
Can. J. Math., Vol. XXXV, No. 3, 1983, pp. 558-576 

HOMOMORPHISM-COMPACT SPACES 

A. G. A. G. BABIKER AND S. GRAF 

1. Introduction. In 1979 Edgar asked for a characterization of those 
completely regular Hausdorff topological spaces X which have the 
property that any Boolean a-homomorphism from the Baire a-field of X 
into the measure algebra of an arbitrary complete probability space can be 
realized by a measurable point-mapping. Those spaces X will be called 
homomorphism-compact or, for short, //-compact hereafter. It is well-
known that compact spaces are //-compact (cf. [4], p. 637, Proposition 
3.4). We will show that the same is true for strongly measure compact 
spaces. On the other hand //-compact spaces are easily seen to be 
real-compact. Since the notions of measure-compactness and lifting-
compactness (cf. [3]) also lie between strong measure-compactness and 
real-compactness it is natural to investigate the relations among these 
notions. Here the results are mainly negative (cf. Sections 4 and 6). 
Concerning the structural properties of //-compactness not very much can 
be said so far (cf. Section 7): it is, for instance, unknown whether the 
product of two //-compact spaces is again //-compact. 

For our considerations the notion of //-compact measures turns out to 
be particularly useful: 

A finite Baire measure \x on a completely regular space X is said to be 
H-compact if any ju-measure preserving a-homomorphism from the Baire 
a-field of X to the measure algebra of a complete finite measure space can 
be realized by a measurable point-mapping. 

There are some nice characterizations of //-compact measures: A 
measure [i on X is //-compact if and only if (X, /x) is injective in the 
category of measure spaces, if and only if ju is inner regular with respect to 
the closed sets of a weaker compact topology on X. For metrizable spaces 
X //-compactness of a measure fi is equivalent to the tightness of ju (cf. 
Section 3). Moreover //-compact measures on metrizable spaces have the 
disintegration property, while, on the other hand, a measure, which lives 
on a measure compact space and has the disintegration property, is 
//-compact. 
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The results proved in this note leave many natural questions 
unanswered. We therefore include a number of open problems whose 
solution would give some further insight into the structure of //-compact 
spaces. 

2. Notation and terminology. Throughout this paper X will be a 
completely regular Hausdorff space, Ch(X) the algebra of all bounded 
real-valued functions on X, 38{X) the a-field of Baire subsets of X (i.e., the 
smallest a-field with respect to which every h e Ch(X) is measurable) and 
P(X) the set of all a-additive probability measures on 38(X). For h £ 
Cfj(X) we denote by h the canonical extension of h to the Stone-Cech com-
pactification of X. For JU <E P(X) we denote by /I the Baire measure on @X 
induced via 

) xhd\L = Jxhdji (h e Ch(X)) 

and by /x the Radon measure extending Ji to all Borel sets of fiX. 
Let (£2, 31, v) be a probability space. Then 91 „ denotes the completion of 

9( w. r. t. v while %lv stands for the measure algebra of (12, 31, v), i.e., the 
quotient algebra of 31 w. r. t. the a-ideal of ^-nullsets. The measure induced 
by v on 3l/„ is again denoted by v. 

By J>* (resp. v^) we denote the outer (resp. inner) measure on s$(12) 
corresponding to v. For 12' c 12 we write 31 n 12' for the a-field {̂4 Pi 12' | 
/l G 31} on 12'. 

For the notions not defined in this paper we refer the reader to [3], [12], 
and [14]. 

3. //-compact measures. In this section the notion of //-compact 
measure is introduced and studied in some detail. 

Definition. Let Xbe a completely regular space and /x G. P(X). Then ju is 
called H-compact if and only if for every probability space (12, 31, v) and 
any Boolean a-homomorphism $: 38(X) —> %/v with vo$ = \i there exists 
an 3l„ — J,(Ar)-measurable map <p: 12 -» X such that for all 5 <E 38(X) we 
have <*>-'(£) G $(5) . 

Due to the following proposition there is a large class of //-compact 
measures: 

3.1. PROPOSITION. Every tight measure is H-compact. 

Proof. The proof consists in a slight modification of the arguments used 
by Edgar [4], p. 637/638 and Graf [8], p. 68/69. 
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For our further considerations we need the following definitions: 

Definitions, (i) Let (12, 9Ï, v) and (12', 91', v') be measure spaces. A map 7: 
S2 —> 12r is called an embedding if and only if j is one-to-one, 21 — 
s#'-measurable and satisfies 

j{v) = V and {j~\A)\A e 31'} = 31. 

