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PERMUTATION POLYNOMIALS AND
GROUP PERMUTATION POLYNOMIALS

YOUNG H O PARK AND JUNE BOK LEE

Permutation polynomials of the form xTf(x') over a finite field give rise to group
permutation polynomials. We give a group theoretic criterion and some other criteria
in terms of symmetric functions and power functions.

1. INTRODUCTION

Let ¥q be a finite field of q — pe elements of characteristic p. A polynomial in F,[z]
is called a permutation polynomial over Fq if it is a Injection from F, to Fg. General
study of permutation polynomials started with Hermite, followed by Dickson [3]. See
[6] for general material about permutation polynomials, and [4, 5] for open problems
concerning permutation polynomials, and [8] for recent results.

One of the families of permutation polynomials consists of polynomials of the form
xTf(xs), where s\ q — 1. This class originated from the work of Rogers and Dickson [3]
who considered the case f(x) = g(x)d, and then several other special cases have been
studied by Carlitz and Wells [2], Niederreiter and Robinson [9]. Wan and Lidl [12] gave
a simple unified treatment (criterion) for this class in terms of the primitive roots and
determined its group structure. The purpose of this article is to give a group theoretic
criterion for this family, and explain how this naturally leads to the notion of group
permutation polynomials of a subgroup of the multiplicative group G = FJ. Brison [1]
also considered group permutation polynomials and generalised the Hermite criterion.
In Section 3, we discuss a conjecture of Brison [1]. Turnwald [11] gave new criteria for
permutation polynomials in terms of symmetric functions and power functions of their
values. In the final section, we generalise these to group permutation polynomials.

2. GROUP PERMUTATION POLYNOMIALS

Let N be a subgroup of the multiplicative group G = FJ. A polynomial in F,[i] is
called a group permutation polynomial over N or simply a permutation polynomial over
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N if it induces a bijection on N. For example, if (r, \N\) = 1 and a € N, oaf is a group
permutation polynomial over N. These are called monomials.

The permutation polynomials of the form h(x) = xrf(xs) over F , are closely related
to the group permutation polynomials over some subgroup of FJ. As in [10], we may
restrict our attention to polynomials h[x) such that (r,s) = 1 and s | q — 1. Let
d = (q — l ) / s . Suppose that h(x) = xTf(x3) is a permutation polynomial over F,.
Since / (x) has no nonzero roots, the group G = FJ is /(x)-stable. Let

and

Note that \H\ = s, and |JV| = d.

P R O P O S I T I O N 2 . 1 . A polynomial <j>{x) maps N into N if and only if<f>(x) =
xrf(x)a (mod xd - 1) for some f 6 ¥q[x].

P R O O F : Suppose <j>{N) C N. Let <f>(x) = xT<t>i(x), where <fo(0) ^ 0. For each aeN,
<t>i{a) € N, and thus <j>\{a) = b*a for some 6a 6 G. Choose a polynomial /(x) G F,[x]
such that / (a) = 6a. Then <f>{a) = arf(a)' for all a G N, and hence <j>{x) = xrf(x)'
(mod xd — 1). The converse is clear. D

PROPOSITION 2 . 2 . For each g eG, the restriction ofh(x) to the coset gH is
a bijection onto the coset h(g)H.

P R O O F : For aeH,we have h(ga) = {9a)rf{(gaY) = a r % ) G h(g)H. Thus /i(x)
maps gH into h(g)H. To prove that it is 1-1, suppose a,/3eH and /i(pa) = h(g/3). As
above, we then have arh{g) = ^ ^ ( p ) , or (a/?"1)7" = 1. Since (a/?"1)* = 1 and (r, s) = 1,
this implies that a = 0. Hence the restriction of h{x) to gH is an injection, and hence a
bijection onto h(g)H. D

By Proposition 2.2, h{x) induces a well-defined map on G/H given by

h : G/H -> G/H, gH M- h(g)H.

We use the group isomorphism

G/H ~N, gH^ gs

to transform h to a function 4»h on iV; <t>h(g*) = h(g)s = gTSf{g*)s- Hence <j>h is determined
as

We can reverse our construction above. Suppose we are given a polynomial 4>{x) =
xrf{x)s and a <£(z)-stable subgroup N of order d, where ds = q - 1. Consider the
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polynomial h(x) = xTf(xs). Then G is ft(x)-stable. Now it is clear, from the construction
above, h(x) is the unique polynomial of the given type such that <j>h = <f>- We therefore
have the following theorem.

THEOREM 2 . 3 . xTf{xa) is a group permutation polynomial over G = FJ if and
oniy ifxTf(x)s is a group permutation polynomial over N = {g3 \ g € G).

It is an easy matter to prove the following two well-known results [6] using Theorem
2.3.

COROLLARY 2 . 4 . Let (r, q - 1) = 1. Then h{x) = xr(f{x3)){-q~1)/s is a permu-
tation polynomial over ¥q if and only iff(xs) has no root in FJ.

