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SPHERICAL MEAN AND 
THE FUNDAMENTAL GROUP 

Dedicated to Professor Akihiko Morimoto for his 60th birthday 

TOSHIAKI ADACHI 

ABSTRACT. We investigate some properties of spherical means on the 
universal covering space of a compact Riemannian manifold. If the funda­
mental group is amenable then the greatest lower bounds of the spectrum 
of spherical Laplacians are equal to zero. If the fundamental group is non-
transient so are geodesic random walks. We also give an isoperimetric in­
equality for spherical means. 

Introduction. Let N be a complete Riemannian manifold. Given a positive r we 
define the spherical mean Lr on N with radius r by 

*"/(*> = Lj(eWxrv)dSx(v) 
JUXN 

for a continuous function/. Here dSx is the normalized canonical density on the unit 
tangent sphere UXN. It has a continuous self adjoint extension L2(N) —• L2(N), and is 
the generator of the r-geodesic random walk (see [10]). Many properties of Lr of course 
depend on the geometry of the underlying manifold and on the radius r. For example, r-
geodesic random walk on a standard sphere is not transitive if and only if r is a multiple 
of the diameter. In this paper we mainly treat the case that underlying manifold is a 
covering space of a compact manifold, and point out some properties of the covering 
transformation group give information on spherical means. 

We shall call Ar = 1 — Lr as the spherical Laplacian, and set 

\0(N; r) = inf — - , 
SNf2d\o\ 

where/ runs over all continuous functions on TV with compact support. Then \Q(N; r) is 
the greatest lower bound of the spectrum of Ar. When N is a normal covering of a compact 
manifold, the amenability of the deck transformation group is reflected on Xo(N\ r). We 
show the following in Section 1. 

Key words and phrases: Spherical mean, geodesic random walk, amenable, transient, isoperimetric in­
equality. 
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4 T. ADACHI 

THEOREM 1. If the fundamental group of a compact manifold M is amenable then 
Ao(M; r) of the universal covering space M of M equals to zero for every r. 

We are now interested in the alternative direction of the above theorem. For the first 
step to attack this problem we estimate in Section 2 \$(N\ r) by the geometric constant 
h(N; r) defined in the following manner. Let dr: LP(N) —> LP (UN) denote the r-difference 
operator defined by 

drf(v) = /(exp7rv rv) -/(TTv), 

where ix\ UN —» N is the projection of the unit tangent bundle. Given a bounded domain 
D in N we set 

hr,D = inf vo\(E)~l / |dr\E\ dS\\ 
E \ JUD J 

here E runs over all measurable subset of D, and \E denotes the characteristic function of 
E. Although it seems a bit complicated, as JUD \dr\E\ dS can be regarded as the volume of 
r-boundary of E, it naturally corresponds to Cheeger's isoperimetric constant (see [4]). 
We shall therefore call 

h(N;r) = infhrD 
D 

as the r-isoperimetric constant of N. On the analogue of Cheeger's isoperimetric inequal­
ity we can get 

THEOREM 2. X0(N r) > h(N\ r)2/ 8. 

We remark that if N has finite volume then trivially Ao(N, r) = h(N\ r) — 0. The 
above inequality makes sense when the volume of N is infinite. For a compact manifold 
we give an estimate of the minimum of non-trivial eigenvalues of Ar. 

In the final section we deal with the transiency of geodesic random walks. We call 
an r-geodesic random walk transient if T,^L0Lrf < oo for some positive/ G L2(N). 
When N is a normal covering of a compact manifold, the non-transiency of the deck 
transformation group is also reflected on random walks on N. 

THEOREM 3. Let M be a compact Riemannian manifold. If the fundamental group 
ix\(M) is non-transient then transitive r-geodesic random walk on the universal covering 
space M is non-transient. 

The reader should compare some works on the Brownian motion and on the Laplace-
Beltrami operator. Brooks [2] and Varopoulos [13] proved that the fundamental group of 
a compact manifold is amenable if and only if the greatest lower bound of the spectrum of 
the Laplace-Beltrami operator equals to zero. For the transience of the Brownian motion 
on the universal covering space Valopoulos [13] showed by use of S-operators that it is 
transient if and only if the fundamental group is transient. In some sense our work can 
be regarded as a discrete version of their results. From the interpolation of the Laplacian 

Af = Mm\(f-LKf) 
AWO rL 
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one may guess for small r properties of the spherical Laplacian Ar are similar to that of 
the Laplacian. But since r is not necessarily small and there are no relations between L^r 
and Lr, our situation is not trivial. We provide quite elementary proofs without any aid 
of these results. 