(ii) Let (12, 31, v) and (12', 91', v') be measure spaces and let7: 12 —> 12' be 
an embedding. An 91V ~ 9l-measurable map r: 127 —> 12 is called a 
retraction for 7* if and only if r 07 = id^. 

(iii) A measure space (12, 91, P) is called an absolute retract if and only if 
every embedding of (12, 91, v) into another measure space admits a 
retraction. 

(iv) A measure space (12, 91, v) is called injecïive if and only if for every 
two measure spaces (12 b %h v\) and (122, 9I2, v2), every embedding^: 
12 j —» 122, and every 9t] — 9t-measurable map <p: 12] —» 12 with <p(̂ i) 
= ^ there exists an (3t2)*,2 — 3l-measurable map <p: 122 —> 12 with <p o 

7 = <P-

(v) Given a measure space (12, 91, *>) and a collection ^ o f subsets of X, v 
is called /wwer regular w. r. t. ^fif and only if, for every A e 91, we 
have 

v(A) = sup{ !>*(#): A: <= J*?À: c ^ } . 

Our next theorem gives a characterization of //-compact measures, 
thereby relating the notions introduced above. 

3.2. THEOREM. For a completely regular space X and a measure jut e P(X) 
the following properties are equivalent: 

(i) jix is H-compact. 
(ii) (X, 88 (X\ /A) zs injective. 

(iii) (X, ^ (X) , jix) is an absolute retract. 
(iv) The canonical embedding of (X, 88{X), JU) into (fiX, 88($X), Jl) admits 

a retraction. 
(v) There exists a (88(fiX) )^ — 88 {X\ measurable map cp: fiX —» A" swc/z 

/I (<p~x(B) k B) = 0 for all B e 88(frX). 

(vi) There exists a compact topology r^ on X which is weaker than the 
original topology of X and such that /x is inner regular with respect to 
the collection of all r^-closed subsets of X which are at the same time 
zero sets of the original topology. 
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Proof, (i) => (ii): Let ju e P(X) be //-compact, (S2, 31, P) and (Q', 31', */) 
measure spaces, y: £2 —» £2' an embedding and <p: Œ —» X % — &8(X)-
measurable with v(p) = /i. Define O: ^(X) -» 317^ by 0 (5 ) 
= |y4]„', where 4̂ e 3T is any set withy' - l(A) = y~l(B) and [>4]̂  denotes 
the residual class of A in %'Iv>. Then <£> is a well-defined Boolean 
(T-homomorphism with v' o O = JH. Since /x is //-compact there exists an 
3t'^ - ^(X)-measurable map <*/: fi' -» X such that («p')-1(2?) G ®(B) f o r 

all 5 G @{X). Define ?: Q' -» X by 

7(2) 
2 ' \ 7(2). 

It remains to show that <p is 31V — J,(X)-measurable. Let B e ^ (X) be 
arbitrary and A e 3Ï' withy" ](yl) = <p_1(i?)- Then we have 

A n («p') - 1^) c v-1CB) c A U (<*>')" *(#) 

and, according to the definition of <ï>, 

Together this implies 

v~\B) e 31V. 

(ii) =» (iii): This implication follows by a standard argument of category 
theory. 

(iii) =̂> (iv) is true by specialization. 
(iv) => (v): Lety: X —> /?X be the canonical embedding and <p: fiX —* X 

^ifiX)^ - ^(X)-measurable with <p o j = id*. Let 5 e 38(fiX) be given. 
Because 

r\v-\r\B)) =r\B) 
we have 

p A ç - 1 ^ ) ) = p A c " 1 0 - 1 ( 5 ) ) ) 

= p(j-\B) ±rl
 v-

l(j-\B))) = 0. 

(v) =̂> (vi): Let <p: /?X —» X be as in (v). Define 

V = {£/ c X\ 3 V c pX: V open, F n l = [ / 
and<p_1(^) c H -

Then T^ is obviously a topology on X which is weaker than the original 
topology of X. Let (£/ z) / e / be a covering of X by r^-open sets. For /' e / let 
Fz- c (IX be open with 
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Ul = Vt n X and y~\Vl) c Vh 

Then (K/) /G / is an open covering of fiX and, therefore, has a finite 
subfamily covering fiX. The corresponding Ul obviously cover X. Hence 
(X, T^) is compact. Let 

JF= {F C XI F ^-closed and F zero set}. 

