Hence from Corollary 4.3 we can infer
that ‖d(exp(−tX)∗γc)/dγc‖∞ ≤ etn/c for all t ≥ 0. An easy calculation shows that
equality holds here also. Thus Corollary 4.3 is also sharp for Gauss measure and X.

Now consider the vector field a · ∇ that generates translations in the direction of

the vector a ∈ R
n. An integration by parts shows that γc-div(a ·∇) = c−1a · x, which

is unbounded above and below. But γc-div(X + a · ∇) = c−1(c−1|x|2 + a · x − n),
which is bounded below. Corollary 4.3 therefore shows that the density d(exp(−t(X+
a · ∇))∗γc)/dγc is bounded. This will be a key element in the regularization method

of Theorem 4.5.

Theorem 4.5 (Joint dilational and translational regularization) Let µ be a smooth

measure on R
n. For each vector a ∈ R

n assume that µ-div(X + a · ∇) is bounded below

uniformly on compact a sets. Explicitly, we assume that for each compact set K in R
n,

there is a constant CK such that

(4.10) µ-div(X + a · ∇) ≥ −CK , ∀a ∈ K.

Assume also that µ-div(X + a · ∇) ∈ L1(µ) for all a ∈ R
n. Let t > 0 and let y ∈ R

n.

For any function f ∈ Lp(µ) define ft,y(x) = f (e−t x − y). Let ϕ ∈ C∞
c (R

n). Then:

(i) The map f 7→ ft,y is a bounded operator from Lp(µ) into Lp(µ).

(ii) For fixed f in Lp and fixed t > 0, the map y → ft,y is continuous on R
n to Lp(µ).

(iii) The contracted convolution operator

f 7→ ( f ∗ ϕ)(e−t · )

is a bounded operator from Lp(µ) into Lp(µ) for each t > 0.

Proof: (i) The flow generated by the vector field Va ≡ X+a·∇ is given by the solution
of the differential equation dx(t)/dt = x(t) + a with initial condition x(0) = x. Thus

(4.11) exp(tVa)(x) = et x + a(et − 1).
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By Corollary 4.3 applied to −Va, we have

(4.12) ‖ f ◦ exp(−tVa)‖p ≤ etCK/p‖ f ‖p, if a ∈ K.

Now

(4.13) f (exp(−tVa)x) = f (e−t x − a(1 − e−t )).

So given y ∈ R
n, choose a = (1 − e−t )−1 y and K large enough to contain a. Then

(4.12) holds and so f 7→ f ((e−t · ) − y) is bounded on Lp(µ).

(ii) The standard proof of this for Lebesgue measure requires a minor modification:
given ǫ > 0, choose a function ψ ∈ C∞

c (R
n) such that ‖ f − ψ‖p < ǫ. Let ft (u) =

f (e−t u). Then we may write (4.13) as

f (exp(−tVa)x) = ft (x − a(et − 1)).

If yk → y0 in R
n, choose a compact set K in R

n such that (et − 1)−1 yk ∈ K for all k.
Then (4.12) yields

‖ ft ( · − yk) − ψt ( · − yk)‖p ≤ etCK/p‖ f − ψ‖p ≤ ǫetCK/p.

So writing f
y

t (x) = ft (x − y), we have

‖ f
yk

t − f
y0

t ‖p ≤ ‖ f
yk

t − ψ
yk

t ‖p + ‖ψ
yk

t − ψ
y0

t ‖p + ‖ψ
y0

t − f
y0

t ‖p.

Since the middle term goes to zero as k → ∞, we have lim supk→∞ ‖ f
yk

t − f
y0

t ‖p ≤

2ǫetCK/p, which completes the proof of part (ii).

(iii) If K ⊃ (1 − e−t )−1 supp ϕ, then (4.12) yields

‖( f ∗ ϕ)(e−t · )‖p ≤ ‖ϕ‖L1(Rn,dx)e
tCK/p‖ f ‖p.

Remark 4.6 The inequality (4.10) can be used to give a lower bound on a “per-
turbed Hamiltonian operator” on L2(µ). Ignoring technical domain issues, write X∗

for the adjoint of the differential operator X in L2(µ). Define H0 = X + X∗ and simi-

larly define V (a) = (a ·∇) + (a ·∇)∗. If f ∈ C∞
c (R

n) and µ-div(X + a ·∇) ≥ −C(a),
cf. (4.10), then

(

(H0 + V (a)) f , f
)

L2(µ)
≥ −C(a)‖ f ‖2

L2(µ).

This follows from the identities

(

(H0 + V (a)) f , f
)

L2(µ)
=

∫

Rn

(X f ) f + f (X f ) + (a · ∇ f ) f + f (a · ∇ f ) dµ

=

∫

Rn

(X + a · ∇)| f |2 dµ

=

∫

Rn

| f |2 µ-div(X + a · ∇) dµ.
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So (4.10) is a sufficient condition for semiboundedness of the operator H0 + V (a)
acting in L2(R

n, µ). The operator H0 + V (a) actually does reduce to a standard kind

of perturbation of the harmonic oscillator Hamiltonian if one takes µ = Gauss mea-
sure γ on R

2m, identifies R
2m with C

m, and restricts the operator H0 and V (a) to
the space H2(γ) of holomorphic functions in L2(C

m, γ). As is well known (see e.g.,

[GM]), the Segal–Bargmann transform takes the harmonic oscillator Hamiltonian

from the Schrödinger representation (i.e., L2(R
m, dx)) to the above operator H0 in

the holomorphic function representation. In the Schrödinger representation the op-
erator V (a) is given by multiplication by the linear functional a · x when a ∈ R

m. If
one carries out the computation of the constant C(a) in the Gaussian case, one finds

that it is strongly dimension dependent and therefore of questionable usefulness for
quantum field theory.

