PRESIDENT: K.C. Freeman
VICE-PRESIDENT: D.C. Heggie
ORGANISING COMMITHEE: G.L.H. Harris, G. Lynga, P.E. Nissen, C. Pilachowski, G.N. Salukvadze.

1. Introduction

The last three years have been very productive for cluster research. This report, on activities in the field, has been compiled by the members of Cormission 37. It begins with sections on recent meetings, and on data catalogs (G. Lynga). Detailed tables of work on associations (P.E. Nissen), open clusters (G.L.H. Harris) and globular clusters (R.E. White) are then given. A section on cluster dynamics (D.C. Heggie) follows, and the final section concerns present trends in cluster research (C. Pilachowski).

2. Symposia and Colloquia

Major recent meetings on star clusters include:
rau Colloquium 68, "Astrophysical Parameters for Globular Clusters" (31.012.023).

The Prague Conference on "Star Clusters and Associations and their Relation to the Evolution of the Galaxy" (34.012.068).
IAU Symposium 113, "Dynamics of Star Clusters", (Reidel; ed. J. Goodman and P. Hut), in press.

Other meetings, at which the subject of star clusters figured more or less prominently, include 32.012.006 and 065; 33.012.016; 34.012.008, 026, 049, $057,061,062$ and 065, and IAU Colloquium 88 "Stellar Radial Velocities" (L. Davis Press: ed. A.G.D. Philip), in press.
R.t the 19th General Assembly, Comission 37 is participating in Joint Discussion VI, "Evolution in Young Populations in Galaxies", organised by G. Lynga.

3. Catalogs of Cluster Data

Several new catalogs or updates of old catalogs have been made available by the data centers in Strasbourg and at NASA:

Catalog number	Content	Authors	Year
5041	Open cluster data	Lynga, G	1983
5044	Globular cluster bibliography	Ruprecht, J., Balazs, B. and White, R.E.	1983
Masses and ages of stars in twelve open clusters	Myatzutin, V., Sagar, R. and Joshi, U.	1984	

Humphreys, R.M. and

A bibliography of radial velocities for stars in open clusters is presented by Mermilliod (1984: Bull. Inform. CDS, No. 26, 9) and a compilation of proper motion studies of stars in an around open clusters is given by van Leeuwen (1984: IAU Symposium 113, in press).

Mermilliod (1985: "International Course on Data Handling in Astronomy and Astrophysics", Trieste, in press) is updating his catalogs on cross identifications and on UBV data and MK types of stars in open clusters.

Janes and Adler (32.153 .005) have re-examined color magnitude diagrams for open clusters, while Philip and White (Steward observatory) are making a reference catalog of globular cluster color magnitude diagrams.

4. Stellar Associations

Papers on associations in general, and on $O B, T$ and R associations are listed in the following four tables. The abbreviations are

```
abund = chemical em = emission pol = polarization
    abundance(s) IR = infrared rV = radial velocity
ass = association(s)
cl = cluster(s)
d = distance(s)
distr = distribution(s)
```

em =mission

```
em =mission
ist = interstellar
ist = interstellar
mol = molecular
mol = molecular
obs = observations
obs = observations
phot = photometry
```

```
phot = photometry
```

```
pol \(=\) polarization
rv = radial velocity
sp \(=\) spectra
UV = ultraviolet
var = variable
vel \(=\) velocity

TABLE 1. ASSOCIATIONS IN GENERAL

\section*{Reference}

Brinks (29.152.002)
Casse et al (29.143.063)
Cowie et al (30.152.004)
Garmany et al (30.064.080)
Tomisaka et al (30.125.026)
Gull et al (30.131.044)
Olive, Schramm (31.107.022)
Efremov (32.152.007)
Salukvadze (32.118.027)
Voshchinnikov, Marchenko (32.131.319)
Beltrametti et al (32.132.004)
Tenorio-Tagle et al (32.132.005)
Bruch, Sanders (33.153.029)
Elmegreen (33.153.029)
Vanbeveren (34.152.001)
Schramm, Olive (34.152.016)
Tenorio-Tagle (34.152.018)
Mirzoyan (34.152.019)
Bodenheimer et al (34.125.075)
Klein et al (34.131.092)
Cesarsky, Montmerle (34.143.018)
Nissen (34.153.010)
Zhilyaec, Marchenko (34.153.074)

Subject
holes in HI distr and ass in M31 cosmic rays from \(O B\) ass search for supershells in OB ass mass loss rates from o stars model of superbubble formation theory of superbubbles abund ejected from supernovae in ass age and dimensions of \(O B\) ass trapezium star systems in \(T\) ass pol of starlight in \(R\) ass gas dynamics around \(O B\) ass gas dynamics around \(O B\) ass mass of OB ass
formation of ass and cl evolution of massive stars in cl and ass chemical evolution of \(O B\) ass dynamical evolution of OB ass instability in stellar ass evolution of OB ass star formation in \(O B\) ass energetics of \(O B\) ass, ganma rays helium abund in cl and ass rotation of stars in Cl and ass

TABLE 2. OB ASSOCIATIONS
\begin{tabular}{|c|c|c|}
\hline Name & Observer & Type of data \\
\hline Aur OB2 & Aiello et al (32.131.318) & uv extinction \\
\hline Car OBI & Forte, Orsatti (29.114.033) & obj. prism survey \\
\hline \multirow[t]{2}{*}{Cas OB6} & Braunsfurth (31.152.002) & HI obs \\
\hline & Braunsfurth (33.131.014) & HI around HII regions \\
\hline \multirow[t]{6}{*}{Cep ob3} & Evans et al (29.131.058) & IR obs of mol cloud \\
\hline & Panagia, Thum (29.131.154) & radio obs of mol cloud \\
\hline & Perinotti, Panagia (30.112.025) & mass loss of 07n star \\
\hline & Barsella (32.131.010) & peculiar extinction in UV \\
\hline & Fabian, Stewart (33.152.001) & X-ray emitting bubble \\
\hline & Sargent et al (34.131.008) & IR and CO obs, star formation \\
\hline Cep OB4 & Rossano et al (34.131.175) & radio obs, kinematics \\
\hline Cyg OBI & Turner (33.152.002) & membership of X Cyg \\
\hline \multirow[t]{6}{*}{Cyg OB2} & Hutchings (29.112.014) & stellar winds \\
\hline & Abbott et al (30.064.079) & mass loss rates \\
\hline & Leitherer (30.112.039) & mass loss rates \\
\hline & Persi et al (30.113.052) & IR phot of X-ray stars \\
\hline & Iyengar et al (30.133.013) & ist or line \\
\hline & Leitherer (31.114.049) & sp, IR phot, mass loss \\
\hline Lac OBI & Bijaoui (30.111.005) & rv \\
\hline Mon OB1 & Ogura (PAS Jap 36139 1984) & H-alpha em stars \\
\hline Mon OB2 & Guseva (34.131.284) & distr of dust \\
\hline \multirow[t]{10}{*}{Ori OBl} & Joncas, Borra (29.152.001) & frequency of Ap stars \\
\hline & Oganesyan, Gasparyan (29.114.017) & UV sp of B stars \\
\hline & Parsamyan (29.122.010) & frequency of stellar flares \\
\hline & White, Phillips (29.131.013) & mol line obs \\
\hline & Guetter (30.152.002) & MK sp, d, age spread \\
\hline & Borra ( 30.116 .018 ) & magnetic fields \\
\hline & Anthony-Twarog (32.111.004) & d from H-beta phot \\
\hline & Gieseking (33.153.002) & kinematics from rv \\
\hline & Isobe ( 34.152 .015 ) & distr and age of stars \\
\hline & Cowie (34.131.253) & uv obs, supershells of gas \\
\hline Per OBl & Phillips, Gondhalekar (30.152.001) Krelowski, Strobel (34.152.009) & high-vel ist lines UV extinction \\
\hline Per OB2 & Markkanen (30.156.011) & pol obs, magnetic fields \\
\hline Pup OB2 & Turner (29.153.003) & membership of Ruprecht 44 \\
\hline \multirow[t]{2}{*}{ScO OBI} & Gieseking (32.120.004) & massive binaries \\
\hline & Aiello et al (32.131.318) & UV extinction \\
\hline \multirow[t]{4}{*}{SCO OB2} & Olano, Poppel (29.131.064) & HI feature, formation model \\
\hline & Herbst, Warner (30.121.001) & phot of stars in dust cloud \\
\hline & Krelowski, Strobel (34.152.009) & UV extinction \\
\hline & Lipovka et al (34.152.012) & radio em \\
\hline Sco-Cen OBI & Borra et al (32.113.008) & search for Ap stars \\
\hline Vel OBI & Eggen (32.152.003) & phot, d \\
\hline Vel OB2 & Eggen (32.152.003) & phot, d, cepheid members \\
\hline
\end{tabular}

TABLE 3. T ASSOCIATIONS
\begin{tabular}{lll} 
Name & \multicolumn{1}{c}{ Observer } & Type of data \\
Cyg T1 & Gol'dberg \((34.152 .006)\) & \\
Mon TI & Erastova \((31.122 .090)\) & content of B stars \\
& & number of irregular var
\end{tabular}
\begin{tabular}{lll} 
Pho Tl & Cersosimo, Arnal (30.152.003) & HI obs \\
Tau TI & Nurmanova \((30.113 .067)\) & phot of T Tauri stars \\
& Nurmanova \((30.152 .010)\) & new member \\
& Nurmanova \((30.113 .067)\) & phot of T Tauri stars
\end{tabular}

TABLE 4. R ASSOCIATIONS
\begin{tabular}{lll} 
Name & \multicolumn{1}{c}{ Observer } & \multicolumn{1}{c}{ Type of data } \\
& & \\
CMa R1 & Baierlein et al \((30.125 .069)\) & stellar clustering \\
& Herbst et al \((31.152 .001)\) & reddening law \\
Mon RI & Herbst et al \((31.152 .001)\) & reddening law \\
Simeis 188 & Herbst et al \((31.152 .001)\) & reddening law \\
Vul R1 & Herbst et al \((31.152 .001)\) & reddening law \\
Vil R2 & Herbst et al \((31.152 .001)\) & reddening law
\end{tabular}

\section*{5. Open Clusters}

Papers and projects which refer to individual open clusters are listed in Table 5, where the clusters are ordered according to IAU number. At the end of this section, references are given to survey papers on open clusters. Abbreviations used are:
```

abund = abundance(s)
agesp = age spread
bin = binar(y,ies)
d = distance
distr = distribution
E = color excess
em = emission
IR = infrared

```
```