We will show that ju is inner regular with respect to Jtf To this end let 
B G âS{X) and € > 0 be arbitrary. Let B <E â8($X) be such that B D X = 
B. Since jit is a Baire measure on a compact space there exists a closed 
G^-set F\ c B with 

/x(5 \ Fj) < c/2. 

Since 

Àx(̂ i i ç ' ^ i ) ) = 0 

there exists a closed G^-set F2 c F\ n <p~](F\) with 

/X(FÏ \ F2) < c/4. 

Continuing in the same way we construct a sequence (F„)„GN of closed 
Gg-sets with 

F„ + 1 c Fn O cp -^FJ and ju(F,7 \ Fw + 1) < £/2"+ 1 

for all « G N. 

Define 

F: = n Fn. 

Then F is a closed Gg-set and, therefore, F n X is a zero set. We have 

F = n F„ c n Fw+1 n ç - '^+O c ^-'(F). 

Hence F n A" is ^-closed. Moreover 

li(B \ (F n X)) = ]i(B \ F) ^Ji(B \ FO 
+ /x (FÏ \ F2) + . . . < c 

Thus ju, is inner regular w. r. t. Jtfand (vi) is proved. 
(vi) => (i): Let T^ be a topology with the properties stated in (vi). Let Jf 

be defined as above. Let (£2, 21, v) be a probability space, <b\ <%(X) —> sit/„ a 
a-homomorphism with \i = v o 0 , and 0 : 21/„ —» %v a lifting (cf. [9], p. 36). 
For w G fi define 
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^ = {K G JP\CÙ G e ( 0 ( J f ) ) } . 

Then J% is non-empty, stable under finite intersections, and does not 
contain the empty set. Since (X, r j is compact this implies Pi J^ ¥= 0. 

Define ç>: B -> X by <p(co) G n 3%,. For # G ^f and w e Û 

<p(co) € A' implies K £ J% 

and, hence, to £ €)(<J>(AT) ). We therefore deduce 

0(4>(tf)) c ^ ( t f ) . 

Now let 5 e ^ypC) be arbitrary. Then there exist increasing sequences 
(Kn)n(=N and (L„)„e N in ^fsuch that 

U Kn cz B and /x(£ \ U #„) = 0; 

and 

U L„ c X \ £ and fi((X\B) \ U L J = 0. 
n e N « G N 

This leads to 

U ©($(#„)) c V
- 1 ( U #„) c cp_1(i5) = S \ cp^VXX^) 

c B \ <p-\ u L J c B \ u 0(O(L„)). 

Since 

$(u *„) = $(5) = <D(*\u L„), 

[u 6(<D(tf„))]„ = 4>(u *„) 

and 

[Q \ U 0 ( O ( L J ] , = <D(X\ U Ln) 
A? « 

we derive 

<P~\B) e a , 

and 

[<p-l(B)]v = 4>(fi). 

Remarks, a) The topology T^ in (vi) can be chosen in such a way that all 
compact subsets of X are lyclosed. 
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b) The idea of constructing a topology TM with the properties stated in 
(vi) originates in an analysis of Pachl's considerations concerning 
disintegration of measures (see [13], pp. 159-161). 

3.3. THEOREM. Let X be metrizable and \x e P(X). Then /x is H-compact 
if and only if fi is tight. 

Proof The "if" part of the theorem is a special case of Proposition 3.1. 
To prove the "only if" part let /x Œ P(X) be //-compact. According to 
Theorem 3.2 (v) there exists a 3&($X)p — ^(X)-measurable map cp: (iX —» 
X with 

Jl(B A <p-1(£) ) = 0 for all B <E âg(X). 

By a theorem of Fremlin [7] <p is Lusin measurable and, therefore, /x = <p(/x) 
is tight. 

4. //-compact spaces. This section contains partial answers to Edgar's 
question stated in the introduction. His problem led us to the following 

Definition. A completely regular Hausdorff space is called H-compact if 
and only if every measure /x e P(X) is //-compact. 

Our next theorem is an immediate corollary of Proposition 3.1. 

4.1. THEOREM. Every strongly measure-compact space is H-compact. 

4.2 THEOREM. Every H-compact space X is real-compact. 

Proof Let /x e P(X) be {0, l}-valued. Let 12 be a singleton, 1 = $(Q), p 
the unique probability measure on 31 and $ : 3&{X) -> %/v = % defined 
by 

_ fn, MW = i 
*(*> = (0 , ** ) = o. 