The author would like to acknowledge useful conversation with T. Sunada and Y. Os-
hima. 

1. Amenability and the spectrum of spherical Laplacian. A countably gener­
ated discrete group G is said to be amenable if there is a bounded linear functional 
i/:L°°(G) —* R having the following properties; 

(Al) inf7€G/(7) < v{f) < sup7GG/(7), 
(A2) 1/(7 •/) - 1/(0, where 7 -/(a) = / ( 7 " 1 a ) . 

In this section we prove Theorem 1 by using the following combinatorial characteri­
zation. 

THEOREM (F0LNER [6]). A group G is amenable if and only if, for every finite subset 
A of G and arbitrary k, 0 < k < 1, there exists a finite subset EofG such that 

#(EnE-a)>k#E 

for every a G A. 

Given a domain D in the universal covering M of a compact manifold M we set 

Dr - { x G D | expx rv G D for every v G UXM), 

drD = D\rf. 

Let F be a connected bounded fundamental domain of M —> M with piecewise smooth 
boundary. Since r is not necessarily small, we need to choose a bounded domain F with 
nice boundary drF in the following manner. We denote by Br{F) the set of all points 
x G M with d(x, F) — \niyeF d(x,y) < r, and set 

T = { 7 G7ri(Af)| 7 ( F ) n # r ( F ) ^ 0 } . 

We show 

LEMMA 4. The bounded domain F = U7 <=r7 (F) satisfies 

dr(uaeAa(F?jnF=l 

where A = {7 G TTI(M) | 7(F)H F± 0}. 

PROOF. Put y — exp^ rv for a point x G F and a vector v G L^M. If x G 1(F) for 
7 G r then 7_1Cv) is contained in F, because 7 _ 1 W G ^ and d{l~l(x),/y~l(y)^j = 
d(x,y) < r. On the other hand since 7(F) H F contains 7(F), 7 is an element of A. 
Therefore y G 7(F) C UflG4tf(F), hence (uaG4«(F)) contains F. 
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Given k, 0 < k < 1, pick a finite subset £ of TT\(M) as in F0lner's theorem. We 
use the characteristic function \H of the set H = UaeE(j(F) as a test function. Since the 
support of XH\XH is contained in drH, we have 

f XH^rXHdV0\ = VOl(//) - / LrXHd VOl 
J M JH 

= vol(//) - vol(//r) 

< vol(//) - vol(//r), 

= vol(//) - vol(//r) - / . X//(exp rv) J5 
JUM\drHA ^ F 

hence get 
J*M XH&rXH d VOl VOl(// r) 

J M X ^ V O I - * vol(//) 

In order to give an upper estimate of the left-hand side of the above inequality, it is enough 
to estimate vol(fT)/ vol(//) from below. 

Suppose a G 7Ti(M) satisfies aa^E for every a G A. Then 

a(F) H 37 / C o{F) H (V(ua€A™(^>) U (//\ UaeA aa(P)j). 

Since A contains the unit element, the right-hand side coincides with 

a(F)n dr(uaeAla(F)) = (T[FH dr(uaeAa(F))), 

which is empty as we have seen in Lemma 4. Thus W contains 

H\ Ua dr(a(F)) = H\ Ua (drh 

where in the union a runs over all elements in E with a a $ E for some a G A. Therefore 
we have 

vol(#r) > vol(if) - vol(3rF) #{ a G £ | a a £ £ for some a G A} . 

Since A is symmetric, i.e., A = A - 1 = { a - 1 | a G A}, and 

#{cr G £ | aa £ £ } =#(E\E'a~l) < ( 1 - & ) # £ , 

we get 
vol(//r) > vol(H) - (1 - ^)#A#£vol(arF). 