1f= luminosity function
ms = main sequence
memb = membership
pg m photographic
pec = peculiar
phot = photometry
pm = proper motions
pol = polarization

```

\section*{\(\mathrm{RG}=\) reg giant} rot = rotation(al) rv = radial velocity SG = supergiant(s) sp = spectra(1) UV = ultraviolet var = variable vel \(=\) velocity

TABLE 5. OPEN CLUSTEERS
\begin{tabular}{|c|c|c|}
\hline Number & Name & Reference, and type of data \\
\hline \multirow[t]{2}{*}{C0039+850} & NGC 188 & 34.153.048 abund 34.153.054 PDS phot \\
\hline & & Baliunas et al (1984) W UMa bin, mass ratios, space vel \\
\hline C0040+615 & NGC 225 & 34.153.023 UBV pg phot \\
\hline C0057+636 & Be 62 & 30.153.011 UBV phot, E, d, age \\
\hline \multirow[t]{3}{*}{C0115+580} & NGC 457 & 30.153 .026 uvbyH \(\beta\) phot, agesp \\
\hline & & 32.153 .043 uvbyH \(\beta\) phot, d, F supergiants \\
\hline & & 33.153 .013 memb , pre-ms \\
\hline C0126+630 & NGC 559 & 32.113.048 UBVRI phot \\
\hline C0129+604 & NGC 581 & 34.153.044 UBV phot, d, age, E \\
\hline C0140+616 & NGC 654 & 33.153.011 UBV phot, E, d, age \\
\hline C0142+610 & NGC 663 & 30.153 .026 uvbyfi \(\beta\) phot, agesp \\
\hline C0155+552 & NGC 744 & 30.122.134 carbon star, var \\
\hline C0154+374 & NGC 752 & 33.153 .017 uvby phot, ms bimodality, E, \({ }^{\text {a, age, abund }}\) \\
\hline C0211+590 & Stock 2 & 31.115 .004 giants, linear radii \\
\hline \multirow[t]{3}{*}{C0215+569} & NGC 869 & 30.153 .026 uvbyfi \(\beta\) phot, agespread \\
\hline & (h Pex) & 31.153.011 ANS phot, circumstellar matter \\
\hline & & 31.153.034 SG, var 33.153.037 memb, catalog \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline C0218+568 & \begin{tabular}{l}
NGC 884 \\
(x Per)
\end{tabular} & 31.153.011 ANS phot, circumstellar matter 31.153 .034 SG, var 33.153 .037 memb, catalog \\
\hline C0228+612 & IC 1805 & 33.153 .013 memb , pre ms 31.112 .013 UV sp, mass loss \\
\hline & & 33.153.020 UBV phot, var E, d, stax formation \\
\hline & & 34.153.046 UBV phot, d, E, R, age \\
\hline C0238+425 & NGC 1039 & 31.153.006 pg phot, white dwarfs \\
\hline C0311+470 & NGC 1245 & 30.153.015 1f \\
\hline \multirow[t]{3}{*}{C0318+484} & NGC 1252 & 30.153.003 kinematics, "supercorona" \\
\hline & Mel 20 & 34.153 .037 internal structure \\
\hline & & 34.153.017 UBV phot, age, d, carbon star \\
\hline C0341+321 & IC 348 & 34.153.046 UBV phot, d, E, R, age \\
\hline \multirow[t]{16}{*}{C0344+239} & Pleiades & 30.153.007 X-ray phot, variability \\
\hline & & 30.121 .028 sp , em lines, Li abund \\
\hline & & 31.153.005 UV phot, 2 color phot. E, age, Be stars \\
\hline & & 31.153 .036 X-ray survey 31.153.043 var K stars \\
\hline & & 31.113 .069 phot, var stars 31.113 .076 slow flare curves \\
\hline & & 31.113 .077 flare stars \\
\hline & & 31.122 .037 flare stars, spatial distr \\
\hline & & 32.153 .028 BVRIJHK phot, sp, bin, ms \\
\hline & & 32.113 .069 phot, variability \\
\hline & & 32.114.053 Mg II h and k , chromospheric activity \\
\hline & & 33.153.030 X -ray sources 34.153.015 Li abund, agesp \\
\hline & & 34.153 .038 sp types, vsini, age, d \\
\hline & & 34.153 .065 lf 34.153 .051 sp , rot vel, K \\
\hline & & 34.153.076 flare stars, statistics \\
\hline & & 34.153.066 sp age criteria, kinematics \\
\hline & & Vandenberg, Bridges (1984) ZAMS models, abund \\
\hline \multirow[t]{29}{*}{C0417+368} & Hyades & 30.153.023 X-ray em, stellar coronae \\
\hline & & 30.114.040 UV, optical data, giants \\
\hline & & 30.122.149 V697 Tau, memb \\
\hline & & 31.153.003 rot vel, macroturbulence, giants \\
\hline & & 31.153.016 uvby phot, He abund \\
\hline & & 31.153.040 IUE sp, X-ray sources, em \\
\hline & & 31.153.037 UBVR phat 31.153.048 VRIK phot, bin \\
\hline & & 31.153 .049 Hipparchos 31.111 .033 pm survey, memb \\
\hline & & 31.113 .076 slow flare curves 31.114 .010 sp \\
\hline & & 31.115 .004 giants, linear radii \\
\hline & & 31.116 .013 Ca II H and K em, rot vel \\
\hline & & 31.120.004 HD 27130, bin, mass-luminosity relation, d \\
\hline & & 31.120 .006 bin , rv, memb 32.153.003 UBVRI phot, memb \\
\hline & & 32.153 .023 uvbyH3,RI phot, d, agesp \\
\hline & & 32.153.029 JHK phot, bin 32.153 .039 bin, He abund, d \\
\hline & & 32.114.053 Mg II h and k studies, chromospheric activity \\
\hline & & 33.153.001 BVRI phot, memb 33.153 .021 phot, ms \\
\hline & & 33.153 .025 d 33.153 .027 reticon sp, CN abund \\
\hline & & 33.153 .034 pm , phot, rv , subluminous stars \\
\hline & & 33.153 .041 stellax orbits \\
\hline & & 33.114.097 chromospheric activity, dwarfs \\
\hline & & 34.153.015 Li abund, agesp 34.153.016 IUE sp, giants, em \\
\hline & & 34.153.020 X-ray activity 34.153.034 Ca II E and K em \\
\hline & & 34.153.026,.027 Hyades problems 34.153.039 structure \\
\hline & & 34.153.065 lf 34.113 .032 phot, variability \\
\hline & & 34.153 .058 d, pa 34.153.067 X-ray lf \\
\hline & & 34.153.077 A stars, motion 34.153.073 bright stars, distr \\
\hline & & Vandenberg, Bridges (1984) ZMMS models, abund, d \\
\hline & & Upgren et al (van vleck) BVRI phot \\
\hline C0443+108 & NGC 1662 & 34.153.012 Ap stars \\
\hline C0447+436 & NGC 1664 & 30.122.193 carbon star, var star \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{8}{*}{\[
\begin{aligned}
& \text { C0459-058 } \\
& \text { C0532+099 }
\end{aligned}
\]} & \multirow[t]{8}{*}{\begin{tabular}{l}
HR 1614 \\
Orion
\end{tabular}} & 32.153.006 DDO phot, CN abund \\
\hline & & 30.153.005 pm, memb 31.113.077 flare stars \\
\hline & & 34.153.002 UV flux distr, extinction curves \\
\hline & & 34.153.014 MK types, rv, memb \\
\hline & & 34.153.018 Vsini, X-ray phot, rot, T Tauri stars \\
\hline & & 34.153 .022 pm , memb 34.153.025 sp, HI lines \\
\hline & & 34.153.061 low mass stars, IR pg \\
\hline & & Lee et al (Yale) pm, internal motions \\
\hline C0532+341 & NGC 1960 & 30.153 .026 uvbyHi \(\beta\) phot, agesp Barkhatova et al (1984) \\
\hline C0533-01 & Cr 70 & 33.153.002 vel distr \\
\hline C0540-022 & NGC 2023 & 34.153.003 IR phot, reflection nebulae, star formation \\
\hline C0540+002 & NGC 2068 & 34.153.003 IR phot, reflection nebulae, star formation \\
\hline C0546+336 & King 8 & 29.153.037 BV phot, E, A, age, metallicity \\
\hline C0548+217 & Berk 21 & 32.153 .010 slitless sp, automated sp classification, memb \\
\hline \multirow[t]{2}{*}{C0549+325} & \multirow[t]{2}{*}{NGC 2099} & 30.122.194 carbon star, var star \\
\hline & & 31.115.004 giants, linear radii 32.153.021 UBV phot \\
\hline C0604+241 & NGC 2158 & Smith, Norris (1984) sp, giants, Ca II H and K, CN Cudworth (Yerkes) pm, phot \\
\hline C0605+243 & NGC 2168 & Cudworth, McNamara (Yerkes) internal motions \\
\hline C0611+128 & NGC 2194 & 30.153 .022 \\
\hline \multirow[t]{2}{*}{C0613-186} & \multirow[t]{2}{*}{NGC 2204} & 34.153.050 phot, d, E, age, if \\
\hline & & Claria (Cordoba) UBV, \(\mathrm{CMP}_{1} \mathrm{~T}_{2}\) phot, abund \\
\hline \multirow[t]{2}{*}{C0624-047} & \multirow[t]{2}{*}{NGC 2232} & 34.153.041 DDO phot 12 \\
\hline & & Claria (Cordoba) UBV, DDO phot \\
\hline C0627-312 & NGC 2243 & 31.153.035 high disp sp, RG, abund, age \\
\hline C0629+049 & NGC 2244 & 30.114.015 IUE data, energy distr 32.153 .027 pm \\
\hline C0634+031 & CV Mon & 33.153 .004 uvbyH \(\beta\) phot, d, E \\
\hline C0635+020 & Coll 10 & 32.153 .013 \\
\hline \multirow[t]{5}{*}{C0638+099} & \multirow[t]{5}{*}{NGC 2264} & 30.153.009 X-ray phot 30.115.006 theor HR diagram \\
\hline & & 33.122.025 UBVRI phot, light curve, w92 \\
\hline & & 34.153.021 UBV phot, var E, d \\
\hline & & 34.153.046 UBV phot, d, E, R, age \\
\hline & & 34.153.059 pre ms stars, stax formation, model comparison \\
\hline C0639-480 & IC 2395 & Claria et al (Cordoba) UBV phot, sp, lf, d, age, abund \\
\hline \multirow[t]{3}{*}{C0644-206} & \multirow[t]{3}{*}{NGC 2287} & 30.153.003 uvbyH \(\beta\) phot, E, d, age \\
\hline & & 34.153.041 DDO phot 34.153.012 Ap stars \\
\hline & & 34.153 .028 MK sp, star counts, d, E \\
\hline C0645+411 & NGC 2281 & 30.153 .025 \\
\hline C0649+005 & NGC 2301 & 34.153.045 phot, d \\
\hline C0650+030 & Berk 28 & Bijaoui et al (1984) UBV phot, E, d, age, lf \\
\hline C0652-245 & Coll 121 & 30.153.003 uvbyH \(\beta\) phot, E, d, age 34.153.011 Ap stars \\
\hline C0658-204 & Tomb 1 & 33.153.019 UBV phot, cepheid, memb, d, age \\
\hline \multirow[t]{2}{*}{C0700-082} & \multirow[t]{2}{*}{NGC 2323} & Claria, Lapasset (Cordoba) UBV phot, E, age \\
\hline & & 34.153.045 UBV phot, d, diameter, E, memb \\
\hline C0701-207 & Tomb 2 & 32.153.042 pg phot, E, d \\
\hline C0704-100 & NGC 2335 & Claria (1984) UBV, DDO phot, evolved stars, memb, abund \\
\hline C0705-105 & NGC 2343 & Claria (1984) UBV, DDO phot, evolved stars, memb, abund \\
\hline C0712-102 & NGC 2353 & 34.153.028 UBV phot, MK sp, d, var E, star counts \\
\hline C0712-310 & Coll 132 & 33.153 .007 uvby \(\beta\) phot, age, space motion \\
\hline \multirow[t]{2}{*}{C0715-155} & NGC 2360 & Mermilliod (Geneva) 7-color phot, RG \\
\hline & & Mermilliod, Mayor (Geneva), rv, RG \\
\hline C0715-367 & Coll 135 & 33.153 .007 uvbyHB phot, age, space motion \\
\hline c0716-248 & NGC 2362 & 32.153.024 BV phot, Ap stars \\
\hline C0722-321 & Coll 140 & 33.153 .007 uvbyH \(\beta\) phot, age, space motion \\
\hline C0724-287 & Ru 20 & Claria (Cordoba) DDO, CMT, \(\mathrm{T}_{\text {, phot, abund }}\) \\
\hline C0724-476 & Mel 66 & 31.153.035 high dispersion \({ }^{\mathbf{T}} \mathbf{2 p}\), d, age, abund \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline C0735+216 & NGC 2420 & \begin{tabular}{l}
Claria (Cordoba) UBV, CMP \({ }_{1} \mathrm{~T}_{2}\) phot, abund \\
31.153.035 high dispersion sp , RG, abund, age \\
33.153 .042 structure, memb, surface densitydistr
\end{tabular} \\
\hline C0734-205 & NGC 2421 & Mermilliod, Mayor (Geneva) rv, RG \\
\hline C0734-143 & NGC 2422 & 33.153.041 stellar orbits 34.153.012 Ap stars \\
\hline C0734-137 & NGC 2423 & 33.153.006 phot, var stars, d, age, RG Claria (Cordoba) CMT T phot, abund Mermilliod (Geneva) 7 -Color phot, RG \\
\hline C0739-147 & NGC 2437 & 30.153 .024 uvbyH \(\beta\) phot, \(\mathrm{E}, \mathrm{d}, \mathrm{age}\) \\
\hline C0740-354 & Ru 31 & Claria (Cordoba) UBV phot \\
\hline C0742-237 & NGC 2447 & 33.153.005 phot, d, age, abund Mermilliod (Geneva) 7-color phot, RG Mermilliod, Mayor (Geneva) rv, RG \\
\hline C0743-328 & NGC 2451 & \begin{tabular}{l}
33.153 .007 uvbyti \(\beta\) phot, age, space motion \\
33.114 .023 c Pup, companion, E, Te, angular diameter, \(d\) 34.153.041 DDO phot \\
Claria (1984) UBV, DDO phot, evolved stars, memb, abund Mermilliod, Mayor (Geneva) rv, RG
\end{tabular} \\