Then O is a a-homomorphism with v o $ = /x. Since /x is //-compact there 
exists a map <?: 12 -> Xwith y - 1C£) = ®(B) for 5 G ^(X) . Thus, for x0 e 
<P(12) and B e ^ (X) , we have 

x0 (E B <=$ fi(B) = 1, 

which leads to /x = €A/ Hence Jf is real-compact. 

As an immediate consequence of Theorem 3.3 we have 

4.3. THEOREM. A metrizable space is H-compact if and only if it is strongly 
measure compact. 
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The following examples show that neither of the notions of H-
compactness and measure-compactness implies the other. Thus the 
converses of Theorems 4.1 and 4.2 are, in general, false. 

4.4. Examples, a) X //-compact does not imply X measure compact. 
Let 

X = {0} X [0, 1] U { ( - , " 2 ) 1 k,n e N > . 

For x <E X \ {0} X [0, 1] let {x} be a neighborhood of x, and for each 
(0, y) e {0} X [0, 1] define a neighborhood base (Bn(y) ) „ G N by 

&n(y) = { ("> v) <= X\ u ^ Un and \v-y\ ^ u). 

This defines a completely regular topology T o n I which is finer than the 
topology inherited from R2 but possesses the same Baire sets. Since X with 
the euclidean topology is compact it follows from Theorem 3.1 that (Xy r) 
is //-compact. However, (X, T) is not measure compact ([1], p. 681). 

b) X measure compact does not imply X //-compact. 
Let X be a non-Lebesgue measurable subset of [0, 1]. Then X is 

separable and metrizable and hence measure-compact. But X is not 
universally (Radon) measurable and, therefore, not strongly measure-
compact ([15]). Since for metrizable spaces //-compactness and strong 
measure-compactness are equivalent properties, this proves our claim. 

5. //-compactness and disintegration. The close formal relationship 
between the realization of homomorphisms and the disintegration of 
measures suggested the investigations concerning disintegration and 
//-compactness carried out in this section. 

Definition. Let X be completely regular and \i e P(X). 
a) JU is said to have the disintegration property (DP) provided that for 

any probability space (£2, 21, v) and for any 38(X) — 2l-measurable 
map q\ X^Qi with v = q(p) there exists a disintegration of /x w. r. t. 
q, i.e., there is a family ( n J u e f l in P(X) with the following 
properties: 

( i ) V 5 e â8(X): Î2 -> R; w -> ^(B) is 21,-measurable 

(ii) V B G â8(X) VA G 31: /x(# n ^ _ 1 ( ^ ) ) = J ^ R> (5) ^ ( ^ ) -

b) JU is said to have the integral representation property (IRP) provided 
that for every probability space (£2, 21, *>) and for every positive 
linear operator 
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T: Ch(X) -> LOT(12, 21, P) 

with T\ = 1 and 

/ Tfdv = jfdfi for a l l / e Q(JQ 

there exists a family (/Ouefi in P(A") such that 12 —> R; co —> / / J/x^ 
is 21 ̂ -measurable and is a representative of the residual class Tf in 
L°° (12, 21, v). 

5.1. PROPOSITION. / / / ( e ^ W to /Ae IRP /Ae« it has the DP. 

Proof. Let (12, 21, p) be a probability space and (7: X —> 12 a ^ ( Z ) — 
91 -measurable map with q(fi) = *>. For /z G C/,(A") define *>/,: 21 —> R by 

""(A) = Jq \A)hd^ 

Then vh is a signed measure on 21 with 

- H/l l loo ? ^ ^ S Il/Zlloo l>. 

Hence the Radon-Nikodym theorem implies the existence of a unique fh 

G L°°(12, 21, p) with ^( ,4) = /^ /A ^ for all A e 21. The map 

7: Q ( * ) - > L ° ° ( Q , %v);h^fh, 

is obviously a positive linear operator with 71 = 1 and 

J Thdv = J hd\i for all h e Q ( I ) . 

Since /x has the IRP, there exists a family (/AW)WGU
 m P(X) s u c n t n a t w ~^ 

/ h d[iu represents Th for all h e Q,(X). By standard arguments one sees 
that (/O<o€=fi is a disintegration of fi w. r. t. q. 

Problem. Does the converse of the above theorem also hold? 

That "nice" measures satisfy the IRP is the content of the following 
proposition: 

5.2. PROPOSITION. Every tight measure has the IRP, hence the DP. 

Proof. Let fi G P(X) be tight, (12, 21, v) a probability space, and 

T: Ch(X) -> L°°(12, 21, *>) 

a positive linear operator with T\ = 1 and 
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J Thdv = J hdv for all h <= Ch(X). 