Thus the inequality vol(//) > #£ vol(F) leads us to 

A 0 ( M ; r ) < f e X w A : X / / J v o l < l - V O l ( ^ 
J M X ^ V O I - vol(H) 

vol(3rF) volOrF) 
vol(/f) vol(F) 

Letting A: —» 1, we get the conclusion of Theorem 1. 
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2. Isoperimetric inequality for the spherical Laplacian. In this section we es­
timate from below the greatest lower bound of the spectrum of spherical Laplacians. 
What we have to do is to construct a discrete version of Cheeger's proof. On this line 
some difficulties arise from the fact that the r-difference drf off is a function on the unit 
tangent bundle. Let (pt: UN —> UN denote the geodesic flow on the unit tangent bun­
dle of a complete Riemannian manifold N. The r-difference operator can be written as 
drf =foiro(pr—fo7T. Since the Liouville measure dS is w i n variant, we get by easy 
calculations the following. 

LEMMA 5. Let D be an arbitrary domain in N. For L2-functions f and g we have 

f drf • drgdS = / ' / • Arg dvo\+ fg' Arf dvol 
/i\ JuD JD JD 

+ / fOTTOipr-gOTTOtprdS— f-gd Vol, 

in particular 

juNdrf • drgdS = JNf • ArgdvOl + JNg- A/rfVOl. 

(2) _, J / 2 , ,1 /2 

L i ̂ 2 ) i d S * v\Ld'f)2 dS) x (U2 ° * ° *'+f2 ° * d s ) • 

The following lemma, which combines a function on TV with its r-difference in terms 
of their L1 -norms, is a key to prove Theorem 2. 

LEMMA 6. Letf be a non-negative function whose support is contained in a bounded 
domain D. Then we have 

juD\drf\dS>hrJ)jDfdwo\. 

PROOF. Since dr is continuous, we may only treat the case/ as a step function: 

K 

f= Y,aiXEn 
i=0 

where at > 0, i = 1 , . . . , K, and D — E0 D E\ D • • • D EK, with proper containment 
fo r i= 1 , . . . , ^ . 

Let x G Ej\ Ej+\, and suppose v G UXN satisfies ir o ipr(v) G Ek\ Ek+\. Then we find 

- 1 i = k+ l , . . . j , , . . 
! ^ .i. w h e n k < h 
0 otherwise, 

drXEiiv) = 

drXEi(v) = 0 for every i, when k = j , 

and 

drXEi(v) = I r, ,u . ' • • • ' when k > j . A iV I 0 otherwise, J 
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Thus we get 
K 

\drf\ = I>i|drX£/l ' 

which leads us to the conclusion. 
Let/ be a continuous function on TV with compact support and JNf2 d vol = 1. We put 

D = Int( #r(supp(/*)) j when TV is not compact, and D — TV when TV is compact. Using 

Lemmas 5 and 6 we find 

2 jNf • Arfdvol = JjdJ)2 dS = JuD(drf)
2 dS 

{ [SvD\drif
2)\dS^ 

~ 2 JUDf2 on o<pr+f2 ondS 

>h\D SpfdS =h2
rD 

2 SUD/2 OTT o(pr+f2o<KdS 4 

hence we get the conclusion of Theorem 2: 

. f JNf Arfd vol ^h(N;r)2 

X0(N; r) = inf — - > — - — . 
JNf2d vol 8 

If TV has finite volume, constant functions are eigenfunctions, hence Ao(TV; r) = 0. To 
avoid this triviality, we consider for a compact manifold M the minimum of non-trivial 
eigenvalues of Ar. We set 

hc(M;r) = inf hro, 
D 

where D runs over all domain in M with vol(D) < \ vol(M). This constant may equal to 
zero. For example hc(S

n\ r) — 0 when r is a multiple of the diameter of a standard sphere 
Sn. Using this constant we estimate 

Ai(M; r) = inf{ A > 0 | Arf = A/ for some non-constant/ G L2(M)} 

from below. 
Let/ be a non-constant eigenfunction associated to A. We may suppose the volume 

1 
2 

f{x) i f / ( * ) > 0 

of D — f ^[0, oo)) is positive and is not greater than \ vol(M). Define a function g by 

g(x) | 0 i f f^ < Q 

By the inequality/ < g w e find Lrf < Lrg. Therefore we get 

A ^ / 2 ^ v o l = JDfArfdvol > JDgArgdvol 

Since the support of g coincides with D, we have 

JDg2dvol > Jxg
2 on o ifrdS, 
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where X — UM\D. This inequality and Lemmas 5 and 6 imply 

2 fDgArg d vol >jx{drgfdS 

x {jx\dr{g2)\ds} 

~ 2SXg2OTT 0(pr + JDg2dV0\ 

>% [ g2dvo\=^ [fdvol - 4 JD* 4 JDJ 

Summarizing up we conclude 

PROPOSITION 7. For a compact manifold M, the following isoperimetric inequality 
holds; 

\i(M;r)>hc(M;rf/S. 