The following theorem is the motivation for the previous regularization theorem.

Theorem 4.7 (S2
= SL2(R

n)) Let (R
n, g, µ) be as in Example 2.2. Assume that

µ-div(X + a · ∇) is bounded below uniformly on compact sets as in Theorem 4.5 and

(4.14) E(c) = sup
x∈Rn

σ(cx)ρ(cx)

ρ(x)
<∞ for each c > 1.

Then

S
2

= SL2(µ).

Proof Suppose first that v is in C∞(R
n)∩L2(µ) and that the first derivatives ∂v/∂x j

are also in L2(µ). We assert that for any s > 0, vs ≡ v ◦ e−sX ∈ D(Q). To this end
write |dv(y)|2 =

∑n
j=1 |∂v/∂x j |

2 and note that

∫

Rn

|dvs(x)|2T∗

x
dµ =

∫

Rn

|dvs(x)|2σ(x)ρ(x) dx

=

∫

Rn

e−2s|(dv)(e−sx)|2σ(x)ρ(x) dx

=

∫

Rn

e(n−2)s|dv(y)|2
σ(es y)ρ(es y)

ρ(y)
ρ(y) dy

≤ e(n−2)sE(es)‖|dv|‖2
2.

Choose a function ψ ∈ C∞
c (R

n)+ such that ψ(x) = 1 for |x| ≤ 1 and put ψn(x) =

ψ(x/n). Then ψn → 1 boundedly and |dψn(x)| ≤ (1/n)|(dψ)(x/n)|, which goes to
zero uniformly on R

n. Writing ψs
n(x) = ψn(esx), the previous derivation shows that

∫

Rn

|d(vs(x) − ψn(x)vs(x))|2T∗

x
dµ ≤ e(n−2)sE(es)‖|d(v − ψs

nv)|‖2
L2(µ).

A double use of the dominated convergence theorem now shows that the right side
goes to zero as n → ∞. To show that vs ∈ D(Q), it only remains to show that
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ψnvs → vs in L2(µ) which clearly holds if vs ∈ L2(µ). But Corollary 4.3 shows that vs

is indeed in L2(µ) and therefore v ◦ exp(−sX) ∈ D(Q).

Next suppose that f ∈ SL2(µ). Ifϕ ∈ C∞
c (R

n)+ then f ∗ϕ is again L-subharmonic
and is also in C∞(R

n). Now let ϕt (z) = ϕ(e−t z)e−nt . Then

( f ∗ ϕ)t ≡ ( f ∗ ϕ)(e−t x)

=

∫

Rn

f (e−t x − y)ϕ(y) dy =

∫

Rn

f (e−t (x − z))ϕ(e−t z)e−tn dz.

That is,

(4.15) ( f ∗ ϕ)t = ft ∗ ϕ
t .

By Theorem 4.5(iii), the function v ≡ ( f ∗ ϕ) ◦ exp(−tX) = ( f ∗ ϕ)t is back in

L2(µ) for any t > 0 and v is also L-subharmonic. Since v = ft ∗ ϕ
t , it is also in-

finitely differentiable and, using (4.15) repeatedly, one sees that all its derivatives are
in L2(µ). By what has been proved in the first paragraph, vs is in D(Q). That is,
( f ∗ ϕ) ◦ exp(−(t + s)X) ∈ D(Q) for any t > 0 and s > 0. So ( f ∗ ϕ) ◦ exp(−tX) ∈
S∩D(Q) for any t > 0. We are going to leave t fixed and letϕ run through an approx-
imate identity. For this purpose we must interchange the order of composition and
convolution as in (4.15). Note that

∫

Rn ϕ
t (z) dz =

∫

Rn ϕ(y) dy. So if ϕk is a sequence
in C∞

c (R
n)+ such that

∫

Rn ϕk(y) dy = 1 and supp ϕk ↓ {0} then the sequence in ϕt
k

has the same properties. By Theorem 4.5, Parts (i) and (iii) ft is not only in L2(µ)
but its translates, ft ( · − z), are also in L2(µ) and the map z → ft ( · − z) is contin-
uous from R

n into L2(µ), respectively. It now follows that ( f ∗ ϕk)t , which equals
ft ∗ ϕ

t
k, converges to ft in L2(µ). So ft ∈ S2 for each t > 0. Now, for h ∈ Cc(R

n),

limt↓0 h◦exp(−tX) → h in L2(µ). By (4.12) (with a = 0) the map h → h◦exp(−tX)
is uniformly bounded from L2 to L2 for 0 ≤ t ≤ 1. Hence ft → f in L2 as t ↓ 0.
Therefore f ∈ S2.