Let 0 : L°°(£2, 91, v) -> M°°(S, 31, *>) be a lifting (cf. [9]). Define pw: Q(X) 
-> R b y 

Pco(Z) = © ( # » . 

Then pw is a positive linear functional. 
Since /x is tight there exists an increasing sequence (Kfl)f1(=^ of compact 

subsets of X with 

K(X \ U *„) = 0. 

We claim that there exists a p-nullset N with 

(1) inf 0 ( s u p { F / | / e Cb(X), 0 ^ / =g l * \ t f j )(*>) = ° 
» G N 

for all co G Q \ Af. Since 

/ e ( s u p { r / | / e Q(X), 0 ^ / ^ IA^XATJ )(CO) ^KCO) = 
J ^ ( X \ ^ ) 

we deduce 

0 = inf / 0 ( s u p { r / | / G Q ( I ) , 0 ^ / S lX\Kn})(a)dHo>) 

= / inf 0 ( s u p { r / | / G Ch(X),0 S / ^ l^\^n})(w)rfKw), 
^ « G N 

and the claim follows. 
It is easy to verify that for any h e C^(X) and any closed subset F <z X 

the inequality 

(2) 0(7/2) â sup| /z(x) | 
i - G F 

+ ll/i|looe(sup{7yi/G Q( i ) , o g / ^ i^XF}) 
holds. 

We now show that for every OJ e Œ \ TV and any sequence (h^ )k G N in 
Q(X) with /** | 0 we have p w (^) J, 0. 

Let e > 0 be arbitrary. Then, according to (1), there exists an n e N 
with 

(3) €/2 > | | / . 1 | | oo©(sup{7n/e Cb(X),0^f£ \x^K„} )(«). 

https://doi.org/10.4153/CJM-1983-032-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-032-4


568 A. G. A. G. BABIKER AND S. GRAF 

By Dini's theorem (hk)k converges to 0 uniformly on Kn, i.e., there is a k0 

e N with hk\Kn ^ c/2 for all k ^ k0. Hence (2) combined with (3) 
implies 

Thk ^ c/2 -f e/2 = € 

for all £: è /c0, and, therefore, 

pJLh) = @(Thk)(œ) ^ e 

for all k ^ &0. It follows that there is a Baire measure \i^ e P{X) with 

pw(/i) = J hd^ for all A G Q(X) . 

Choosing jiiw G P(X) arbitrary for w G ]V gives us the family (/xw)<oeS2 w e 

are looking for. 

Remark. The proof shows that the theorem remains true if one assumes 
[i to be only pseudotight, i.e., inner regular w. r. t. the collection of pseudo 
compact subsets of X (cf. [2]). 

We now relate //-compactness to the above notions. 

5.3. THEOREM. A measure \i e P(X) is H-compact if and only if \x has a 
disintegration (jU,^ <= px with respect to the canonical embedding j : X —> fiX, 
such that every jû  is r-smooth. 

Proof " =» ": According to Theorem 3.2 (v) there exists a (&(fiX) )^ — 
^(JQ-measurable map <p: fiX —> X with 

JUB A <p~\B) ) = 0 for all B e J'GSX). 

Then fix —» P(X), to •—» cv(to) is obviously a disintegration of //, w. r. t.y with 
the required properties. 

" 4= ": Let (lOwG/sx be a disintegration of /x w. r. t.y such that all /xw are 
T-smooth. Define 

^ = {F c j8Z | F closed Gfi-set and 
|UW(F D X) = \ for all to e F} . 

Then J^: = {F n X | F e # } is a collection of zero sets in X, which 
contains 0, X and is stable with respect to forming finite unions and 
intersections. We show that \i is inner regular w. r. t. J^ Let e > 0 and B e 
38(X) be given and let B e ^ ( 0 * ) be such that B = X n B. Then there 
exists a closed G8-set F] in £X with Fx <z B and Jï (B\FX) < c/2. The 
set 

# , : = {co e y S ^ ^ C ^ n X) = 1} 

https://doi.org/10.4153/CJM-1983-032-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-032-4


HOMOMORPHISM-COMPACT SPACES 569 

is in (â8(X) )A and for all A e @(PX) we have 

%A n Fx) = ii(A n Fx n X) = JA ^ ( ^ n X) ^u(co). 

This implies 

/x(Fi A //]) = 0. 

There is a closed G§-subset F2 of /?X with 

F2 c F, n # , and /ïOF, \ F2) < c/22. 