We close this section by posing a question: is it true that hc(M\ r) = 0 if and only if 
M is a C21 -manifold (see [1] for the definition) and r is a multiple of £ ? 

3. Transiency of random walks. A finitely generated discrete group G is said to 
be transient if there exists a probability Borel measure \i with the following properties: 

(Tl) \x is symmetric; p,(g) = fi(g~l),g G G, 
(T2) the support supp(/x) is finite and generates G, 
(T3) the random walk defined by the transition probability p^(7, a) — ^L(1~1CF) is 

transient. 
It is known that (T3) is equivalent to Y%LoHn(e) < °°> where /i" denotes the n-

th convolution of ji and e is the unit element. Moreover if G is transient then every 
probability measure with properties (Tl) and (T2) satisfies (T3) (see [8]). 

We define a combinatorial mean L^ : L2(G) —• L2(G) associated to a probability mea­
sure \x by 

Moo - £ nfrMy*). 
a EG 

If /i satisifes (Tl) and (T2), by general theory (see [7] and [9]), G is non-transient if and 
only if there is a sequence (hn) in L2(G) such that 

(Rl) / ! „ — 1 , 

(R2) (Aphn9hn) = E 7 € G * » ( 7 ) - V ^ O O - * 0 ' w h e r e AM = / - £ / * • 
Let M be a compact Riemannian manifold. We denote by ^ : £/M —• £/M the geodesic 

flow on the unit tangent bundle TT : UM —> M of the universal covering space. Through­
out this section we suppose r-geodesic random walk on M is transitive: for any open 
sets U and V of M there exist unit tangent vectors Vj,j = 0, . . . ,K, such that 7r(vo) G 
£/, 7r(v/+i) = 7T o ̂ r(v/), 7 = 1, . . . , A' - 1, and 7T o <pr(vK) G V. 
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Choose a bounded fundamental domain F in M and define a probability measure \ir 

on 7ri(M)by 

We first point out this measure satisfies (Tl) and (T2). 
Let r : UM —•* £/M denote the canonical involution given by r(v) = —v. For each 

7 G 7Ti(M) we define a measure preserving diffeomorphism 0 7 : UM —• £/M by 0 7 = 
d r - 1 o r o ipr. Since </?r o r = T O ip_u if v G UM\F and ipr(v) G £/M|7(F) then 
07(v) G £/M|F and </)ro$7(v) G UM|7-i(f), hence X T - 1 ^ 0 7 1 " ° <Pr°®i — Xi(F)°^ ° <£V 
on UM\f. This guarantees /xr satisfies (Tl). 

Since F is bounded it is clear that supp(/ir) is finite. By the transitivity of the r-geodesic 
random walk on M, one can find for each 7 G TT\ (M) unit tangent vectors vy and 7/ G 
7Ti(Af), j = 0,...,K, having the properties 

(i) 7o - Id, 
(ii) 7T(VJ) G Int(7/(F)), 7T o ^ r(v t) G Int(7(F)), 

(iii) 7T o<pr(y/) = 7r(v/+i). 
By (ii) and (iii) we get iir{lj~l • 7/+0 > 0. This implies supp(/ir) generates 7ri(M). 

We now show Theorem 3. Let (hn) be a sequence in L2(7ri(M)) having the properties 
hn —• 1 and (A^hn, hn) —> 0. Define L2-functions/„ on M by 

/«W = *n(7), if* G 7(F). 

Z) W a ) I(LrXa{F)d\0\ 

vo\(M)J2^0~lcT)hn(a) = vo\(M)L^hn(V-

fjn • A^rfvol - Z (vol(M)^(7)2 - hnCf) [ Lrfndvol) 
JM 7er,(M)l J^(n J 

= vol(M)(AM r /z n , / î r t ) . 

The existence of a sequence (/*„) in L2{M) having the properties (Rl)/„ —> 1 and (R2) 
JjÇffn - Arfn d vol —> 0 leads us to the conclusion. 
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