PROOF: h(x) is a permutation polynomial over F, if and only if

is a permutation polynomial over N = {g* \ g € FJ} if and only if / ( i ) has no root in N
if and only if f{xs) has no root in FJ. D

COROLLARY 2 . 5 . h(x) = x{x{-q~r>l2 + a) is a permutation polynomial over F , if
and only if (a2 - l )^- 1 ) / 2 = 1.

PROOF: h(x) is a permutation polynomial over F , if and only if <j){x) = x(x+aYq~1^2

is a permutation polynomial over {±1} if and only if 4>(1)4>(—1) = — (a2 — l)^"1)/2 =
- l . D

In [10], the authors examined permutation properties of the polynomials

over F,, where k,r, s are positive integers. The study of these polynomials originated in
[7]. Under suitable assumptions (see [10, Theorem 4.7]) it is proved, using the notion of
circulant matrices, that if hk,T,s(x) is a permutation polynomial over F9, then (k + l ) s =
(—I)1""1 (mod p). Here we present a quick proof of this using Theorem 2.3. Suppose
hk,rAx) ^ a permutation polynomial over G = FJ. By Theorem 2.3 <f>(x) = xT{\ + x +

h x*)s is a permutation polynomial over N = Gs. Let d = (q — l ) / s . As proved in
[10] (A: + 1, d) = 1 so that x*+1 permutes N and N - {1}. We thus have, in FJ,

>• n '-(^f

Therefore, we have (k + l)s = (_i)(^D(«-i) = ( - I ) ' - 1 (mod p).
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3 . ^-UNIFORMITY

Let u) be the primitive element of the multiplicative group G = F^ so that G = (u),
and let H be a subgroup of order s of G. Let d = (q — l ) / s . Then H = (wd) and

Let P(G) be the group of permutation polynomials over G = FJ and let P(G/H) be the
subgroup of P(G) consisting of permutation polynomials of G which induces a permuta-
tion of G/H.

Observe that / G P(G/H) if and only if there is a permutation ir in S*, the symmetric
group on { 0 , 1 , . . . , d — 1}, and permutation polynomials / 0 , . . . , fd-i of H such that

for all /i € H and 0 ^ * < d — 1. Ifal l /j(x) € P(H) are monomials of degree r with
(r, s) = 1, then / is called an H-uniform permutation of G of index r [1]. An / €
is called an H-uniform polynomial of index r if / (x) is of the form

f{x) = xT(a0 + aix1 + • • • + ad_n( d-1 ) s )

with at e Fg [1].

The following two results are proved in [1].

T H E O R E M 3 . 1 . Letn eSd, fit P{H), 0 $ i ^ d -1 where

Then there exists a unique permutation polynomial f £ P(G/H) of degree ^ q — 2 such
that

1. the coefficients of Xs, x2*,... ,x^d~^' are all zero;

2. /(/iwO = /i(^)o;x« for all h £ H and 0 ^ i ^ d- 1;

3. if there exists j such that dij = 0 for all i, then the coefficients in f of
xi, i 1 + J , . . . , *(*-«•+* are aii zero.

COROLLARY 3 . 2 . If (r,s) = 1, and Q 0 , . . . , a d _ i G if, then there exists a
polynomial of the form f(x) = z r(ao + aix4 + 1- arf_ii(<i"1)5) in P(G) such that
/( / IO; ' ) = Qj/ira;'r(^ for all i. That is, every H-uniform permutation is induced by a
suitable H-uniform polynomial.

Brison [1] considered a pair of finite subgroups H ^ G ^ K* inside any field K
and has conjectured that every iif-unifonn polynomial is a H-uniiorm permutation and
proved it in several cases. Even in this general setting, the following argument shows
that his conjecture is true. Let H be a subgroup of a finite subgroup G = (w) of K* and
suppose that

f{x) = x'(oo V")
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is a H-uniform polynomial, where s = \H\. For any a, b € G with a4 = b*, we have

f(a)> = a"{ao + a,a* + • •

= b" (ao + a1b' + --- + aa-itP-1*)'

= /(&)'•

Thus / induces a permutation on G/H, that is, / G P(G/H). As before, we have

for some /o, • • •, /d-i € -P(-ff) and TT 6 5<j, where d = \G/H\. In particular,

J* (ao + oxa;" + • • • + a<i_iu;*t-1)l>) = /(a;*) = fi(l)u*W.

Thus we have

Therefore, we have:

THEOREM 3 . 3 . f e P(G) is an H-uniform permutation if and only if it is an
H-uniform polynomial.

4. N E W CRITERIA FOR GROUP PERMUTATION POLYNOMIALS

Let H be & subgroup of order s of FJ. The following generalised version of the
Hermite criterion for group permutation polynomials is proved in [1].