Continuing in the same way we get a sequence (F„)flGN of closed 
G^-subsets of /?X with 

Fw + 1 c {co G F w : / i w (^ n X) = 1} 

and 

/xOF„ \ F „ + 1 ) < c / 2 ' I + 1. 

Define T7 = n,?GEN JFW. Then F is a closed Gg-subset of fiX and for w G F 
we have 

Mco(̂ ) = inf iiu(Fn) = 1, 

because to lies in all Fn + \\ hence F e . f . Moreover we deduce 

li(B\(FC\X)) = ]l(B\F) = V(B\F]) + JL(F1\F2) + . . . ë e. 

Thus jit is inner regular w. r. t. J*T 
Now let T be the topology on X generated by {X\ F | F e J^). Then T is 

obviously weaker than the original topology of X. Let (£//)z-G/ be a T-open 
covering of X Then there exists a family (FJ)JGJ in J*" such that X\Fj c 
Uj. for some /, G / and 

U X \ F , = X. 

This implies 
X n n F7 = 0. 

Assume there is an co G n j G i / i7-. Then we have on the one hand 

/x<0( n T7,) = 1 for all finite J0 c / . 

Since /xw is T-smooth we get, on the other hand, 

lim /iw( n /}) = 0, 
J0CJ j^j0 

J0 finite 
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a contradiction. Thus n /GEy Fj is empty and there exists, therefore, a finite 
J() c J with 

n Fj = <j». 

But then the corresponding Ur form a finite covering of X. Thus ( X r) is 
compact and according to Theorem 3.2 (vi) fi is / / -compact . 

As a consequence of the above theorem we have: 

5.4. T H E O R E M . If X is a measure-compact space then every measure /x e 
P{X) with the DP is H-compact. 

Problems, a) Does the converse of Theorem 5.4 hold? 
b) Can the assumption of "measure-compactness" in the theorem be 

weakened to "real-compactness"? 

As a corollary we get the following characterization of / / -compact 
metrizable spaces: 

5.5. C O R O L L A R Y . Let X be metrizable. Then the following properties of X 
are equivalent: 

(i) X is H-compact. 
(ii) X is real-compact and has the IRP. 

(iii) X is real-compact and has the DP . 
(iv) X is strongly measure compact. 

Proof. The equivalence of (i) and (iv) is the statement of Theorem 4.3 
and it, therefore, follows from Propositions 5.1 and 5.2 together with 
Theorem 4.2 that (i) implies (ii) and (ii) implies (iii). Since every 
metrizable real-compact space is measure compact (cf. [11], [12]) the 
implication (iii) => (i) follows from Theorem 5.4. 

Problem. Are the equivalences (i) to (iii) in the above theorem still true if 
one drops the assumption of metrizability for the space XI 

Remark. It should be noted that / / -compactness of a measure /x e P(X) 
implies the following weak forms of the integral representation and the 
disintegration property: 

(WIRP): There exists a a-field 23 c @(X) with ®(X) c 93^ such that for 
all probability spaces (£2, St, v) and all positive linear operators T: Ch(X) 
-> L°°(£2, 9T, v) with T\ = 1 and 

j Tfdv = ffdp (/€= Ch(X)) 
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there exists a family (/O<oefl of probability measures on 93 such that, for 
e a c h / e Ch(X), one has a jii-nullset TV e 23 for w h i c h / - I^XAT *S 

93-measurable and co —> j \ \ N /dfiu is a representative of 7/1 

(WDP): There exists a a-field © c @(X) with J>(X) c 93̂  such that for 
all probability spaces (£2, 21, J>) and every ^(X)-3l-measurable map q: X —> 
£2 with p = q(\i) there exists a family (jOwefl of probability measures on 23 
such that £2 —* R, co —> [i^B) is 3l„-measurable and satisfies 

H(Bnq~\A)) = J A ti„(B)dr(o>) for all B e 93, ̂  e 31. 

The proof of these facts uses techniques similar to those of [13]. Using 
these techniques it can also be seen that the WIRP and the WDP of 
measures are equivalent. 

6. //-compactness and lifting-compactness. Let us first recall the 
definition of lifting-compactness for completely regular spaces: 

Definition. A completely regular space X is called lifting-compact if for 
any complete probability space (£2, 31, v), an 3I-^(X)-measurable map cp: 
12 —» X, and any lifting 

0 : L°°(a, 31, i>) -> M°°(S2, 31, ?) 

there exists a set fl0
 G ^ w i t n K^o) = 1 and a 3( n il0 - â?(A> 

measurable map 0(<*>): £20 ~^ ^ s u c n t n a t 

0(/z O <p)(<o) = (h o 0'(«P) )(w) 

for all h e Q(X) and co G S20. 