\hline C0750-384 & NGC 2477 & 33.153 .003 JHK phot Mermilliod, Mayor (Geneva) rv, RG 33.153 .035 sp , blue stragglers, rot, age, abund, rv Claria (Cordoba) CMT T \({ }_{2}\) phot, abund \\
\hline C0752-241 & NGC 2482 & 34.153.042 CMT, T2, DDO phot, RG, abund, homogeneity Mermilliod, May̧or (Geneva) rv, RG \\
\hline C0754-299 & NGC 2489 & Mermilliod, Mayor (Geneva) rv, RG \\
\hline C0757-607 & NGC 2516 & \begin{tabular}{l}
30.114 .119 coude sp, HD 6631832.120 .002 rv , bin 32.153.030 UVR search, white dwarfs, mass limit 34.153.009 VBLUW phot, E, d \\
34.153.012 Ap stars \\
Mermilliod, Mayor (Geneva) rv, RG
\end{tabular} \\
\hline C0802-461 & Coll 173 & 33.153 .007 uvbyH \(\beta\) phot, age, space motion \\
\hline C0803-280 & NGC 2527 & Claria (1984) UBV, DDO phot, evolved stars, memb, abund Mermilliod, Mayor (Geneva) rv, RG \\
\hline C0808-126 & NGC 2539 & Claria (Cordoba) DDO, CMT T phot, abund Mermilliod, Mayor (Geneva) 4-color phot, RG \\
\hline C0810-374 & NGC 2546 & \begin{tabular}{l}
32.153.024 BV phot, Ap stars, var E \\
Claria (1984) UBV, DDO phot, evolved stars, memb, abund Mermilliod, Mayor (Geneva) rv, RG
\end{tabular} \\
\hline C0809-491 & NGC 2547 & 31.153 .004 uvbyH \(\beta\) phot, E, d, age, lf, RG, var, ms gap \\
\hline C0811-056 & NGC 2548 & Claria (1984) UBV, DDO phot, evolved stars, memb, abund \\
\hline C0816-304 & NGC 2567 & Claria (1984) UBV, DDO phot, evolved stars, memb, abund \\
\hline C0837+201 & \begin{tabular}{l}
NGC 2632 \\
Praesepe
\end{tabular} & \begin{tabular}{l}
30.153.010 BVRI phot 31.153 .006 pg phot, white dwarfs 31.113 .026 slow flare curves 31.114 .197 sp , abund 31.115 .004 giants, linear radii \\
32.153.019 BVRI phot, lower ms \\
33.153.008 pm, memb \(33.153 .018 \mathrm{MK} \mathrm{sp}, \mathrm{d}\) \\
34.153 .073 bright stars, distr \\
Anthony-Twarog (1984) phot survey, white dwarfs vandenberg (1984) ZAMS models, abund, d
\end{tabular} \\
\hline C0838-528 & IC 2391 & \begin{tabular}{l}
33.122 .037 var, 0 Vel, HR 3467 \\
Levato, Garcia (1984) rot vel, axial rot, bin Levato, Malaroda (1984) sp types, pec stars, d
\end{tabular} \\
\hline C0840-447 & NGC 2659 & 30.153 .024 uvbyH \(\beta\) phot, E, d, age \\
\hline C0840-469 & NGC 2660 & 33.153.003 JHK phot \\
\hline C0843-527 & NGC 2669 & Mermilliod, Mayor (Geneva) rv, RG \\
\hline C0847+120 & \[
\begin{aligned}
& \text { NGC } 2682 \\
& \text { M } 67
\end{aligned}
\] & \begin{tabular}{l}
30.153.002 uvbyif \(\beta\) phot, \(E, d\), blue stragglers 30.113 .059 phot \\
31.115.004 giants, linear radii \\
31.153.035 high dispersion sp, RG, d, age, abund
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll} 
C0921-770 & E 3 \\
C0925-549 & Ru 77 \\
C0927-534 & Ru 78 \\
C0931-561 & Basel 20 \\
C0938-501 & NGC 2972 \\
C0939-536 & Ru 79 \\
C0947-543 & Ru 83 \\
C0947-561 & NGC 3033 \\
C0949-529 & Pis 16 \\
C1001-598 & NGC 3114
\end{tabular}

Cl019-514 NGC 3228

C1025-573 IC 2581
C1033-579 NGC 3293

Cl035-583 NGC 3324
C1041-593 Tru 14

C1041-597 Coll 228
Cl042-591 Tru 15
Cl043-594 Tru 16
C1104-584 NGC 3532

Cl112-609 NGC 3603
C11115-624 IC 2714

C1123-429 NGC 3680

C1141-622 NGC 3960
C1141-622 Stock 14

Cl148-554 NGC 3960

C1204-609 NGC 4103
C1221-616 NGC 4349
C1222+263 Mel 111

C1226-605
Cl227-645
C1232+365
C1236-508
C1239-627
Coll 258
NGC 4463
Upgren 1
Ru 106
NGC 4609

Cl25+275 NGC 4745
C1250-600 NGC 4755
(Coma) 32.114 .053 Mg II h and K studies, chromospheric activity 34.153.065 lf 34.153 .073 bright stars, distr
32.153 .040 pm , memb Lopez (Yale) pm 34.153.048 abund Peterson et al (1984) IR phot, sp, blue stragglers, bin Janes, Swith (1984) UBV, DDO phot, RG, sp, abund, bin Schild (1984) BVRI CCD phot
34.153.050 phot, d, E, age, If
32.153.002 RGU phot, d, E, earliest sp type
32.153.002 RGU phot, d, E, earliest sp type
32.153.002 RGU phot, d, E, earliest sp type

Mermilliod, Mayor (Geneva) rv, RG
33.153 .004 uvbyth phot, d, E
32.153.002 RGU phot, d, E, earliest sp type

Mermilliod, Mayor (Geneva) rv, RG
32.153.002 RGU phot, \(d, E\), earliest sp type
31.153.042 uvbyH \(\beta\) phot, \(d, E\), age, blue stragglers Claria (Cordoba) UBV, DDO, CMT, T, phot, abund Mermilliod, Mayor (Geneva) rv, \({ }^{1} \mathbf{R G}\)
32.153.024 BV phot, Ap stars

Mermilliod, Mayor (Geneva) rv, RG
32.153 .043 uvbyti \(\beta\) phot, d, F SG
32.153.026 UBV phot, agesp, lf, initial mass function 33.122 .011 B phot, \(\beta\) cep stars
34.153.031 uvbyHB phot, zaMs, d, \(\beta\) Cep stars
32.114 .081 gp types, 0 stars
32.114 .081 sp types, 0 stars
34.153.035 UBVRI phot, memb, var \(E, d\), age
31.153.002 MK sp types, d, bin, shell stars 31.153 .017 31.153 .019
32.153.001 UBVRI phot 32.153 .037 sp types, bin, shell star
32.114 .081 sp types, 0 stars
32.152.020 UBVRI phot

Mermilliod, Mayor (Geneva) rv, RG
32.114 .081 sp types, 0 stars 34.153.060 SIT Vidicon surface phot Mermilliod (Geneva) 7-color phot, RG Mermilliod, Mayor (Geneva) rv, RG 34.153.042 CMP \({ }_{1}\) P \(_{2}\), DDO phot, RG, abund, homogeneity Mermilliod (Geneva) 7-color phot, RG Mermilliod, Mayor (Geneva) rv, RG 30.153.017 BV, DDO phot, E, d, age, CN abund Mermilliod, Mayor (Geneva) rv, RG
32.153.018 UBV phot, \(d\), age v810 cen
34.153.013 MK sp types, \(E\), cepheid
30.153.017 BV, DDO phot, E, d, age, Cn abund

Mermilliod, Mayor (Geneva) rv, RG
30.153.024 uvbyH \(\beta\) phot, \(E, d\), Be star, age Claria (Cordoba) UBV, CMF T \(\mathrm{T}_{2}\) phot, abund Mermilliod, Mayor (Geneva) \({ }^{T} \mathrm{~F}, \mathrm{RG}\)
31.153 .016 uvby phot, He abund 32.111 .012 pm

Mermilliod, Mayor (Geneva) rv, RG
Mermilliod, Mayor (Geneva) rv, RG
31.153.041 uvby phot, IV, cluster identification, d, age 31.153.021 HI

Claria (Cordoba) UBV, DDO, CMT T, phot, abund Mermilliod, Mayor (Geneva) rv, RG
33.153 .041 stellar orbits

Shobbrook (1984) uvbyif phot, ZAMS, \(\alpha\), age
\begin{tabular}{|c|c|c|}
\hline C1313+179 & NGC 5053 & 31.153.046 \\
\hline C1315-623 & Stock 16 & 34.153.029 star formation \\
\hline C1315-669 & Coll 268 & Mermilliod, Mayor (Geneva) rv, RG \\
\hline C1324-587 & NGC 5138 & Claria (Cordoba) CMT \(T_{2}\) phot, abund Mermilliod, Mayor (Geñèva) rv, RG \\
\hline C1343-626 & NGC 5281 & Mermillicd, Mayor (Geneva) rv, RG \\
\hline C1350-616 & NGC 5316 & Mermilliod, Mayor (Geneva) rv, RG \\
\hline C1404-480 & NGC 5460 & 31.153.021 HI Mermilliod, Mayor (Geneva) rv, RG Claria (Cordoba) UBV, DDO, CMT1 T \({ }_{2}\) phot, abund \\
\hline C1426-605 & NGC 5617 & 32.153.044 UBV phot, cepheid, memb Mermilliod, Mayor (Geneva) rv, RG \\
\hline C1440+697 & \[
\begin{aligned}
& \text { Coll } 285 \\
& \text { U Ma }
\end{aligned}
\] & \begin{tabular}{l}
32.114 .053 Mg II h and k studies, chromospheric activity 33.153 .026 Sirius moving group, supercluster, abund \\
\(34.153 .005 \mathrm{sp}, \mathrm{A}\) stars, memb \\
34.153.037 internal structure \\
34.153 .066 sp age criteria, kinematics
\end{tabular} \\
\hline C1445-543 & NGC 5749 & Mermilliod, Mayor (Geneva) rv, RG \\
\hline C1501-541 & NGC 5822 & \begin{tabular}{l}
30.153.024 uvbyH \(\beta\) phot, \(E, d\), age \\
Claria, Lapasset (1984) UBV, DDO, CMT T \({ }_{2}\) phot, \(G\) and K stars, memb, \(E, \mathbb{A}\), age, abund, mass of \({ }^{1} G\) \\
Anthony-Twarog (Kansas), van Altena (Yale) pm, memb Mermilliod (Geneva) 7-color phot, RG Mermilliod, Mayor (Geneva) rv, RG
\end{tabular} \\
\hline C1502-554 & NGC 5823 & 30.153.017 BV, DDO phot, E, A, age, CN abund Mermilliod, Mayor (Geneva) rv, RG \\
\hline C1601-517 & Lynga 6 & 33.153.004 uvbyH \(\beta\) phot, d, E Mermilliod, Mayor (Geneva) rv, RG \\
\hline C1609-540 & NGC 6067 & 33.153 .009 phot, cepheids Claria (Cordoba) DDO, CMF1T \({ }_{2}\) phot, abund Mermilliod, Mayor (Genevat rv, RG \\
\hline C1614-550 & Coll 299 & Topaktas et al (1984) RGU phot \\
\hline C1614-577 & NGC 6087 & 33.153 .043 pm memb Mermilliod, Mayor (Geneva) rv, RG \\
\hline C1622-405 & NGC 6124 & Mermilliod, Mayor (Geneva) rv, RG \\
\hline C1636-432 & NGC 6192 & 32.153.017 UBV phot 34.153.007 \\
\hline C1650-417 & NGC 6231 & \begin{tabular}{l}
33.153.016 uvby, Hy, H \(\in\) phot, sp, abund \\
\(33.122 .089 \beta\) Cep stars 34.153 .068 rv , rot vel \\
34.153.032 uvbyHB phot, d, ZAMS \\
34.122.053 \(\beta\) Cep stars, statistics \\
Keenan et al (1984) high resolution sp, abund
\end{tabular} \\
\hline C1652-394 & NGC 6242 & Claria (Cordoba) UBV, DDO, CMT \({ }_{1}\), phot, abund Mermilliod, Mayor (Geneva) rv, \({ }^{1}\) G \\
\hline C1654-447 & NGC 6249 & Mermilliod, Mayor (Geneva) rv, RG \\
\hline C1657-446 & NGC 6259 & Mermilliod, Mayor (Geneva) rv, RG \\
\hline C1658-396 & NGC 6268 & Mermilliod, Mayor (Geneva) rv, RG \\
\hline C1701-378 & NGC 6281 & Claria (Cordoba) UBV, DDO, CNT, T phot, abund Mermilliod, Mayor (Geneva) rv, RG \\
\hline C1715-387 & & 31.153.012 Walraven, VRIJHKL phot, of stars, WN stars \\
\hline C1717-360 & NGC 6334 & 32.114 .081 sp types, 0 stars \\
\hline C1720-499 & IC 4651 & 31.153.007 DDO phot, E, D, abund, blue stragglers 34.153.042 CMT \(_{1} T_{2}\), DDO phot, RG, abund, homogeneity \(34.114 .022 \mathrm{sp},{ }^{1} \mathrm{CH}\) and CH bands, giants Mermilliod (Geneva) \&-color phot, RG Mermilliod, Mayor (Geneva) rv, RG \\
\hline C1725-294 & Tru 26 & Mermilliod, Mayor (Geneva) rv, RG \\
\hline C1732-334 & Tru 27 & 33.153.015 UBVRI, JHKLM phot, R, d, age \\
\hline C1734-362 & Ru 127 & Mermilliod, Mayor (Geneva) rv, RG \\
\hline Cl736-321 & NGC 6405 & 31.153 .006 pg phot, white dwarfs \\
\hline C1741-323 & NGC 6416 & Mermilliod, Mayor (Geneva) rv, RG \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline C1743+057 & IC 4665 & 30.153.029 Vilnius phot, MK types \\
\hline C1743-315 & NGC 6425 & Mermilliod, Mayor (Geneva) rv, RG \\
\hline C1753-190 & NGC 6494 & 33.153.010 pm, cluster mass \\
\hline C1757-442 & NGC 6496 & 33.153 .041 stellar orbits \\
\hline C1800-279 & NGC 6520 & Mermilliod, Mayor (Geneva) rv, RG \\
\hline \multirow[t]{3}{*}{Cl801-243} & NGC 6530 & 30.115.012 UBV H \(\beta\) phot, d, pre-ms \\
\hline & & 33.153 .039 pm 33.153 .041 stellar orbits \\
\hline & & Feinstein (La plata) UBVRI phot \\
\hline C1804-233 & NGC 6546 & Mermilliod, Mayor (Geneva) rv, RG \\
\hline C1806-240 & Coll 367 & Claria, Lapasset (Cordoba) UBV phot, OB association ? \\
\hline \multirow[t]{3}{*}{C1816-138} & NGC 6611 & 34.112.058 pol, Be stars \\
\hline & & Feinstein (La Plata), Westerlund (Uppsala) UBVRI phot \\
\hline & & The, Walraven (Amsterdam) WULBV, JHKL phot \\
\hline C1828-192 & \[
\begin{gathered}
\text { IC } 4725 \\
(\text { M25 ) }
\end{gathered}
\] & 31.153 .049 uvbyH \(\beta\) phot, memb, d, E 33.154.041 stellar orbits \\