THEOREM 4 . 1 . For f(x) € F,[x], let

f(x)f = *(*)(** - 1) + /«(*), deg(/t) < «,

and iet /t(0) be the constant term of ft(x). Then f(x) induces a permutation on H if
and only if

I- /.(x) = l,
2 . / t ( 0 ) = 0 for each l ^ t ^ s - 1 .

For / G F9[x] of degree ^ s, we shall define, following Turnwald [11], three quantities
u, w, v and investigate their properties. First define the symmetric polynomials S*(/) on
the values of / by the equation

- /(a)) =J2(-l
k=0
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Let u = u ( / ) be the smallest positive integer A; such that Sk{f) ^ 0 if such A; exists and

otherwise set u = oo. It is easy to see that u = s — degfx4 — Jl (x — f(a))). Next let
^ aeB '

(
aeB

aeB

and define w = w(f) to be the smallest positive integer k such that P*(/) ^ 0 if such k
exists, otherwise set w = oo. Replacing /(z) by f(x)k (mod z* — 1), we see that w is
the smallest positive integer such that f(x)k (mod Xs — 1) has a nonzero constant term.
Finally let

THEOREM 4 . 2 . If f is a group permutation polynomial over H, then u — w =
v = s.

PROOF: Since a permutation polynomial g(x) of H permutes the elements of H, we
have u{f) = u(f o g), w(f) = w(f o g), and v(f) = (/ o g). Thus it suffices to prove the
statement for f(x) = x. Suppose f(x) = x. Since H is the set of roots of xs — 1, we have

a€H

and hence u(f) = s. Also Pk{f) = £ f(a)k = ^ a* # 0 if and only if k = 0 (mod s).
eB BaeB

Thus w(f) = s. Finally it is clear that v(f) = s. D

THEOREM 4 . 3 . If w < oo, then w^v.

PROOF: Let g(x) = d £ ( i - /(a))9"1 + z*"1. Since
aeB

(x -

= x"-1 + x"~2f{a) + • • • + xf{a)"-2 + /(a) '"1

we have

g(x) = disx"-1 + Pi(/)x'-2 + • • • + P,_2(/)x +

-2 + • • • + P,_2(/)x + P,

Therefore deg^ = q - 1 - w. For each b e F*q, let nb = \{a € /f | f(a) = 6}|. Then

g(b) = d E ^ - / ( a ) ) ' " 1 ^ - ! = d(s-nt) + l = -dnb. In particular, if 0 # 6 ̂  f{H), then

= 0. Thus degp ^ q— 1 — v. Since degp = g — 1 — w, we conclude that w ^v. D

THEOREM 4 . 4 . Iff(H) £ # , tieu u + u ^ s.
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PROOF: Consider the polynomial g(x) = Xs - 1 - \[{x- f{a)). Note f(x) is a

permutation polynomial of H if and only if g(x) = 0. Since g(f{b)) = 0 for all b € H,
we have v < degg. But g(x) = S^fix'-1 - S^/Jar1-2 + • • • + ( - l ) i + 1 5 , ( / ) - 1. Thus
degp = s — u. Hence v ^ s — u. D

THEOREM 4 . 5 . Iff -^ 0 and w < co, then u ^ tu.

P R O O F : By Newton's formula, for any k ~£ 1 we have

In particular, Pw = (—l)"~1«;5te. Thus it suffices to show that p does not divide w.
But if u; = p j , then

and hence Pj; 7̂  0, a contradiction. 0

THEOREM 4 . 6 . If /(0) = 0, then u > s/(deg/) .

PROOF: Let n = deg/ and suppose 1 < k < s/n. Then

By the fundamental theorem of symmetric polynomials, we have

for some polynomial P and the constant term of P is obtained when Xi = • • • = xs = 0.
Since /(0) = 0, this constant term is 0. Now let H = {a x , . . . , a,}, so that

But x1 - 1 = n(x - at) = Xs - Sxx3-1 + S2x'-2 + i-lY^S,-!! - 1. Thus
1 = 1

Si(ai,..., as) = 0 for all i = 1 , . . . , s - 1. Therefore

Consequently, if 1 < k < s/n, then 5jt(/) = 0. Hence u ^ s/n. 0

COROLLARY 4 . 7 . If /(0) = 0 and f(H) § H, then v^s- s/(deg / ) .

THEOREM 4 . 8 . Let f(H) C H, / (0) = 0 and d e g / = n. Then the following
statements are equivalent:

1. f is a group permutation polynomial over H;

2. u = s;
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3.
4.

5.

6.

7.

8.

w =
v =

V >

u >

u >

s —

••s;

s;
s- (s/n);

s-v;

(«/2);
u < w.

PROOF: Clearly (1) implies all. Note that w < oo since f(H) C H. By Theorem 4.5,
(2) implies (3). By Theorem 4.3, (3) implies (4). Clearly (4) implies (1). By Corollary
4.7, (5) implies (1). Finally (6) implies (1) by Theorem 4.4. D
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