5 Relative Subharmonicity

In this section we are going to prove the inequality (1.2) in two circumstances. In
Theorem 5.1 we will prove it over a general Riemannian manifold, but only for func-

tions in S
p. We will need to assume that X is reasonably related to the measure, as in

(5.1), and to the metric, as in (5.2).
In Theorem 5.7 we will prove that (1.2) holds over R

n for all functions in
SLp(R

n, µ) under some mild restrictions on g and µ. We do not know whether

S
2

= SL2 in the presence of these restrictions.

5.1 Relative Subharmonicity for Functions in Sp(M).

Theorem 5.1 Let M be a Riemannian manifold with Riemannian metric g and let µ
be a smooth probability measure on M with strictly positive density as in Section 2. We

suppose, as usual, that in the decomposition (2.3) the flow of X leaves L-subharmonic

functions invariant. Denote by A the self-adjoint version of d∗d defined in Section 2.
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Assume that there is a constant C such that

(5.1) µ-div X ≥ −C

and that the left side is in L1(µ). Assume also that for each t ≥ 0 there is a constant Bt

such that

(5.2) | exp(−tX)∗|Tx→Texp(−tX)x
≤ Bt , ∀x ∈ M.

Let f ∈ S2. Then

(5.3) e−tA f ≥ f ◦ exp(−tX), µ-a.e., ∀t ≥ 0.

Corollary 5.2 Under the hypotheses of Theorem 5.1 the inequality (5.3) holds for all

f ∈ Sp with 1 ≤ p <∞.

The proof of Theorem 5.1 will be broken into several lemmas.

Lemma 5.3 Suppose that

(i) f ∈ S ∩ D(Q),

(ii) X f ∈ L2(µ) and

(iii) ψ ≥ 0 and ψ ∈ D(A).

Then

(5.4) (X f , ψ) − ( f ,Aψ) ≥ 0.

Proof If ψ ∈ C∞
c (M)+ then (5.4) obviously holds, see Definition 2.1. Let ψ ∈

D(Q)+. There exists a sequence of functions φn ∈ C∞
c (M) which converges to ψ

in energy norm. We may choose the sequence of functions φn to converge to ψ a.e.
Since the functions φn may not be nonnegative we will modify them as follows. Let u

be in C∞(R) and be such that

u ≥ 0, ∀s; u(s) = 0, ∀s ≤ 0; u(s) = s, ∀s ≥ 1; and u ′ ≥ 0.

Clearly u ◦ φn ∈ C∞
c (M)+, and u ◦ φn − u ◦ ψ → 0 in L2(µ) because |u(φn(x)) −

u(ψ(x))| ≤ sups∈R
|u ′(s)| |φn(x) − ψ(x)|. Moreover u ◦ φn − u ◦ ψ → 0 in energy

norm because

d(u ◦ φn)(x) − d(u ◦ ψ)(x) = u ′(φn(x))dφn(x) − u ′(ψ(x))dψ(x)

= u ′(φn(x))(dφn(x) − dψ(x))

+
(

u ′(φn(x)) − u ′(ψ(x))
)

dψ(x)

which gives

√

Q(u ◦ φn − u ◦ ψ) ≤ sup
s∈R

|u ′(s)|
√

Q(φn − ψ)

+
√

∫

M
|u ′(φn(x)) − u ′(ψ(x))|2|dψ|2T∗

x
dµ(x).

https://doi.org/10.4153/CJM-2005-022-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-022-2


Reverse Hypercontractivity for Subharmonic Functions 525

But Q(φn − ψ) → 0 by assumption while the coefficient of |dψ|2T∗

x
in the last term

goes to zero a.e. and boundedly. So the last term goes to zero by the dominated

convergence theorem. Now

(X f , u ◦ φn) − ( f ,A(u ◦ φn)) ≥ 0.

Since f has finite energy, we may write this as

(X f , u ◦ φn) − Q( f , u ◦ φn) ≥ 0.

Since u ◦ φn → u ◦ ψ in both L2(µ) norm and Q norm we find

(5.5) (X f , u ◦ ψ) − Q( f , u ◦ ψ) ≥ 0.

Now let 0 < ǫ < 1 and define uǫ(s) = ǫu(s/ǫ) for all s ∈ R. Then we see that
uǫ(s) = 0 if s ≤ 0, uǫ(s) = s if s ≥ ǫ, uǫ ≥ 0 and moreover u ′

ǫ = u ′( · /ǫ) which is
nonnegative and bounded, uniformly in ǫ. Say u ′

ǫ ≤ b for all ǫ in (0, 1). Clearly (5.5)

holds for uǫ instead of u. Now ‖uǫ ◦ψ−ψ‖2
2 =

∫

0<ψ(x)<ǫ
|uǫ(ψ(x))−ψ(x)|2 dµ(x) ≤

∫

0<ψ(x)<ǫ
(2ǫ)2 dµ(x) → 0 as ǫ→ 0. Furthermore,

Q(uǫ ◦ ψ − ψ) =

∫

M

|u ′
ǫ(ψ(x))dψ − dψ|2T∗

x
dµ(x)

=

∫

0<ψ(x)<ǫ

|u ′
ǫ(ψ(x)) − 1|2|dψ|2T∗

x
dµ(x)

≤ (b + 1)2

∫

0<ψ(x)<ǫ

|dψ|2T∗

x
dµ(x) → 0

as ǫ→ 0 because Q(ψ) <∞. Hence (5.5) yields

(X f , ψ) − Q( f , ψ) ≥ 0.