\hline C1834-082 & NGC 6664 & 32.153.004 uvbyH \(\beta\) phot, d, var E, age, blue stragglers \\
\hline C1836+054 & IC 4756 & 33.153.036 DDO phot, abund \\
\hline C1848-063 & NGC 6705 & 32.153.012 dynamics \\
\hline Cl849+102 & NGC 6709 & 33.153 .014 pm , memb \\
\hline C1850-204 & Coll 394 & 31.153 .021 HI \\
\hline \multirow[t]{2}{*}{C1919+377} & NGC 6791 & 30.153.027 UBV phot, E, d \\
\hline & & Cudworth, Anthony-Twarog (Yerkes) pm \\
\hline C1941+231 & NGC 6823 & 31.114 .086 sp types \\
\hline C2014+374 & IC 4996 & 32.113 .063 pg phot, E, d \\
\hline C2018+385 & Berk 86 & 30.153.011 UBV phot, E, d, age \\
\hline C2019+372 & Berk 87 & 32.153.036 UBV phot, moleculax cloud complex \\
\hline C2021+406 & NGC 6910 & 34.153.062 pm, memb \\
\hline \multirow[t]{3}{*}{C2022+383} & NGC 6913 & 30.114.183 UBVRI phot, energy distr \\
\hline & & 31.111 .010 pm , memb \\
\hline & & 34.153.024 UBV phot, vax E, d, agesp \\
\hline \multirow[t]{2}{*}{C2032+281} & NGC 6940 & 32.153 .033 structure of cluster \\
\hline & & Gotz (1984) FG Vul, light curve \\
\hline C2042+355 & x Cyg & 30.153.006 new cluster, cepheid, UBV phot, sp, E, d \\
\hline C2059+679 & NGC 7023 & 34.153.003 IR phot, reflection nebulae, star formation \\
\hline C2111+422 & NGC 7044 & 31.153.010 \\
\hline \multirow[t]{3}{*}{C2130+482} & NGC 7092 & 30.153.029 Vilnius phot, MK types \\
\hline & (M39) & 32.153 .038 phot sequence \\
\hline & & 33.153.026 sirius moving group, supercluster, abund \\
\hline \multirow[t]{2}{*}{C2137+573} & Tru 37 & 32.113.048 UBVRI phot \\
\hline & & Marschall (Gettysburg), van Altena (Yale) pm, memb \\
\hline C2144+655 & NGC 7142 & 30.153 .029 d \\
\hline C2152+623 & NGC 7160 & 30.153.015 phot 32.113 .048 UBVRI phot \\
\hline C2227+551 & Berk 96 & Del Rio (1984) UBV phot, d, earliest sp \\
\hline C2245+578 & NGC 7380 & 33.153 .013 memb, statistical methods, pre-ms \\
\hline C2313+602 & Mark 50 & 34.153.004 UBV phot, d, age, WN star, mass loss \\
\hline C2322+613 & NGC 7654 & 30.153.012 uvbyHi \({ }^{\text {phot, }}\) E, d, SG \\
\hline \multirow[t]{6}{*}{C2354+564} & NGC 7789 & 30.122.192 BVR phot, carbon stars, var stars \\
\hline & & 31.153.024 RG 31.153.025 He abund \\
\hline & & 31.115 .004 giants, linear radii \\
\hline & & 32.153 .025 pol, memb, blue stragglers \\
\hline & & Stryker and Hrivnak (1984) blue stragglers \\
\hline & & 34.153 .057 giant branch \\
\hline Sco-Cen & & 33.153.028 Bp, Ap stars 34.153 .037 internal structure \\
\hline
\end{tabular}

\section*{References to Table 5}

Anthony-Twarog, B.J. 1984, Astron.J. 89, 267
Baliunas, S.L., Gurnan, E.F. and Hartmann, I. 1984, "Cool Stars, Stellar Systems and the Sun", Springer Verlag, p. 223
Barkhatova, K.A., Zacharova, P.Y., Orechova, L.K. and Shashkina, L.P. 1984, Astron. Zh., in press.
Bijaoui, A., Lacoarret, M. and Mais, G. 1984, Astron.and Astrophys. Supp1. 55, 393.

Bohm-Vitense, E., Baliunas, S.L. and Hartmann, L. 1984, "Cool Stars, Stellar Systems and the Sun", Springer Verlag, p. 273.
Claria, J.J. and Lapasset, E. 1984, Mon.Not.Roy.Astron.Soc. (in press).
Claria, J.J., Lapasset, E., Levato, H. and Malaroda, S. 1984. Astrophys. and Sp. Sci. (in press).
Del Rio, G. 1984, Astron.and Astrophys. Suppl. 56, 289.
Gotz, W. 1984, IAU Inf.Bull.Var.Stars, No. 2461, P. 1
Janes, K.A. and Smith G.H. 1984, Astron.J. 89, 487.
Keenan, F.P., Brown, P.J.F., Dufton, P.L. and Lennon, D.J. 1984. Astrophys.J. Lett. 279, 11.
Levato, H. and Garcia, B. 1984. Astrophys.Lett. 24, 49.
Levato. H. and Malaroda, S. 1984. Astrophys.Lett. 24, 37.
McGregor, P.J. and Hyland, A.R. 1984. Astrophys.J. 227, 149.
Peterson, R.C., Carney, B.W. and Latham, D.W. 1984. Astrophys.J. 279, 237.
Platias, I.K. 1984. Astron. Zh. 10, 203.
Schild, R.E. 1984. Publ.Astron.Soc.Pacific. 95, 1021.
Shobbrook, R.R. 1984. Mon.Not.Roy.Astron.Soc. 206, 273.
Smith, G.f. and Norris, J.E. 1984. Astron.J. 89, 263.
Stryker, L. and Hrivnak, B.J. 1984. Astrophys.J. 278, 215.
Topaktas, L., Kandemir, G., Boydag, S. and Fenkart, R. 1984. Astron.and Astrophys. Suppl. 56, 11.
Vandenberg, D.A. and Bridges, T.J. 1984. Astrophys.J. 278, 679.

\section*{SURVEY PAPERS ON OPEN CLUSTEERS}

Abt, Cardona (34.153.019) "Confirmation Among Visual Multiples of an Increase of Ap Stars with Age".
Abt, H.A. and Cardona, O. 1984. "The Nature of the Visual Companions of Ap and Am Stars", Astrophys.J. 276, 266.
Balazs, Lynga (34.153.022) The Galactic Distribution of Open Clusters if Different Ages and the Anglular velocity of the Spiral structure".
Balona, L.A. and Shobbrook, R.R. 1983. "The Zero Point Calibration of the Cepheid Luminosity Scale from a Calibration of the Luminositires of Early Type Stars", Mon.Not.Roy.Astron.Soc. 205, 309.
Barkhatova, Pavlovskaya (30.153.034) "Probable Multiple Galactic Star Clusters"
Barkhatova, Pylskaya (34.153.069) "On the Scale of Distances of the Galaxy Based on the Study of Open Star Cluster Subsystems".
van den Bergh (31.153.001) "Formation Rate and Decay Time Scales of open Clusters Near the Sun".
Bruck, Sanders (33.153.022) "The Absolute Masses of 72 Galactic Clusters and 12 OB Associations".
Claria, J.J. 1984. Astrophys. and Sp.Sci (in press).
Cayrel, Cayrel, Campbell (34.153.033) "Steps Towards the Abundance Scale I the Nearest Open Clusters".
Danilov (31.153.014) "On the Dynamics of the Early Stages of Evolution of Open Stax Clusters I".
Danilov (31.151.061) "On the Dynamics of the Early stages of Evolution of Open Star clusters II".

Elmegreen (33.153.029) "Quiescent Formation of Bound Galactic Clusters".
Elmegreen (34.153.064) "The Initial Stellar Mass Function as a Statistical Ensemble, and Implications for the Formation of Bound Clusters".
Esin (31.153.038) "Observational Isochrones Determined by open Clusters and their Comparison with Theoretical Results".
Freedman (34.153.063) "The Effects of Crowding on the Determination of Apparent Luminosity Functions".
Gieseking (31.153.009) "Investigations of the Kinematics of Open Clusters and OB Associations from Radial Velocity Measurements".
Glaspey (32.153.015) "Simulated Rotational Velocity Distributions in Open Clusters".
Gotz (32.153.034) "On the Behaviour of Bright Double Stars and Yellow Giants in Open Clusters"
Gratton, R.G., Pilachowski, C.A. and Sneden C. 1984. "H-alpha Emission in Old Giants", Astron. and Astrophys. 132, 111.
Guthrie (31.116.003) "The Bimodal Distribution of Rotational Velocities of Late B-type Stars in Galactic Clusters".
Haro (34.153.052) "Post T Tauri Stars in Galactic Clusters".
Ivanov (33.153.023) "The Gradient of Age of Open Clusters Across the Spiral Arm of the Galaxy".
Janes, Ader (32.153.005) "Open Clusters and Galactic Structure".
Lundstrom, Stenholm (32.153.022) "Wolf-Rayet Stars in Open Clusters and Associations".
Lynga (30.002.036) "The Lund-Strasbourg Catalogue of Open Cluster Data".
Lynga (31.153.044) "Open Clusters in our Galaxy"
Lynga (31.153.051) "Evolutionary Effects among Open Clusters".
Lynga ( 32.153 .035 ) "IAU Numbers for some Recently Discovered Clusters".
Lynga (34.153.011) "IAU Commission no. 37; IAU Numbers for some Recently Discovered Clusters".
Lynga (34.002.099) "Open Star Clusters and the Evolution of the Galatic Disk".
Lynga (34.002.127) "The Lund Catalogue of Open Cluster Parameters".
McGregor, P.J. and Hyland, A.R. 1984. "A Photometric Comparison of Late-type Cluster Supergiants in the Magellanic Clouds and the Galaxy", Astrophys.J. 277, 141.
Maitzen (30.113.030) "CP Stars in Open Clusters".
Manduca (34.153.056) "Theoretical Integrated Spectra of Star Clusters".
Mathieu (33.131.156) "Dynamical Constraints on Star Formation Efficiency".
Mayor, Mermilliod (33.120.012) "Duplicity in the HR Diagram".
Mermilliod (31.153.028) "Stellar Content of Young Open Clusters I. Blue Stragglers".
Mermilliod (31.153.029) "Stellar Content of Young Open Clusters II. Be Stars".
Mermilliod (31.153.031) "Analysis of UBV Data in Open Clusters".
Mermilliod (31.115.011) "Composite Color-Magnitude and Color-Color Diagrams for Be Stars in Open Clusters".
Mermilliod (33.120.013) "The Nature of the Binary Stars in the HR Diagrams of Open Clusters".
Mermilliod (34.153.043) "Stellar Content of Young Open Clusters III. The 'Sn' Stars".
Mermilliod (34.153.071) "Age Groups and Composite Diagrams for Young Open clusters".
Mermilliod, J.C. 1984. "Bibliography of Individual Radial Velocities for Stars in Open Clusters II. NGC and IC Clusters", Bull.Inf.Centre Donnees Stellaires, No. 26, p. 9.
Meylan, Maeder (33.153.008) "Comparisons on the HR Diagrams of the Youngest Clusters in the Galaxy, the LMC, SMC: Evidence for a Large MS Widening".
Myakutin, V.I., Sagar, R. and Joshi, V.C. 1984. "Catalogue of Masses and Ages of Stars in Twelve Open Clusters", Bull.Inf.Centre Donnees Stellaires, No. 26, p. 103.

Nicolet (30.153.028) "Geneva Photometric Boxes III. Distances and Reddenings for 43 Open Clusters:.
Nissen ( 34.153 .010 ) "Helium Abundances from Young Stars and Open Clusters".
Popova, Krajcheva, Bakoev (34.153.036) "Distribution of Eclipsing and spectroscopic Binaries in Regions of open Clusters".
Rastorgriev, Samus (31.011.013) "Star Clusters and Problems of stellax Evolution".
Roth (34.002.099) "A Catalogue of Open Cluster Ages".
Ruprecht (34.153.069) "Structural Properties of Open Star Clusters and their Relation to the Galaxy".
Sagar, Joshi, Sinvhal (34.153.006) "Integrated Photometric Parameters of open and Globular Clusters".
Shobbrook ( 31.122 .204 ) "uvbyH \(\beta\) Photometry of Young Star Clusters Containing B CMa Stars".
Tarrab (31.153.045) "The Initial Mass Function for Young Open Clusters I". Tarrab (32.153.008) "Integrated Colors for Young Open Clusters as a Function of Age".
Wramaemark (31.153.058) "Radial velocities of Open Clusters".
Zakharova ( 30.153 .030 ) "On Universality of the Zero Age Luminosity Function of Open Star Clusters".
Zhao, Tian (33.153.038) "Determination of Membership in Open Clusters by Means of Statistical Decision Theory".

\section*{6. Globulax clusters}

In this edition of the triennial report is found a noticeably greater abundance of information concerning clusters in galaxies other than our own. Obviously the impact of high quantum efficiency detectors and large telescopes is being felt. Catalogs of cluster information are given in Table 6. Then Table 7 presents new data for the galactic globular clusters, and Table 8 gives data for globular clusters in other galaxies. Information about variable stars in globular clusters (except that found here which pertains to cluster chemical abundance estimates etc) will be given in the Commission 27 (Variable Star) Report. Abbreviations used are :
```

