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INVARIANCE THEOREMS FOR FIRST PASSAGE TIME
RANDOM VARIABLES

BY
A. K. BASU

1. Introduction and summary. Let X;, X,, ... be i.i.d. r.v. with EX=p>0, and
E(X—p)?=0%<o0.
Let S,=X,+---+X, and v,=max{k:S;,<x}, x>0 and v,=0 if X;>x.
Billingsley [1] proved if X; >0 then
_ vnx(w) - (nx/ .U')
T(x, w) = DY
converges weakly to the Wiener measure W.
Let 7,(w)=inf {k>1 | S, > x}. In §2 we prove that

Z(%, w) = %

converges weakly to the Wiener measure when the X’s may not necessarily be
nonnegative. Also we indicate that this result can be extended to the nonidentical
case.

In §3 we prove that certain first passage time random variables of partial sums
of i.i.d. r.v. with mean zero (or with positive mean) and finite variance tend to
corresponding first passage time r.v. of Brownian motion (or with positive drift).

2. THEOREM 1. Let Xy, X,,... be iid. rw. with o>EX=p>0, E(X—p)?
=02<00. Let Sk=X1+X2+"'+Xk- Let

1) n=inf{k>1|S>1t>0
Define
_ Tu—(nt/p)
@ Zy(t, ) = T

)
Then Z, —> W, the Wiener measure.

Proof. Without loss of generality we shall assume p> 1.

We first show that
A) I‘-'-‘——"iw a8 1 — 0.,
nop

0<t<1

T =1nf (k: S, > tn) for k>1, a fixed 1 (0<z<1) and » a positive integer tending
to co. Since the X, are not necessarily positive, .S, may or may not be greater than
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S, -1 but 7, is a step-function with integer-valued jumps at certain values of n
depending on the observed w (i.e. on the observed set of values X3, X,,...). For
any given w, S;, >mbut S, _,<tn.

The law of large numbers gives (u—e)n<S,<(n+¢€)n for any e (0<e<p) and
for sufficiently large n. Therefore

tn < Sy, < (u+em,

and
28,12 @—e(r—1),
that is
t Tin t I
) — <2< ——+4- fort > 0and n—>oo.
n+e n m—e€e n

From (4) it follows that 7,,/n — t/u a.e. as n —co. Since 7, is everywhere left-

continuous |r,/n—t/p N 0 as n—oo for any fixed ¢1>0. If =0, 7, will be a
positive integer m (>1 if some negative X; precedes the first positive value), but
since E(X;)>1, the probability of large m is vanishingly small, and in any case
E(m)<co. Then

Define
U(t) = 1ip/n if 7, < 1,

= t/[u  otherwise.
Let u(t)=t/p, then

T t| P ’
ﬁ‘——l—>0 as n — oo,

sup |Uy(t)—u(2)| < su
ostIs)ll "() ()I Ostgl n p

so U, converges in probability in the sense of Skorohod topology to u(z) of
C|[0, 1], since C[0, 1] is a subspace of D[0, 1], with relative topology.
Let

1 [nt]
Xo(t) = —= 2 (Xi—p).
o\/ ni=1
Therefore by Donsker’s theorem [1],

2 2
X,—> W, so X,oU,—> Wou.

Define

Tnt

Y0 = == 3 (X

ni
Then by the definition of 7,

Yolt)— XoJoVn < 0T <y (),
Vi
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With our definition of U,
Y,=X,o U, ifr,/n< 1.
.
Since max; ¢ ,(|X;|/V'n) — 0, it follows that

- P
sup |szl/0'\/n —>0.
ts1

Let ZX(t) = (nt—pra)/oVn, then

)
Z¥—>Wou.
Therefore
2
pl2Z¥ —> W (by scaling property of W).

2
Therefore Z, —> W. Hence the theorem. Q.E.D.
Let M(x)=max (k | S;<x), then

Mx)+1 = 7,.
CoroLLARY (Heyde [2]). Let X;, X,, ... be iid. r.v. with EX=up>0, var (X)
=02 <00. Then
. M(x)—xp?* 1 a 2
’}LII; Pr W < a} = Wf_w exp(—1/2u )du.

REMARK. Let X;, X,,... be independent r.v. with EX;=p>0 and E(X;—p)?