Since D(A) ⊂ D(Q) this proves (5.4).

Lemma 5.4 Let (M, g, µ) be a Riemannian manifold with smooth probability mea-

sure µ as in Section 2. Suppose that X is a smooth vector field on M whose flow exp(−tX)
exists for all t ≥ 0. Suppose also that µ-div X is in L1(µ) and is bounded below. Specifi-

cally assume that (5.1) holds. Define, for any function f on M,

Vt f = f ◦ exp(−tX).

Then,

(i) for 1 ≤ p < ∞ and f ∈ Lp(µ), the function [0,∞) ∋ t → Vt f is continuous

into Lp and

(5.6) ‖Vt f ‖p ≤ etC/p‖ f ‖p.
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(ii) If 1 ≤ p <∞ and u ∈ C∞
c (R) with support in [0,∞), let

v ≡

∫ ∞

0

(Vt f )u(t) dt

(which can simply be interpreted as a Riemann integral with a continuous Lp(µ)
valued integrand). Then the map s → Vsv from (0,∞) into Lp(µ) is infinitely dif-

ferentiable. If un is a sequence of such functions satisfying un ≥ 0,
∫

un(s)ds = 1,

and support un ⊂ [0, 1/n], then the corresponding sequence vn converges to f in

Lp.

(iii) Assume further that for each t ≥ 0 there is a constant Bt such that (5.2) holds.

Let f ∈ D(Q). Then Vt f is also in D(Q) and, as a function from [0,∞) into the

Hilbert space D(Q), is continuous. Moreover,

(5.7) Q(Vt f ) ≤ B2
t etC Q( f ), ∀ f ∈ D(Q).

Defining vn as in (ii), one has vn ∈ D(Q) and vn → f in Q norm.

Proof The inequality (5.6) is a restatement of (4.7). If f ∈ Cc(M), then t → Vt f

is clearly continuous into Lp. The uniform bound (5.6) now yields the strong conti-
nuity of Vt on Lp. The assertion (ii) follows from strong continuity in the standard
manner for bounded semigroups. To prove (iii) fix t > 0 and let ψ = exp(−tX). If
f ∈ C∞

c (M), then so is f ◦ ψ. Moreover, in view of (4.6), we find

Q( f ◦ ψ) =

∫

M

|d( f ◦ ψ)|2T∗

x
dµ(x) =

∫

M

|ψ∗(d f )|2T∗

x
dµ(x)

≤

∫

M

|ψ∗|2T∗

ψ(x)
→T∗

x
|d f |2T∗

ψ(x)
dµ(x) ≤ B2

t

∫

M

|d f |2T∗

ψ(x)
dµ(x)

= B2
t

∫

M

|d f |2T∗

y
Jψ(y) dµ(y) ≤ B2

t etC

∫

M

|d f |2T∗

y
dµ(y).

This proves (5.7) for f ∈ C∞
c (M).

Now to say that f in D(Q) means that there exists a sequence fn ∈ C∞
c (M) which

is Cauchy in Q norm and which converges to f in L2(µ). By (5.7) fn ◦ ψ is then also
Cauchy in Q norm and by (5.6) fn ◦ ψ converges to f ◦ ψ in L2(µ). Hence f ◦ ψ is in
D(Q) and (5.7) holds for f . The strong continuity of Vt in energy norm now follows
in a standard manner.

Lemma 5.5 Suppose that

(i) f ∈ S ∩ D(Q) and

(ii) X f ∈ L2(µ).

Then (5.3) holds.

https://doi.org/10.4153/CJM-2005-022-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-022-2


Reverse Hypercontractivity for Subharmonic Functions 527

Proof Let t > 0 and define fs(x) = f (exp((s − t)X)x) for 0 ≤ s ≤ t . The map
s → fs is a continuous function into L2(µ) on [0, t] by Lemma 5.4. By condition (ii)

it is differentiable on (0, t) with derivative

d fs/ds = (X f ) ◦ exp((s − t)X) = X fs.

Let φ ∈ C∞
c (M)+ and define, for 0 ≤ s ≤ t , v(s) = (e−sA fs, φ). So v(s) = ( fs, e

−sAφ),
which is clearly continuous on [0, t] and differentiable on (0, t). Moreover

dv(s)/ds = (X fs, e
−sAφ) − ( fs,Ae−sAφ).

Now fs ∈ D(Q) by condition (i) and Lemma 5.4(iii). Since e−sAφ is nonnegative and

in D(A) we may apply (5.4) with ψ = e−sAφ, to conclude that dv/ds ≥ 0. Hence
v(t) ≥ v(0). That is

(e−tA f , φ) ≥ ( f ◦ exp(−tX), φ).

Since φ is arbitrary in C∞
c (M)+, (5.3) follows under the hypotheses of this lemma.