abund = abundance(s)
atm = atmosphere(s)
betw = between
BHB = blue horizontal branch
bl = blue
br = brightness
BV = Johnson B and V mag
By = billion years
chem = chemical
cl = cluster(s)
CMD = color-magnitude diagram
col = color(s)
comp = compared
disc = discussion
distr = distribution
el = element(s)
em = emission
evol = evolution(-ary)
gt = giant(s)
HB = horizontal branch
he = heavy elements
integr = integrated

```
```

lf = luminosity function
m-p = metal poor
m-r = metal rich
ms = main sequence
no. = number
obs = observation(s)
pe = photoelectric
pd = period(s)
phot = photometry, photometric
res = resolution
RG = red giant(s)
rv = radial velocity
seq = sequence(s)
sp = spectrum (-tra,-tral)
sp-phot = spectrophotometry
st = stars
str = strength(s)
synth = synthetic(-esis)
temp = temperature
theo = theoretical
UV = ultraviolet
var = variation

```
```

IR = infrared w/ = with

```

TABLE 6. CATALOGS OF CLUSTER INPORMATION
Bica, Pastoriza (33.154.038) integr DDO and UBV phot (91 cl) Brodie, Hanes (31.154.054) integr sp-phot ( 27 cl )
Cacciari et al (32.154.019) UV and optical sp-phot w/IUE of Magellanic Cloud cl
Ereeman, Illingworth, Oemler ( 34.156 .010 ) rv, kinematics of 35 LMC Cl
Frenk, Fall ( 31.154 .014 ) ellipticity-age relation ( 93 cl in Gelaxy, 52 in LMC)
Frogel, Cohen, Persson (34.154.102) V-K Col, CO, abund (31 cl)
Geyer, Richtler (31.154.044) axial ratios for 25 LMC cl
Grindlay (29.154.017) survey for X -ray sources ( 30 cl )
Hertz, Grindlay (34.154.100) X-ray survey, 14 new sources in \(8 \mathrm{cl}(71 \mathrm{cl})\)
Hodge (31.159.017) ages for 48 LMC and 18 SMC cl, abund for 24 LMC and 5 SMC cl
Huchra, Stauffer, van Speybrock (32.154.014) dynamics, abund of M31 cl
Kontizas, Kontizas (33.156.010) radii and structural parameters ( 23 SMC cl)
Kontizas, Danezis, Kontizas (31.159.036) radii and structural parameters (23
SMC C1)
Mould, Aaronson (32.154.041) extended giant granch (30 LMC, 12 SMC cl)
persson et al (33.156.006) integr IR phot of 84 LMC, SMC cl
Sandage (31.154.001) Oosterhoof pd groups, cl ages ( 30 cl )
Sharov, Lyutyj, Esipov (32.154.011) pe phot of 58 M31 cl
Straizys (31.154.010) 2D classification ( 75 cl )
van Albada, de Boer, Dickens (29.154.017) far UV phot ( 27 cl )
van den Bergh (30.159.010) UBV integr phot for 147 LMC and 61 SMC c1; ages Zdanavicius (33.154.005) integr phot in Vilnius system (39 cl)

\section*{TABLE 7. NEW DATA FOR INDIVIDUAL CLUSTERS}
```