It is known that every strongly measure-compact space is lifting-
compact and that every lifting-compact space is measure-compact (cf. [3]). 
In this section we study the relation between lifting-compactness and 
//-compactness. We have the following negative results: 

6.1. Examples, a) X //-compact and measure-compact does not imply 
X lifting-compact. 

Edgar and Talagrand ([5], p. 347, Example) construct a completely 
regular topology T' on X = [0, 1], whose Baire sets agree with the usual 
Baire sets of [0, 1], and which is such that (X, r') is measure compact but 
not lifting-compact. Since [0, 1] with the usual topology is //-compact the 
same is, therefore, true for (X, T'). 

b) X lifting-compact does not imply X //-compact. 
Since every separable metric space is lifting-compact Example 4.4 b) 

provides the required counterexample. 
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One question which remains is whether //-compactness and lifting-
compactness together imply strong measure-compactness. Our next result 
gives a partial answer to this question: 

6.2. THEOREM. Let X be a completely regular Hausdorff space such that 
for every r-smooth measure /x <E P(X) the Borel measure ]x on fiX has an 
almost strong lifting (cf. [9], p. 129). Then X is strongly measure-compact if 
and only if X is H-compact and lifting-compact. 

Proof. It follows from Theorem 4.1 and [3], Corollary 6.1 that every 
strongly measure-compact space is //-compact and lifting-compact. Now 
suppose that X is //-compact and lifting-compact. Then according to [3], 
Corollary 6.1, X is measure compact. To prove that X is strongly 
measure-compact it is enough to show that every T-smooth measure [i <E 
P(X) is tight. Let /x be such a measure. By Theorem 3.2 (v) there is a map 
<p: fiX —> X which is ^(fiX)-^ — ̂ (X)-measurable and satisfies 

JK<P~\A) A A) = %(<p~l(A) Av4) = 0 for all A e âg(fiX). 

This implies h o cp(to) = h (ce) for^ - a. a. w G f$X for all h G Ch(X). Let 
% be the completion of the Borel field of fiX w. r. t. % According to our 
assumptions there is an almost strong lifting 

0 : L°°(PXy 31, $) -> M°°(PX, 81, % 

Since Xis lifting-compact there is a Borel set Y c (3X withfi (Y) = 1 and 
a map 0'(j8): Y -^ X which is % n 7 - ^(A>measurable such that 

S(h o <p)(w) = (A o 0'(<P) )(w) 

for all /z G Q(X) , a) G 7. 

Since 0 is almost strong there exists a Borel set N in fiX with |î (N) = 0 
and such that 

h(o)) = 0(A)(io) = 0(/z O v)(w) = (ho @'(<p) )(co) 

for all <o G y \ JV and all h G Q(A'). This implies Y\N c ^ a n d hence * 
is ^-measurable with ^(X) = 1. Therefore /x is tight and the theorem is 
proved. 

6.3. COROLLARY. Assume CH. Let X be separable. Then X is strongly 
measure compact if and only if X is H-compact and lifting-compact. 

Proof. Since X is separable fiX has a base for its topology of cardinal at 
most that of the continuum. A result of Mokobodzki and Fremlin (cf. [6], 
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Theorem 9) implies that every Radon measure on (3X admits an almost 
strong lifting. The corollary, therefore, follows from Theorem 6.2. 

7. Structural properties of //-compactness of spaces. Here we would like 
to discuss stability properties of //-compactness with respect to a) sub-
spaces; b) products; c) images (continuous or just measurable). The 
corresponding properties for measure-compactness, strong measure-
compactness, and lifting-compactness are well known (cf. [12] and [3]). 

a) The following result is an immediate consequence of Theorem 3.2 
(iii) combined with the fact that every Baire subset of a space admits a 
Baire measurable retraction (see the remark following Proposition 7.4): 

7.1. PROPOSITION. If X is H-compact and Y is a Baire subset of X then Y 
is H-compact. 

Unlike measure-compactness, strong measure-compactness and real-
compactness, //-compactness is not necessarily inherited by closed 
subspaces. 