Lemma 5.6 If f ∈ S ∩ D(Q), then (5.3) holds.

Proof If f ∈ S∩D(Q), the functions vn, defined in Lemma 5.4(ii), are L-subharmo-
nic because the functions un are assumed nonnegative. But each vn satisfies the hy-

potheses of Lemma 5.5 by Lemma 5.4(ii) and (iii). Hence e−tAvn ≥ vn ◦ exp(−tX)
a.e. Both sides converge in L2(µ) as n → ∞, by Lemma 5.4(i) and (ii), to e−tA f

and f ◦ exp(−tX) respectively. Dropping to a subsequence we may assume pointwise
convergence a.e. Thus (5.3) holds when f satisfies the hypotheses of this lemma.

Proof of Theorem 5.1 If f ∈ S
2, then there exists a sequence of functions fn ∈

S ∩ D(Q) which converge to f in L2. Since (5.3) holds for each fn by Lemma 5.6, we
may repeat the limiting procedure of Lemma 5.6 to conclude that (5.3) holds for f .

Proof of Corollary 5.2 For p ≥ 2 the statement is clear since then Sp ⊂ S2.

If f ∈ Sp, p < 2, then there exists a sequence fn in S2 which converges to f in Lp.
Since (5.3) holds for each fn by Theorem 5.1, we may repeat the limiting procedure
of Lemma 5.6 in Lp(µ) to conclude that (5.3) holds for f . Of course, one should now

replace A by Ap in (5.3).

5.2 Relative Subharmonicity for Functions in SLp(R
n)

In the following theorem we will prove the relative subharmonic inequality (1.2) for
all f ∈ SLp(R

n). We do not know if this space actually coincides with Sp in these
cases.
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Theorem 5.7 Let (R
n, g, µ) and X be as in Example 2.2. Assume that for each compact

set K ⊂ R
n there is a constant CK such that

(5.8) µ-div(X + a · ∇) ≥ −CK ∀a ∈ K

and that the left-hand side is in L1(µ) for all a ∈ R
n. Assume also that σ( · ) is in

Lr(R
n, µ) for all r <∞. Let 1 < p <∞. Then

(5.9) e−tAp f ≥ f ◦ exp(−tX), µ-a.e, ∀ f ∈ SLp(µ) and ∀t ≥ 0.

Lemma 5.8 Let 1 < q <∞ and let f ∈ SLq(µ). Suppose that

(i) f ◦ exp(−tX) ∈ D(Aq), for all t ≥ 0 and

(ii) f ◦ exp(−tX) is a differentiable function of t into Lq(µ) for t ≥ 0.

Then

(5.10) e−tAq f ≥ f ◦ exp(−tX), µ-a.e, ∀t ≥ 0.

Proof The proof differs only slightly from that of Lemma 5.5. Fix t > 0 and define
fs = f ◦ exp((s − t)X) for 0 ≤ s ≤ t . Then by condition (ii), fs is a differentiable
function from (0, t) into Lq(µ). Let ϕ ∈ C∞

c (R
n)+ and let q ′ be the conjugate index

to q. Let v(s) = (e−sAq fs, ϕ) = ( fs, e
−sAq ′ϕ). Since ϕ ∈ D(Aq ′) and fs ∈ S ∩ D(Aq)

we have, for 0 < s < t ,

(5.11)
d

ds
vs =

d

ds

(

fs, e
−sAq ′ϕ

)

=
(

X fs, e
−sAq ′ϕ

)

+
(

fs,−Aq ′e−sAq ′ϕ
)

=
(

(X − Aq) fs, e
−sAq ′ϕ

)

≥ 0.

Here we have used the fact (X − Aq) fs ≥ 0 and e−tAq ′ϕ ≥ 0. So v(t) ≥ v(0) and
(5.10) now follows as in Lemma 5.5.

Lemma 5.9 Suppose that 1 < q < p and that σ( · ) ∈
⋂

r<∞ Lr(µ). Let f ∈ C∞(R
n)

and assume that all its partial derivatives up to the second order are in Lp(µ). If, in

addition, X f ∈ Lp(µ), then f ∈ D(Aq).

Proof Recall that for f ∈ C∞(R
n) we have

d∗d f (x) = −σ(x)∆ f (x) + (X f )(x), x ∈ R
n.

Choose ψ ∈ C∞
c (R

n) with 0 ≤ ψ ≤ 1 and ψ(x) = 1 for |x| ≤ 1. Define
ψm(x) = ψ(x/m). Then each derivative of ψm goes to zero uniformly as m → ∞
while ψm(x) → 1 pointwise and boundedly. Define fm := ψm f , which is in C∞

c (R
n).

By the chain rule we obtain

∂i fm = ∂iψm f + ψm∂i f

∂ j∂i fm = ∂ j∂iψm f + ∂iψm∂ j f + ∂ jψm∂i f + ψm∂ j∂i f , 0 ≤ i, j ≤ n.
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Now Xψm → 0 boundedly by the same argument as in the proof of Theorem 2.8,
Case (i). Moreover it follows by dominated convergence that

lim
m→∞

fm = f , lim
m→∞

∂i fm = ∂i f , lim
m→∞

∂ j∂i fm = ∂ j∂i f

in Lp(µ). Since the function σ( · ) is in Lr(µ) for all r <∞, we can conclude that

lim
m→∞

d∗d fm = −σ∆ f + X f

in Lq(µ). Thus f ∈ D(Aq) because C∞
c (R

n) ⊂ D(Aq) and Aq is closed.