C0021-723 (NGC 104, 47 TUC)
29.154.007 ratio of HB to RG st
33.154.017 abund comp to Arcturus
33.154.054 H\alpha em in RG
31.154.066 CMD turnoff
31.154.058 He abund
31.159.020 age-abund relation
29.154.018 CN and Na anomalies
32.154.008 var in N on ms
32.154.007 abund -0.8 dex
34.154.012 apparent flattening
31.154.025 optical, x-ray positions
31.154.022 possible diffuse X-ray em
32.154.024 TiO band str for RG
31.154.003 anticorrelation of C, N
34.154.036 correlation of Al I, CN
34.154.005 high res sp, abund
33.154.019 Stromgren phot, RG
31.154.051 evol seq, isochrones

```
C0050-268 (NGC 288)
    31.154 .066 cl CMD turnoffs
    31.154.064 disc of cl ages
    \(33.154 .055[\mathrm{Fe} / \mathrm{H}]=-1.0\)
    33.154 .013 synth CMD
33.154 .062 sp of 11 dwarfs, 5 subgt 34.154.036 He abund, Iben's R-method 29.154.002 faint BV pe seq 32.154 .005 sp abund indicators 31.154 .064 disc of cl ages 34.154.002 abund for RG in \(m-r\) Cl 32.154.001 st counts, ms lf 31.154 .021 supra-b1 st UV col 29.154.032 IR phot 64 RG 31.154 .059 cl lf differences 33.154061 BV CMD to \(\mathrm{V}=22\) 34.154.056 rv for 169 RG 29.154.037 UV energy distr 31.154.034 CN distr in RG 31.154 .033 abund, cl near Gal center 32.154 .017 integr sp of cl 34.154.061 abund in m-r cl 33.154 .013 synth CMD
32.154 .005 sp abund indicators
31.059 .020 age-abund relation
33.154.019 Stromgren phot, RG
```

COIOO-711 (NGC 362)
34.154.028 UBV br profiles 34.154.036 He abund, Iben's R-method
33.154.054 H\alpha em in RG
32.154.005 sp abund indicators
31.154.029 abund in m-r cl
32.154.040 UBV CMD
34.154.005 high res sp, abund
33.154.015 chem inhomogeneity, CN
C0310-554 (NGC 1261)
33.154.059 Anticorrelation between Y, Z confirmed
C0354-498 (AM-1)
33.154.063 BV CND
C0443+313 (Pal 2)
30.154.001 IR studies
C0512-400 (NGC 1851)
34.154.036 Fie abund, Iben's R-method
31.154.025 optical, X-ray positions
29.154.037 UV energy distr
31.154.027 radial UBV distr
32.154.032 CN strong st
29.154.030 BV CND
CO522-245 (NGC 1904, M79)
31.154.059 cl lf differences
32.154.017 integr sp of cl
33.154.019 stromgren phot, RG
C0911-646 (NGC 2808)
33.154.029 IUE sp of cl nucleus
31.154.027 radial UBV distr
32.154.026 m-p st abund
33.154.003 H\alpha em in RG
34.154.101 CN distr of RG
C1015-461 (NGC 3201)
30.154.030) BV CMD to ms (1452 st)
33.154.054 H\alpha em in RG
34.154.002 abund for RG in m-r cl
32.154.037 structure comp to NGC 1806
32.154.026 m-p gt abundances
31.154.059 cl lf differences
34.154.036 correlation of Al I, CN
31.154.004 CN distr
33.154.013 synth CMD
Cl126+292 (Pal 4)
34.154.011 search for HI
C1207+188 (NGC 4147)
34.154.036 He abund, Tben's R-method 33.154.059 anticorrelation of Y,Z
34.154.050 echelle sp of RG, abund
C1223-724 (NGC 4372)
34.154.012 apparent flattening
C1236-264 (NGC 4590, M68)
33.154.059 anticorrelation of Y,Z
C1256-706 (NGC 4833)
34.154.012 apparent flattening 31.154.059 cl lf differences

```
34.154.005 high res sp, abund

C1320+184 (NGC 5024, M53)
33.154.059 anticorrelation of \(Y, Z\)
31.154.059 c1 lf differences

C1313+179 (NGC 5053)
34.154.011 search for HI
34.154.050 echelle sp of RG , abund

Cl323-472 (NGC 5139, \(\omega\) Cen)
33.154.054 \(\mathrm{H} \alpha \mathrm{em}\) in RG
29.154.002 faint BV pe seq
29.154.008 He abund from RR Lyr
31.154.066 CMD turnoff
30.154.007 abund in RG
34.154.012 apparent flattening
31.154 .059 cl lf differences
34.154.020 10 s-st from Zro bands
30.154.044 BV pe seq
34.154.036 correlation of Al \(I\), CN
34.154.041 integrated br and col
33.154.013 synth CMD

Cl339+286 (NGC 5272, M3)
33.154.041 BV CMD near center
34.154.036 fie abund, Iben's R-method
31.154.064 disc of cl ages
32.154 .027 isochrone fitting to CND
31.154.059 cl lf differences
31.154.012 width of subgt, HB seq
30.154.037 Ca, \(C, N\) abund for RG
33.154 .013 synth CMD
```

Cl353-269 (AM-4)
31.154.077 discovery

```
Cl403+287 (NGC 5466)
    34.154.011 search for HI
    34.154.034 membership of br st
    34.154.050 echelle sp of RG, abund
C1500-328 (NGC 5824)
    30.154.033 IUE sp of central region
C1513+000 (Pal 5)
    29.154 .027 str of sp features for RG
C1516+022 (NGC 5904, M5)
    30.154.034 IUE sp
    29.154.007 ratio of HB to RG st
    33.154.044 N-rich, UV-br st
    31.154.072 BV phot, CMD
    34.154.036 He abund, Iben's R-method
    31.154 .058 He abund
    32.154.027 isochrone fitting
    31.154.036 sp Comp w/RG in M71
    31.154.034 CN distr in RG
29.154.011 synth HB
31.154.064 disc of cl ages
33.154.013 synth CMD
31.154.032 he abund in RG
29.154.003 CND from 300 faint st 33.154.059 anticorrelation of \(Y, Z\) 31.154.064 disc of \(c l\) ages
31.154.069 CMD of subgt branch
33.154.003 H \(\alpha\) em in RG
31.154.022 possible diffuse \(x\)-ray em
29.154 .001 he abund variations in RG
31.154.034 CN distr in RG
30.154.011 RR Lyr, PLA relation
29.154.028 abund gradient of Ca
34.154.011 search for HI
31.154 .058 He content
34.154.088 rv for bl stragglers
34.154.012 apparent flattening
30.154.011 RR Lyr, PLA relation
33.154.060 br st phot in nucleus \(31.154 .037 \mathrm{C}, \mathrm{N}\) abund for RG
31.154.016 proper and space motion
31.154.059 cl lf differences
29.154.037 UV energy distr
33.154 .016 IUE sp, synth models
34.154 .011 search for HI
30.154 .002 BV phot, CND
30.154 .005 radial col distr
33.154 .054 Ha em in RG
31.154 .064 disc of Cl ages
34.154 .082 enexgy distr for HB A-st
33.154 .031 UV sp
34.154 .036 correlation of Al \(I, C N\)
32.154.004 high res sp of \(\mathrm{H} \alpha\) in RG 31.154.033 abund, cl near Gal center 33.154.002 CN distr in RG 33.154 .013 synth CMD

\section*{C1524-505 (NGC 5927)}
34.154.002 abund for RG in m-x Cl

Cl608+150 (Pal 14)
31.154 .090 CMD

C1614-228 (NGC 6093, M8O)
30.154.019 IUE Obs 29.154.037 UV energy distr

Cl620-264 (NGC 6121, M4)
29.154.007 ratio of HB to RG st
33.154.054 \(\mathrm{H} \alpha \mathrm{em}\) in RG
31.154.038 high res sp of BHB st
31.154.034 CN diatr in RG
31.154.068 faint bl st: 2 WD st ?

C1629-129 (NGC 6171, M107)
34.154.036 He abund, Iben's R-method 34.154.002 abund for RG in \(m-r\) cl 31.154.033 abund, cl near Gal center 34.154.001 [Fe/H] for RR Lyr

C1639+365 (NGC 6205, M13)
29.154.007 ratio of HB to Rg st
31.154 .058 He abund
31.154.021 UV col for supra-bl st
32.154 .027 isochrone fitting
31.154 .059 cl lf differences
34.154.082 energy distr of HB A-st
31.154 .037 C , N anund for RG
33.154 .013 synth CMD

C1644-018 (NGC 6218, M12)
34.154.036 He abund, Iben's R-method

C1645+476 (NGC 6229)
34.154.050 echelle sp, [ \(\mathrm{Fe} / \mathrm{H}\) ] for RG

C1654-040 (NGC 6254, M10)
34.154.036 He abund, Iben's R-method 31.154 .059 cl lf differences 34.054.074 BV phot, ms turnoff st

\section*{C1656-370 (NGC 6256)}
34.154.007 provisional CMD

C1658-300 (NGC 6266, M62)
29.154 .011 synth HB
33.154.018 errors in high res RG sp 34.154 .005 high res sp , abund 34.154.061 abund in m-r cl
32.154.003 st counts, structure
30.154.033 IUE sp of central region
34.154.036 He abund, Iben's R-method 33.154.059 anticorrelation of \(Y, Z\) 30.154.012 CN distr from sp of 45 RG 34.154.036 correlation of Al I, CN 30.154.011 RR Lyx, PLA relation
33.154.059 anticorrelation of \(\mathrm{Y}, \mathrm{Z}\) 31.154 .059 cl lf differences 30.154.011 RR Lyr, PLA relation
34.154.011 search for HI 31.154 .064 disc of cl ages 32.154 .007 theo calib of metallicity 34.154.012 apparent flattening 31.154.055 abund, temp of Pop II gt \(30.154 .037 \mathrm{Ca}, \mathrm{C}, \mathrm{N}\) abund for 29 RG 30.154.003 far UV phot, energy distr
\(33.154 .056 \mathrm{rv}, \mathrm{uv}-\mathrm{br}\) st
33.154.054 \(\mathrm{H} \alpha\) em in RG 34.154.005 high res sp, abund
34.154.012 apparent flattening

C1659-262 (NGC 6273, M19) 34.154.012 apparent flattening
```