=o?<oo for all i and suppose that {X,} obey Lindberg’s condition; then Z,, 2z, w.
By the classical Kolmogorov’s strong law for independent random variables,
Sp/n—p ae.
By Prohorov’s functional central limit theorem [3],

X, () —> W,

So, as before, 7;,/n — t/u a.e. as n —>oo.
Lindberg’s condition implies

(lngflsxn \/na € iL-—Jl '\/ g €
& p(1X] ) 13 f 2
< gll’( Vi 2e) <5 i; - x2 dF(x).
x| 2evno
Therefore

3. Let p=n,=inf (=0 | W(t)>a), a>0 where W(¢) is the standard Brownian
motion.
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Let r,=inf {k>1|S,>a} where S;=X;+---+ X, and {X,} are independent
random variables with EX,=0, and {X,} satisfies Lindberg’s condition. For
simplicity let us assume EXZ=1.

THEOREM 2. 7.v5/n converges in distribution to .

- 9
Proof. By Prohorov’s theorem [3], Siwy/ V' —> W, the Wiener measure, and
also  supg<i<r (S[nt]/\/i—z)=maxi <] (S/Vn) converges in distribution to

SUpo<t<r W(2).
It is well known that

L [* g i

Pp>T) = P(osslth)T W(t) < a) = Wi

2 a/vE

~ Vi o

e x2/2 dx

Now

P( S )=P(maxS < \/—)
hia Vn ¢ i<tnir) ave

= P(tqvz > [nT])
Therefore P[(7ovz/n)>T]—>P(n>T) as n—oo if T is a continuity point of the
distribution of 7.
Now let X;, X,, ... beiid. r.v. with EX=8>0and EXZ=1.
Let £ be a fixed continuous function on [0, T].

Define
Ff]1=inf[t = 0| f(t) = h(z)] if this exists,

=T otherwise.
Let f(¢—)=lim,,, f(s) for each ¢ € (0, 7] and f(0—) be f(0). Then define
F[f1=inf[t = 0| f(z—) = h(¢)] if this exists,

=T otherwise.

LEMMA. The functional F,[.] is continuous in Ji-topology of Skorohod [3] at
every fe D[0, T for which (i) F,[f1=T or f(t,)>h(t,) for a sequence of points
tn { Fu[f]and (i) Fulf]1=Fy [f].

Proof. Let f, — f in J;-topology and let A, be a sequence of homomorphisms
of [0, T'] onto itself such that A(0)=0, A(T)=T.

Let p,=F,(f;), and assume that some subsequence (p,;) of (p,) tends to p,. Then
Ju(pn) = h(p,) for each p,, and hence limy., &, f7,(pn,) = hpo)-

But lim,. o |fu(ps) —f(Aa(pn))|=0. Therefore limy., . f(An(pn)) 2 A(po). Since
limg, & An(pn,)=po, it follows that either f(po)=h(po) or f(po)=Hh(ps), so that
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po=F,[f]. Suppose po>F,[f]. Then there exists F,(f)< p& < p, such that f(p¥)
> h(py). If 0<e<(po—pd)/2, then

m | £u(p3 +)=f(pE +9)| = Hm |£,(p¥ +9) =S Qanlpt +9)

+ k@ |/ Qa (05 +€) = f (o5 +¢)|

Eﬁ—’o [fQni(ps +€)—f(pg + )|
| f(e3 +€)=)—f(p5 +9)|.

By the right continuity of fat p§, we can choose e so small that £, (o& + €) > h(p§ +€)
for k sufficiently large. This means p, < pg +€ which is a contradiction (since ¢ >0
is arbitrary). Therefore po=F,(f) and hence F;, is continuous at f. Q.E.D.

IA

Suppose §>0 and Ws={W,(t); t=0, W,0)=0}, be a Wiener process with drift
8 per unit time.
Let

n6(@) =inf{t >0| Wy(t)>a}, a>0, §>0
=inf{t > 0| W(t) = a—5t}.

Let X3, X,, ... beiid. r.v. with EX=6>0, E(X—§)%<oco0.
Let r,=inf {k>1| S;>x}.

THEOREM 3. 7.v5+re/N converges in distribution to y,(a), whose probability density
is given by

P,(T) = QIIT®) "2 exp (—(a—8T)?/2T).
Proof. Consider W (¢) as a random element of D[0, T'] with its extended measure
as its distribution.

Let h(¢)=a—8t. Then W and # satisfy the conditions of our lemma.
Now again, by Donsker’s theorem [1],

1 [nt] 9
) = 2= 5 (K== W,
ni=1
Then by Skorohod’s theorem [1] if F is any real-valued functional on DI0, T']
which is J;-continuous, the distribution of F[f,(., w)] converges to the distribution

of FIW(., t)].
It is easy to see

F[fn(-, w)] N %mf{k >1 lSk > a'\/’—'l+k8} — Ta,/fz.Hw-
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