Proof of Theorem 5.7 Suppose that f ∈ SLp(µ). If ϕ ∈ C∞
c (R

n)+ then f ∗ ϕ
is again L-subharmonic and is also in C∞(R

n). By Theorem 4.5(iii), the function

vs ≡ ( f ∗ ϕ) ◦ exp(−sX) is back in Lp(µ) for any s > 0 and vs is also L-subharmonic.
Choose u ∈ C∞

c (R)+ as in Lemma 5.4(ii), and let

(5.12) ζ =

∫ ∞

0

vs ◦ exp(−rX)u(r) dr.

Then ζ is in Lp by Lemma 5.4(ii), ζ ◦ exp(−tX) is an infinitely differentiable function
of t ∈ [0,∞) into Lp, and ζ ∈ S because u ≥ 0. For t ≥ 0, and in view of (2.15),

(5.13) ζ(exp(−tX)x) =

∫ ∞

0

∫

Rn

f (z)ϕ(e−c(t+s+r)x − z)dz u(r) dr,

which is clearly in C∞(R
n) and all its derivatives are in Lp(µ). So if 1 ≤ q < p then

by Lemma 5.9, ζ ◦ exp(−tX) ∈ D(Aq). As a function of t ∈ [0,∞) it is also infinitely

differentiable into Lq because q < p. So we may apply Lemma 5.8 to conclude that
(5.10) holds for ζ . To remove the regularizations, first choose un as in Lemma 5.4(ii)
and use the boundedness of e−tAq and ◦ exp(−tX) in Lq to conclude that (5.10) holds
for vs. That is,

(5.14) e−tAq vs ≥ vs ◦ exp(−tX) a.e.

Now we let φ run through an approximate identity ϕk and obtain as in the proof
of Theorem 4.7 that vs,k ≡ ( f ∗ ϕk) ◦ exp(−sX) converges to fs ≡ f ◦ exp(−sX)
in Lq(µ). Hence, by continuity of e−tAq and exp(−tX) in Lq(µ) (see Lemma 5.4(i))
(5.14) holds for fs instead of vs. Finally, by Lemma 5.4(i) again, we can let s ↓ 0,

obtaining (5.9) with Aq instead of Ap. But, since f ∈ Lp, (5.9) holds as written.

6 Reverse Hypercontractivity

In Section 5 we proved relative subharmonicity in two circumstances, (cf. Theorems
5.1 and 5.7). In this section we will show how relative subharmonicity yields reverse
hypercontractivity.
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Theorem 6.1 Let M be a Riemannian manifold with Riemannian metric g and let µ
be a smooth probability measure on M with strictly positive density as in Section 2. We

suppose, as usual, that in the decomposition (2.3) the flow of X leaves L-subharmonic

functions invariant. Denote by A the self-adjoint version of d∗d defined in Section 2. We

continue the notation of Proposition 4.2.

Suppose that T > 0, p ≥ 1 and that q > peκT . Let r = q/p. Let 0 ≤ f ∈ Lp(µ)
and assume that, for some constant β > 0,

(6.1) e−TAp f ≥ β f ◦ exp(−TX), µ-a.e.

Then

(6.2) ‖e−TAp f ‖q ≥ β‖ f ‖pe−Λκ(r,T)/p.

Proof The proof is similar to the proof of Theorem 3.4 in [GGS]. Let h := f ◦
exp(−TX). So f = h ◦ exp(TX). Write J = d(exp(TX)∗µ)/dµ. Then

‖ f ‖
p
p = ‖h ◦ exp(TX)‖

p
p =

∫

hp J dµ ≤
(

∫

hq dµ
) 1/r

‖ J‖r ′ .

So ‖h‖q ≥ ‖ f ‖p‖ J‖
−1/p
r ′ . Since f ≥ 0, both sides of (6.1) are nonnegative. Hence

(6.3) ‖e−TAp f ‖q ≥ β‖ f ◦ exp(−TX)‖q = β‖h‖q ≥ β‖ f ‖p‖ J‖
−1/p
r ′ .

The inequality (4.4) completes the proof.

Corollary 6.2 Under the hypotheses of Theorem 5.1 the inequality (6.2) holds, with

β = 1, for all nonnegative functions f ∈ Sp(M) if 1 ≤ p <∞.

Corollary 6.3 Under the hypotheses of Theorem 5.7 the inequality (6.2) holds, with

β = 1, for all nonnegative functions f ∈ SLp(R
n, µ) if 1 < p <∞.

The following corollary was first proved in [GS] for holomorphic functions. See
also [GGS, Corollary 3.5].