C1715+432 (NGC 6341, M92)
34.154.006 st near cl center, BV CMD
31.154.058 He abund
32.154.009 C,N abund for RG st
32.154.027 isochrone fitting
31.154.059 cl lf differences
34.154.082 energy distr of HB A-st
34.154.003 isochrones: age = 18 By
30.154.003 far UV phot, energy distr
34.154.036 He abund, Iben's R-method
31.154.064 disc of cl ages
32.154.007 theo calib of cl abund
34.154.012 apparent flattening
31.154.055 abund, temp for Pop II gt
29.154.037 uv energy distr
34.154.002 width and lf for ms
33.154.013 synth CND
C1721-484 (NGC 6352)
34.154.002 abund for RG in m-r cl
31.154.076 ms phot
31.154.030 metallicity
31.154.033 abund, cl near Gal center
C1720-177 (NGC 6356)
34.154.012 apparent flattening
C1724-307 (Ter 2)
31.154.025 optical, x-ray positions
C1726-670 (NGC 6362)
34.154.012 apparent flattening 31.154.033 abund, cl near Gal center
C1725-050 (NGC 6366)
30.154.042 B lf
C1728-34x (4U/MXB 1728-34, GX 354+0)
29.154.035 discovery via JHK photometry
C1730-333 (Liller 1)
31.154.025 optical, X-ray positions
C1732-447 (NGC 6388)
29.154,009 BV CMD
Cl732-304 (Trz 1)
29.154.036 discovery of new X-ray burster
Cl736-536 (NGC 6397)
34.154.039 age, abund for turnoff st, Pop II calibration for uvby system
31.154.071 uvby phot, turnoff st 31.154.102 structure of core
33.154.054 H\alpha em in RG
29.154.002 faint BV pe seq
31.154.066 CMD turnoff
31.154.064 disc of cl ages
33.154.024 IUE sp of 3 BHB st
32.154.001 st counts, ms lf
31.154.024 synth from IUE sp 31.154.021 UV col for supra-bl st
32.154.026 m-p st abund
33.154.003 H }\alpha\mathrm{ em in RG
31.154.055 abund, temp of Pop II st 31.154.038 high disp sp of BHB st
31.154.020 age
30.154.003 far UV phot, energy distr
C1745-247 (Trz 5)
29.154.036 discovery of new X-ray burster
C1746-370 (NGC 6441)
31.154.025 optical, x-ray positions
C1804-250 (NGC 6544)
33.154.023 BV CMD

```

C1806-259 (NGC 6553)
34.154.002 abund for RG in \(m-x\) cl

C1820-303 (NGC 6624)
30.154.020 em line sp from IUE 29.158.062 IUE Obs comp to NGC 6624

C1821-249 (NGC 6626, M28)
29.154.031) BV CMD

C1827-255 (NGC 6638)
34.154.004 BV CND

C1828-323 (NGC 6637, M69)
34.154.002 abund for RG in m-r cl 34.154.012 apparent flattening

C1832-330 (NGC 6652) 34.154.012 apparent flattening

C1833-239 (NGC 6656, M22)
34.154.021 BV CND to ms 30.154.007 abund in RG
34.154.012 apparent flattening
33.154.003 H \(\alpha\) em in RG
33.154.011 chem inhomogeneity
34.154.036 correlation of A1 I, CN 30.154.003 far UV phot, energy distr

C1838-198 (Pal 8) 30.154.001 IR studies

C1840-323 (NGC 6681, M70) 34.154.012 apparent flattening

C1850-057 (NGC 6712)
33.154.059 anticorrelation of Y, Z 30.154.031 BV CMD

C1856-367 (NGC 6723)
33.154.059 anticorrelation of \(Y, Z\)
34.154.012 apparent flattening
31.154.033 abund, Cl near Gal center

C1902+017 (NGC 6749)
30.154.001 IR studies

C1906-600 (NGC 6752)
34.154.036 He abund, Iben's R-method 29.154.002 faint BV pe seq 31.154 .058 He abund
29.154.018 CN, Na anomalies
32.154.027 isochrone fitting
31.154.055 abund, temp of Pop II gt
29.154.006 bimodal CN distr for RG
34.154.036 correlation of A1 I, CN
31.154.025 optical, X-ray positions
31.154.029 abund in m-r cl
33.154.054 HC em in RG 31.159 .020 age-abund relation \(32.154 .026 \mathrm{~m}-\mathrm{p}\) st abund 31.154 .022 possible diffuse \(x\)-ray em 31.154.034 CN distr in RG 32.154 .028 abund in six st
31.154.025 optical, x-ray positions
34.154.061 abund in m-r cl
31.154.029 abund in m-r cl 31.154.059 cl 1f differences 34.154 .061 abund in m-r cl
30.154.038 BV phot near center
33.154.054 H H em in RG 31.154.066 CMD turnoff 31.154.064 disc of cl ages 32.154 .001 st counts, ms 1f 34.154.012 apparent flattening 29.154.037 UV energy distr 31.154.034 CN distr for RG 34.154.005 high res sp, abund
31.154.006 C , N abund var 33.154 .013 synth CMD

C1914+300 (NGC 6779, M56)
34.154.011 search for HI
30.154.021 memb via proper motion

C1916+184 (Pal 10)
30.154.001 IR studies

C1936-310 (NGC 6809, M55)
34.154.036 He abund, Iben's R-method
31.154 .059 cl lf differences
31.154.004 CN distr
30.154.003 far UV phot, energy distr

C1951+186 (NGC 6838, M71)
31.154 .007 synth col, \([\mathrm{M} / \mathrm{H}]=-0.9\)
31.154 .064 disc of c1 ages
\(32.154 .007[\mathrm{M} / \mathrm{H}]=-0.8\)
31.154.034 CN distr in RG
32.154.004 high res sp at \(H \alpha\) in RG
31.154.074 Stromgren 4-col CMD
31.154 .033 abund, cl near Gal center
31.154 .051 grid of isochrones

C2050-127 (NGC 6981, M72)
33.154.059 anticorrelation of Y,Z
30.154.011 RR Lyr, PLA relation

C2003-220 (NGC 6864, M75)
32.154 .017 integr sp of cl

C2059+160 (NGC 7006)
31.154.008 CNO not 2nd parameter 29.154.027 str of sp features in RG

C2127+119 (NGC 7078, M15)
30.154.004 BV CMD near center
31.154.072 BV phot, CMD
34.154.036 He abund, Iben's R-method
32.154.005 abund indicators
31.154.058 He abund
29.154.011 synth HB
32.154.027 isochrone fitting
31.154 .059 cl lf differences
34.154.082 energy distr of HB A-st
33.154 .030 pop synth, ANS, IUE
32.154 .017 integr sp of cl
33.154.037 phot, central core
30.154.003 far uv phot, energy distr

C2130-010 (NGC 7089, M2)
33.154.007 BV CMD for central st
31.154.059 cl \(1 f\) differences

C2137-234 (NGC 7099, M30)
32.154.012 UBV phot near center
30.154.003 far UV phot, energy distr
\(33.154 .056 \mathrm{rv}, \mathrm{UV}-\mathrm{br}\) st
34.154.012 apparent flattening
31.154.034 CN distr in RG
34.154.054 CN, CH bands for 2 gt
33.154.017 abund comp to Arcturus 34.154.002 abund for RG in \(\mathrm{m}-\mathrm{r}\) cl 31.154 .036 sp comp w/RG in M5 31.154 .035 abund
33.154.018 errors in high res sp of RG
\(34.154 .083[\mathrm{Fe} / \mathrm{H}]=-1.0\)
31.154.004 CN distr
33.154 .013 synth CMD
31.154 .059 cl lf differences
32.154.046 C, N, Fe-peak abund
34.154.011 search for HI
33.154.006 UBV phot, CMD
33.154.054 H \(\alpha\) em in RG
33.154.059 anticorrelation of Y,Z 31.154 .064 disc of cl ages
31.159.020 age-abund relation
34.154.012 apparent flattening
31.154.025 optical, X-ray positions
29.154.037 UV energy distr
31.154.074 Stromgrn 4-COI CND
34.154.003 isochrones, age \(=18 \mathrm{By}\)
33.154.012 C, N abund for RG
33.154 .013 synth CMD
32.154.005 abund indicators from sp
32.154 .017 integr sp of cl
33.154.054 \(\mathrm{H} \alpha \mathrm{em}\) in RG
31.154 .025 optical, \(x\)-ray positions 32.154 .017 integr sp of cl 30.154.003 far UV phot, energy distr 33.154 .013 synth CMD
```