7.2. Example. Let X = [0, 1] and let T' be the topology on X constructed 
by Edgar and Talagrand [5] (cf. Example 6.1 a), i.e., there exists a set M c 
X with outer Lebesgue measure 1 and inner Lebesgue measure 0, such 
that 

r' = (G U P | G open w. r. t. the ordinary topology of [0, 1] and 
P c M) 

and (X, rr) has the same Baire sets as [0, 1] equipped with the ordinary 
topology. Thus (X, rr) is //-compact. But its r'-closed subset X\M is 
metrizable and not strongly measure compact ([15]), hence not //-compact 
(Theorem 4.3). 

b) The problem whether the product of any two //-compact spaces is 
//-compact remains open. But we have the following rather special 
result: 

7.3. PROPOSITION. Let X be H-compact and measure-compact and let Y be 
strongly measure-compact. Then XX Y is H-compact. 

Proof Let (£2, 2Ï, v) be a probability space, $\@(X X Y) -* a/v a 
a-homomorphism, and JX = v O $. Define <&x'. <%(X) —> 91/„ by $x(B) = 
$(B X Y) and QY\@{Y) -» 21/„ in an analogous way. Then <f>x and $ y are 
a-homomorphisms. Since X and Y are //-compact there exist %v — <%(X) 
— (resp. 9t„ — &$(Y) — ) measurable maps cp̂ :£2 —» X and cpY'.Q -* Y 
inducing $>x

 a n d ®Y respectively. Define <p:S2 —> X X Y by 
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<p(w) = (<?*(<*>), <py(<d) ). 

We claim that <p is 31̂  — ^ ( X X 7)-measurable. Obviously <p is SI^ - ^ (X) 
0 ^(7)-measurable and satisfies 

<P~\B) G $ (£ ) for all 5 e ^ (X) 0 ^ ( 7 ) . 

Therefore our claim is proved if we can show that, for every A e 
®(X X 7), there are 5, 5 ' e ^ (X) 0 J>(7) with B c ^ c 5 ' and 
IL(B'\B) = 0. By standard arguments the proof of this statement reduces 
to proving that for every non-negative/ G Q ( I X 7) there are ^ (X) 0 
J>(7)-measurable functions g, g':X X 7 —» R such that 

g =f= g' and J (gr - g)dy. = 0. 

To show this let 

^ : = {h\xxY\h e C(£X X £ 7 ) } . 

Then it follows from [3], Lemma 3.1 that for each / e C/?(X X 7) and all 
(x, j>) e X X 7 we have 

f(x,y) = sup{h(x,y) \h <= J% h ^ f). 

According to [12], Theorem 5.3, the space X X 7 is measure compact. 
Hence \x is r-smooth and we deduce 

J fdii = sup I J N W/i | h e J%h =f\ 

Since each h e ^ i s ^ (X) 0 ^(7)-measurable there exists, therefore, a 
@(X) 0 ^ ( 7)-measurable function g:X X 7 -> R with g ^ / a n d 

/ ( / - gV/x = 0. 

In an analogous way one can find a @&(X) 0 ^(7)-measurable function g': 
X X 7 - > R w i t h / ê g' and 

/ (g' - f)dyL = 0. 

This completes the proof. 

c) Note that a continuous one-to-one image of an //-compact space 
need not be //-compact: Take any non-//-compact space X whose cardinal 
f in non-measurable. Let D be a discrete space of cardinality f. Then D is 
obviously //-compact. Let/: D —> Xbe any bijection. Then/ i s continuous 
but X is not //-compact. 
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Thus, concerning preservation w. r. t. images, the following is, in a 
sense, the best result one can hope for. 

7.4. PROPOSITION. Let X and Y be completely regular spaces, such that 
there is a &(X) - &(Y)-measurable map p: X -» Y and a &{Y) -
£8{X)-measurable map q: Y -* X with p O q = idy. If X is H-compact then Y 
is H-compact. 

Proof. Let /x e P(Y) be given. According to Theorem 3.2 (hi) it is 
enough to show that (7, &(Y), ju) is an absolute retract. Let (£2, 51, ju) be a 
probability space and j : Y —» £2 an embedding. By Theorem 3.2 (ii) (X, 
&(X)9 /A) is injective. Hence there exists a 31 „ — ^(^)-measurable map #: 
12 —> X with g 07 = q. Define r: = p Oq. Then r is 31 „ — ^(7)-measurable 
and 

rOj=pOqOj=pOq = i d 7 . 

This completes the proof of the proposition. 

Remark. If Y is a non-empty Baire subset of X then there exist maps/?, g 
with the properties stated in Propositon 7.4.: Let q be the canonical 
embedding and let p: X —> 7 be defined by 

, v f x, x e y 

where x0 is any fixed point in 7 
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