Corollary 6.4 (Gauss measure) Take µ = γc on R
n with the standard metric as in

Example 4.4. Suppose that t > 0, p ≥ 1 and q > pe2t/c. Then

(6.4) ‖e−tAp f ‖q ≥ ‖ f ‖p

(

e−2t/(cq)
( q − p

q − e2t/c p

) (1/p−1/q))−n/2

for 0 ≤ f ∈ SLp(R
n, γc).

Proof Apply (6.2) with β = 1 and use (4.9).
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7 Saturation and Alpha Subharmonicity

If φ is a holomorphic function on C
n and f (z) = |φ(z)|, then f is subharmonic.

Taking n = 2m in Corollary 6.4, the inequality (6.4) reduces to the corresponding
inequality obtained in the holomorphic category in [GGS, (3.9)]. F. Galaz-Fontes and

S. Sontz have shown [GS, So] that the inequality (6.4) is not saturated by |φ| for any
holomorphic function φ. The question arises, therefore, as to whether the inequality
(6.4) is saturated in the larger class of nonnegative subharmonic functions. We think
not, but we do not have a proof. Thus we do not know whether the coefficient of ‖ f ‖p

in (6.4) is the largest possible in the category of nonnegative subharmonic functions.
With the hope of shedding some light on this we will explore in this section a smaller
class of subharmonic functions for which the coefficient of ‖ f ‖p in (6.4) can actually

be increased.
Denote by γc the Gauss measure on R

n with the standard metric, as in Exam-
ple 4.4.

Definition 7.1 Let α ≥ 0. A nonnegative function f ∈ L1
loc (R

n, γc) is called
α-subharmonic, if (∆ − α) f ≥ 0 in the weak sense. That is,

(7.1) ( f , (L∗ − α)φ)L2(γc) ≥ 0, ∀φ ∈ C∞
c (M)+,

where L = ∆, L∗
= ∆ − 2X − n + x2 is the formal adjoint of L in L2(γc) and X is

given by (4.8), namely, X = c−1
∑n

j=1 x j∂/∂x j .

Notation 7.2 Sα will denote the space of α-subharmonic functions on R
n. Note

that Sα ⊂ Sβ if α ≥ β.

Example 7.3 Let fu(x) = e(u,x), u, x ∈ R
n. Then fu ∈ S|u|2 because ∆ fu = |u|2 fu.

Theorem 7.4 Let f ∈ Sα ∩ Lp(γc) for some p > 1. Then

(7.2) exp(−tAp) f ≥ e(cα/2)(1−e−2t/c) f ◦ exp(−tX), γc-a.e, ∀t ≥ 0.

Proof First observe that if f ∈ Sα then f ◦ exp(−tX) ∈ Sαe−2t/c because

(7.3) ∆[ f ◦ exp(−tX)] = ∆[ f (e−t/c·)] = e−2t/c(∆ f )(e−t/c·)

≥ αe−2t/c f (e−t/c·).

Now we are going to ignore domain issues in this simple Gaussian setting because
these have been addressed in great generality in [G02, Section 4]. Let 0 ≤ s ≤ t and
define F(s) = e−sA( f ◦ exp((s − t)X)). Then

(7.4) F ′(s) = e−sA(−A + X)[ f ◦ exp((s − t)X)] = e−sA
∆[ f ◦ exp((s − t)X)]

≥ αe2(s−t)/cF(s).

Thus if we define v(s) = e−(cα/2)e2(s−t)/c

F(s), then we find v ′(s) ≥ 0. Hence v(t) ≥
v(0). Inserting the definition of v into this inequality yields (7.2)
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Corollary 7.5 (Gauss measure) Suppose that t > 0, p ≥ 1 and q > pe2t/c. Then

(7.5) ‖e−tAp f ‖q ≥ ‖ f ‖pe(cα/2)(1−e−2t/c)
(

e−2t/(cq)
( q − p

q − e2t/c p

) (1/p−1/q))−n/2

,

for 0 ≤ f ∈ Sα ∩ Lp.

Proof Apply (6.2) with β = e(cα/2)(1−e−2t/c) and use (4.9) just as in the proof of (6.4).

Example 7.6 (Non-saturation for the exponential function) Let fu(x) = eux with u

and x ∈ R. Then fu ∈ Sα for α = u2, as in Example 7.3. Since fu is an eigenfunction

for the Laplacian, the inequalities (7.3) and (7.4) are both equalities when f = fu.
As a result the inequality (7.2) is also an equality in this case. Inserting then the flow
exp(−tX)x = e−t/cx into that equality, one finds

(7.6) exp(−tA) fu(x) = ecαδ/2eue−t/cx, x ∈ R

where δ = 1 − e−2t/c. Now a Gaussian integration shows that ‖ fv‖p = ecv2 p/2 for all

v ∈ R. Hence, by (7.6), we have ‖e−tA fu‖q = e(cα/2)(δ+qe−2t/c). Thus

‖e−tA fu‖q = ‖ fu‖p ecαδ/2e(cα/2)(qe−2t/c−p).

While the first factor ecαδ/2 agrees with the first factor in the coefficient of ‖ f ‖p in
(7.5), the second factor is much larger than the second factor in (7.5). This example
shows, therefore, that even though the coefficient on the right of (7.5) is larger than
that in (6.4), the inequality (7.5) may still not be saturated in the class of α-sub-

harmonic functions, even asymptotically as α→ ∞.