C2143-214(Pal 12)
31.154.051 grid of isochrones

```
    32.154 .005 abund indicators from \(9 p\) 31.154.064 disc of cl ages
31.154.064 diac of cl ages 33.154.013 synth CND
C2304+124 (Pal 13)
    32.154.046 C,N,Fe-peak abund for RG
    \(32.154 .006[\mathrm{Fe} / \mathrm{H}]=-1.67\)
29.154.027 str of sp features for RG

TABLE 8. NEW DATA FOR CLUSTERS IN OTHER GALAXIES

\section*{Large magelianic cloud}

NGC 1466 29.159.016 c1 memb to LMC 31.154.021 UV col from IUE sp 31.159.021 rv, [Fe/H]

NGC 1672 31.159.020 age-abund relation
NGC 1783 31.159.020 age-abund relation
NGC \(178632.159 .001[\mathrm{Fe} / \mathrm{H}]\), rv of gt \(31.159 .021 \mathrm{rv},[\mathrm{Fe} / \mathrm{H}]\)
NGC 1806 31.154.021 UV CO1 from IUE \(\mathbf{s p}\)
NGC 1835
31.159.018 IUE sp
32.159.001 [Fe/H], rv of gt 31.159 .021 rv , [Fe/H]

NGC 184131.159 .020 age-abund relation 29.159.016 cl memb to LMC 31.159 .021 rv , [Fe/H]

NGC 184631.159 .020 age-abund relation
NGC 1855 31.159.020 age-abund relation
NGC 186633.154 .024 integr IUE \(8 p\) 30.159.011 superluminous gt

NGC 189832.154 .017 integr sp of cl
NGC 197831.159 .018 IUE \(8 p\) 31.154.021 UV col from IUE sp 32.154.017 integr sp of cl

NGC 198431.159 .020 age-abund relation
NGC 1987 31.154.021 UV col from IUE \(8 p\)
NGC 1994 31.159.020 age-abund relation
NGC 2004 33.154.024 integr IUE 8 p
31.154.021 UV col from IUE \(8 p\)

NGC 2019 31.154.021 UV col from IUE \(\mathbf{s p}\)
NGC 210031.159 .020 age-abund relation
NGC 2121 31.159.020 age-abund relation 32.154 .017 integr sp of cl

NGC 215532.159 .001 [Fe/H], rv of gt
NGC 2173 31.159.020 age-abund relation
NGC 2193 31.159.020 age-abund relation
NGC 2209 31.159.019 new data
NGC 2210 31.159.018 IUE \(8 p\) 32.159 .001 [Fe/H], rv of gt \(31.159 .021 \mathrm{rv},[\mathrm{Fe} / \mathrm{H}]\)
NGC 2257 31.159.020 age-abund relation 29.159.016 memb to INC \(31.159 .021 \mathrm{rv},[\mathrm{Fe} / \mathrm{H}]\) 31.159.025 BV CND

\author{
32.159 .001 [Fe/H], rv of gt 31.159 .019 new data 32.154.017 integr sp of \(c 1\) \\ 32.154.017 integr sp of Cl 31.159.018 TUE sp
}
33.154.024 integr IUE sp 31.154.021 UV col from IUE sp
32.159.001 [Fe/H], rv of gt 31.159 .019 new data
32.154.017 integr sp of cl 32.154 .017 integr sp of cl
31.154.021 UV col from IUE sp
\(32.159 .001[\mathrm{Fe} / \mathrm{H}], \mathrm{rv}\) of gt 31.159.021 rv, [Fe/H]
32.154 .017 integr sp of cl
31.159.020 age-abund relation
34.154.098 age, abund, BV CMD
\(31.159 .021 \mathrm{rv},[\mathrm{Fe} / \mathrm{H}]\)
32.154 .017 integr sp of cl
32.154.017 integx sp of cl
31.159 .020 age-abund relation
31.154.021 UV col from IUE sp
32.159 .001 [Fe/H], rv of gt 31.159 .019 new data
33.156 .005 BV CND to \(V=22.4\)

\section*{SMALL MAGELLANIC CLOUD}
\begin{tabular}{|c|c|c|}
\hline NGC 121 & 31.159 .018 TUE sp & 31.159 .019 new data \\
\hline & 32.154 .017 integr sp of cl & \\
\hline NGC 339 & 32.154.017 integr sp of cl & \\
\hline NGC 411 & 32.154.017 integr sp of cl & \\
\hline NGC 416 & 32.154 .017 integr sp of cl & \\
\hline NGC 419 & 31.154 .021 UV col from IUE sp & 32.154.017 integr sp of cl \\
\hline Kron 3 & 31.159 .019 new data & 32.154.017 integr sp of cl \\
\hline
\end{tabular}

31,159.012 1f comp to cl in Milky Way: Lindsay 3, 11, 13, 14, 15, 20, 82 and HW 62

\section*{OTHER EXTERNAL GAIAXIES}


\section*{7. Dynamics of Star Clusters}
(In this section, three figure references are to Astronomy and Astrophysics Abstracts and two-figure references are to Physics Abstracts.)

In June, 1984, at the end of the review period for these reports, IAU Symposium 113 on the Dynamics of star Clusters was held in Princeton. The Proceedings will form the most useful summary of recent research for the next few years. Nevertheless the topics which were emphasised at the symposium do not always coincide with those which are most prominent in the literature of the review period, which is the subject of this report.

Many papers were devoted to the fundamental dynamical process of relaxation. While a number of investigations reman close to the original formulations of Chandrasekhar (29.151.038, 30.151.070-2, 34.151.081-2,
87.72989), there have been some attempts to examine the effects of inhomogeneities, non-rectilinear orbits and so on (31.151.051, 34.151.115). There have been numerical tests of the standard theory (29.151.008, 31.151.014) and consideration of the strong encounters which are usually neglected (34.151.019 and .022). Nevertheless, the Fokker-Planck equation remains the standard tool in applications to the dynamics of star clusters.

Another fundamental process on which much work has been done is the dynamics of binary stars: their interactions with single stars (31.151.021, 34.151.037), which involves consideration of the decay of bound triple systems (29.042.054,1) and their interactions with each other (34.151.014, 87.47653). Which of the observable types of active binary may be formed in globular clusters is a topic which has also received attention from a dynamical point of view (33.154.020, 86.121747, 87.63219).

Now we turn to the application of these processes in the dynamical evolution of star clusters. The main consequence is core collapse, which is now well established, and occurs for some clusters on a short enough timescale to be of importance ( \(32.154 .029,34.154 .097\); but cf 34.151.032). Therefore much attention has been given to the reversal of the collapse and the subsequent evolution. Binaries axe especially important, as can be shown from the very simplest evaporative models (32.151.002-3, 87.22448) or from Monte-Carlo studies (34.154.091). The nature of post-collapse evolution is still in doubt; some studies suggest smooth expansion (eg 34.151.056) but the evolution may be oscillatory (87.77887). Another mechanism, less favoured now, for reversing core collapse is a central black hole (31.151.016, 32.066.070, 34.151.107).

Several of these evolutionary phenomena can be seen as manifestations of certain instabilities, eg the mass-segregation instability (29.151.014, 33.151.008, 34.151 .020 ). Single component collisional systems may also be unstable ( \(29.151 .026,29.151 .096\) ), and the role of anisotropy in the stability of collisionless systems has also been studied (34.151.112, 87.13375).

Two other processes are beginning to receive the attention which their importance merits. One is mass loss, which is especially important in the evolution of open clusters (30.151.036, 31.151.061, 32.151.075). The other is the effect of the Galactic tidal field. On one approximation, this can be dealt with by simple generalisations of the Roche formula (32.153.031, 87.47663) but the tide is time-dependent, and the effect of this is still poorly understood (29.151.034, 30.151.030, 87.42505).

Many of these theoretical investigaytions require the use of numerical methods. Several significant new techniques have been devised for the solution of both collisional and collisonless problems (32.151.016, 33.151.067, 34.151.063), and there has been some development of Larson's fluid dynamical method (33.151.084).

Much of this review has been concerned with dynamical evolution, but for some purposes there is a need for equilibrium cluster models which are justified more by their simplicity than on dynamical grounds. There are some new models of single component clusters (30.151.089, 33.154.036, 87.72992), and models containing two components (32.151.015) or a binary (30.154.039).

It remains to mention a number of isolated investigations which cannot be grouped conveniently with any of those described above. These include a numerical investigation of small systems immersed in a uniform medium (34.151.079) and theoretical studies of stellar orbits in clusters (33.153.041), the effect on anisotropy of accretion at the centre of a system
(87.58488), and a modification of the virial theorem due to pair correlations (32.151.089).

To summarise, the review period has seen some excellent work on the dynamics of binaries within clusters, and the realisation of the importance of tidally formed pairs. A fresh start has been made in the attempt to understand post-collapse evolution, while the attention paid to clusters containing a black hole has declined sharply. In the next few years it is possible that more attention will be paid to the effects of mass segregation, to the dynamics of the halo and the tidal boundary, and to the role of rotation, important topics which have recently been rather neglected.

\section*{8. Some Trends in Cluster Research}

Major advances have been realized during the last three years in star cluster research, and new techniques and detectors are quickly being applied to the study of star clusters. We can anticipate further advances in several areas in the next few years.

Progress in our understanding of the detailed physics of stellar evolution has, until recently, been limited by the uncertainties in the available observational data. The precision of photometric measurements for stars on cluster main sequences and at the main sequence turnoffs has been too poor to offer theoreticians much guidance in constraining their stellar evolution calculations. The effects of many parameters in stellar evolution have been too subtle to distinguish from the observations. The application of CCD detectors to the problem of measurement of cluster H-R diagrams has brought substantial improvement to this situation. Examples of this work are the \(H-R\) diagrams of 47 Tucanae recently obtained by Hesser and \(w\). Harris and the H-R diagram of NGC 6752 by Penny and Dickens. For the first time it may be possible to compare the ages of globular clusters to an accuracy better than 10\%, to determine if they were formed over an extended period in the early history of the galaxy, or if they formed suddenly in a short time. From the improved theoretical models, the actual ages of clusters may be detemined, and the controversy between the globular cluster ages and the age of the Universe determined from \(H_{0}\) may be resolved. We can anticipate significant improvements in the quality \({ }^{\circ}\) and quantity of cluster color-magnitude diagrams during the next several years.

During the last several years, we have also seen much progress in the study of star clusters very distant from the disk of the Milky way, allowing us to explore very remote regions of the galactic halo. Examples of this work include studies of AM-1 by Aaronson et al, and of the Eridanus cluster by Da Costa.

Investigations of star clusters in other galaxies have also been moving forward quickly during the last three years. Buonanno and his colleagues have surveyed, catalogued, and measured many clusters in M31, and we can anticipate a much more detailed understanding of cluster systems in that galaxy and in our own. Searches for clusters in more distant galaxies have received much attention, and we can expect to begin to understand the formation of cluster systems in galaxies of different morphological types.

A third area in which we can look forward to important progress is the study of stellar rotation and binarism on the main sequences of star clusters. The work of stauffer has already lead to interesting results on the duration of star formation in open clusters. The combination of the availability of new instrumentation with a renewed interest in solar/stellar cycles and variability has lead us again to use star clusters as laboratories for investigating these
phenomena. Similarly, R. Peterson's work on rotational velocities of horizontal branch stars in globular clusters may lead to a solution of the "second parameter" problem in globular cluster research.

The period from 1981 to 1984 has seen continued efforts to resolve the controversy surrounding the metal rich calibration of the globular cluster metallicity scale. Although the question is still not fully resolved, many investigations are consistent with the adoption of metallicities near [Fe/H] = -0.8 for the clusters M71 and 47 Tucanae. The application of new instrumental techniques to the problem may lead finally to a solution.

The primary thrust in studies of cluster abundances has been a detailed examination of star-to-star variations within clusters. Norris, G. Smith, Suntzeff, Kraft and their colleagues have made extensive investigations of molecules and abundances of carbon and nitrogen in star clusters. Their results may lead to a better understanding of mixing and nucleosynthetic processes in stellar evolution.

The ability now to measure accurate radial velocities for relatively faint stars has produced a revolution in observational dynamics of star clusters. In particular, kinematical studies of open clusters and star forming regions are now possible. Recent work in this rapidly expanding area was summarised at IAU Colloquium 88 "Stellar Radial Velocities", in Schenectady. Also, it is now possible to measure velocity dispersions as low as about \(4 \mathrm{~km} / \mathrm{s}\) from the integrated light of globular clusters: Elson recently made a direct measurement of the mass of NGC 1835, in the LMC, with this technique.```