8 Reverse Logarithmic Sobolev Inequalities

Although hypercontractivity and logarithmic Sobolev inequalities are more or less

equivalent [G75], reverse hypercontractivity and reverse logarithmic Sobolev in-
equalities seem to follow from a more or less common hypothesis rather than from
each other. This was the case in the holomorphic setting [GGS] and we will see that
this is the case in the subharmonic setting also. The following theorem is similar in

its statement and proof to that in [GGS, Corollary 4.3] after changing from the holo-
morphic to the subharmonic categories. We will sketch the proof by referring to the
corresponding steps in [GGS].

Theorem 8.1 (Reverse logarithmic Sobolev inequality) Let (M, g, µ) be as in Sec-

tion 2. Assume that there is a constant C such that

µ-div X ≥ −C,
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and that the left side is in
⋂

1≤p<∞ Lp(µ). Assume also that (4.3) holds. Let s > κ.

Suppose that 0 ≤ f ∈ S ∩ D(A) and that X f ∈ L2(µ). Then

(8.1)

∫

M

|∇ f |2 dµ ≤ s

∫

M

f 2 log( f /‖ f ‖2) + (1/2)‖ f ‖2
2B(s).

The proof depends on the following lemma, which itself follows immediately from

two lemmas in [GGS]. We want to emphasize that subharmonicity is not involved in
this lemma.

Lemma 8.2 ([GGS, Lemmas 2.15, 4.4]) Suppose that µ-div X is in
⋂

1≤p<∞ Lp(µ)

and that (4.3) holds. Assume that 0 ≤ h ∈ L1 and that Xh is in L1. Then, for any

s > κ,

(8.2)

∫

M

Xh dµ ≤ s
(

∫

M

h log(h/‖h‖1) dµ
)

+ ‖h‖1B(s).

Proof Combine [GGS, Lemmas 2.15, 4.4]. In those lemmas it is also assumed that
h ∈ Lq for some q > 1. But here we can allow the right side of (8.2) to be infinite.

A smooth truncation of h yields the extension of [GGS, Lemmas 2.15, 4.4] to (8.2):
replace h by φ◦h where φ(x) = x for x < n, is constant for x ≥ n+1 and is smooth on
R. Then (8.2) holds for φ ◦ h and one can let n → ∞ to prove (8.2) in the generality
stated.

Proof of Theorem 8.1 If 0 ≤ f ∈ S ∩ D(A) and X f ∈ L2 then

(8.3)

∫

M

|∇ f |2 dµ = (A f , f ) ≤ (X f , f ) = (1/2)

∫

M

X( f 2) dµ

Combine this with Lemma 8.2 using h = f 2.

Remark 8.3 A similar derivation yields an Lp version of (8.1), namely, assuming
0 ≤ f is subharmonic,

(8.4)

∫

M

|∇ f p/2|2 dµ ≤
p2

4(p − 1)
s
(

∫

M

f p log( f /‖ f ‖p) dµ
)

+
p

4(p − 1)
‖ f ‖

p
pB(s).

One uses the standard identities
∫

|∇ f p/2|2dµ = (p/2)2(p − 1)−1

∫

∇ f · ∇ f p−1dµ

= (p/2)2(p − 1)−1

∫

(Ap f ) f p−1dµ

≤ (p/2)2(p − 1)−1

∫

(X f ) f p−1dµ

= (p/4)(p − 1)−1

∫

X( f p)dµ.
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An application of Lemma 8.2 with h = f p now yields (8.4). We will not state precise
regularity conditions on f needed to justify this computation.

References

[BH] N. Bouleau and F. Hirsch, Dirichlet Forms and Analysis on Wiener Space. de Gruyter Studies in
Mathematics 14, W. de Gruyter, Berlin, 1991.

[Ca] E. A. Carlen, Some integral identities and inequalities for entire functions and their applications to
the coherent state transform. J. Funct. Anal. 97(1991), 231–249.

[Da80] E. B. Davies, One-parameter Semigroups. London Mathematical Society Monographs 15,
Academic Press, London, 1980.

[Da89] , Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics 92, Cambridge
University Press, Cambridge, 1989.

[Fu80] M. Fukushima, Dirichlet Forms and Markov Processes. North-Holland, Amsterdam, 1980.
[GGS] F. Galaz-Fontes, L. Gross, and S. B. Sontz, Reverse hypercontractivity over manifolds. Ark. Mat.

39(2001), 283–309.
[GS] F. Galaz-Fontes and S. B. Sontz, On two reverse inequalities in the Segal-Bargmann space. In:

Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory (Berkeley,
CA), Electron. J. Differ. Equ. Conf. 4(2000), 103–111.

[G75] L. Gross, Logarithmic Sobolev inequalities. Amer. J. Math. 97(1975), 1061–1083.
[G99] , Hypercontractivity over complex manifolds. Acta Math. 182(1999), 159–206.
[G02] , Strong hypercontractivity and relative subharmonicity. J. Funct. Anal. 190(2002), 38–92.
[GM] L. Gross and P. Malliavin, Hall’s transform and the Segal-Bargmann map. In: Itô’s Stochastic
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