PERMUTATION POLYNOMIALS AND GROUP PERMUTATION POLYNOMIALS

Young Ho Park and June Bok Lee

Permutation polynomials of the form $x^{T} f\left(x^{s}\right)$ over a finite field give rise to group permutation polynomials. We give a group theoretic criterion and some other criteria in terms of symmetric functions and power functions.

1. Introduction

Let \mathbb{F}_{q} be a finite field of $q=p^{e}$ elements of characteristic p. A polynomial in $\mathbb{F}_{q}[x]$ is called a permutation polynomial over \mathbb{F}_{q} if it is a bijection from $\mathbb{F}_{\boldsymbol{q}}$ to \boldsymbol{F}_{q}. General study of permutation polynomials started with Hermite, followed by Dickson [3]. See [6] for general material about permutation polynomials, and [4,5] for open problems concerning permutation polynomials, and [8] for recent results.

One of the families of permutation polynomials consists of polynomials of the form $x^{r} f\left(x^{s}\right)$, where $s \mid q-1$. This class originated from the work of Rogers and Dickson [3] who considered the case $f(x)=g(x)^{d}$, and then several other special cases have been studied by Carlitz and Wells [2], Niederreiter and Robinson [9]. Wan and Lidl [12] gave a simple unified treatment (criterion) for this class in terms of the primitive roots and determined its group structure. The purpose of this article is to give a group theoretic criterion for this family, and explain how this naturally leads to the notion of group permutation polynomials of a subgroup of the multiplicative group $G=\mathbb{F}_{q}^{*}$. Brison [1] also considered group permutation polynomials and generalised the Hermite criterion. In Section 3, we discuss a conjecture of Brison [1]. Turnwald [11] gave new criteria for permutation polynomials in terms of symmetric functions and power functions of their values. In the final section, we generalise these to group permutation polynomials.

2. GROUP PERMUTATION POLYNOMIALS

Let N be a subgroup of the multiplicative group $G=F_{q}^{*}$. A polynomial in $\mathbb{F}_{q}[x]$ is called a group permutation polynomial over N or simply a permutation polynomial over

[^0]N if it induces a bijection on N. For example, if $(r,|N|)=1$ and $\alpha \in N, \alpha x^{r}$ is a group permutation polynomial over N. These are called monomials.

The permutation polynomials of the form $h(x)=x^{r} f\left(x^{s}\right)$ over \mathbb{F}_{q} are closely related to the group permutation polynomials over some subgroup of $\mathrm{F}_{\boldsymbol{q}}^{*}$. As in [10], we may restrict our attention to polynomials $h(x)$ such that $(r, s)=1$ and $s \mid q-1$. Let $d=(q-1) / s$. Suppose that $h(x)=x^{\tau} f\left(x^{s}\right)$ is a permutation polynomial over \mathbb{F}_{q}. Since $f(x)$ has no nonzero roots, the group $G=\mathbb{F}_{q}^{*}$ is $f(x)$-stable. Let

$$
H=\left\{g \in G \mid g^{s}=1\right\}=\left\{g^{d} \mid g \in G\right\}
$$

and

$$
N=\left\{g^{s} \mid g \in G\right\}=\left\{g \in G \mid g^{d}=1\right\}
$$

Note that $|H|=s$, and $|N|=d$.
PROPOSITION 2.1. A polynomial $\phi(x)$ maps N into N if and only if $\phi(x) \equiv$ $x^{r} f(x)^{s}\left(\bmod x^{d}-1\right)$ for some $f \in \mathbb{F}_{q}[x]$.

Proof: Suppose $\phi(N) \subset N$. Let $\phi(x)=x^{r} \phi_{1}(x)$, where $\phi_{1}(0) \neq 0$. For each $a \in N$, $\phi_{1}(a) \in N$, and thus $\phi_{1}(a)=b_{a}^{s}$ for some $b_{a} \in G$. Choose a polynomial $f(x) \in \mathbb{F}_{q}[x]$ such that $f(a)=b_{a}$. Then $\phi(a)=a^{r} f(a)^{s}$ for all $a \in N$, and hence $\phi(x) \equiv x^{r} f(x)^{s}$ $\left(\bmod x^{d}-1\right)$. The converse is clear.

PRDPOSITION 2.2. For each $g \in G$, the restriction of $h(x)$ to the coset $g H$ is a bijection onto the coset $h(g) H$.

Proof: For $\alpha \in H$, we have $h(g \alpha)=(g \alpha)^{r} f\left((g \alpha)^{s}\right)=\alpha^{r} h(g) \in h(g) H$. Thus $h(x)$ maps $g H$ into $h(g) H$. To prove that it is $1-1$, suppose $\alpha, \beta \in H$ and $h(g \alpha)=h(g \beta)$. As above, we then have $\alpha^{r} h(g)=\beta^{r} h(g)$, or $\left(\alpha \beta^{-1}\right)^{r}=1$. Since $\left(\alpha \beta^{-1}\right)^{s}=1$ and $(r, s)=1$, this implies that $\alpha=\beta$. Hence the restriction of $h(x)$ to $g H$ is an injection, and hence a bijection onto $h(g) H$.

By Proposition 2.2, $h(x)$ induces a well-defined map on G / H given by

$$
\bar{h}: G / H \rightarrow G / H, \quad g H \mapsto h(g) H .
$$

We use the group isomorphism

$$
G / H \simeq N, \quad g H \mapsto g^{s}
$$

to transform \bar{h} to a function ϕ_{h} on $N ; \phi_{h}\left(g^{s}\right)=h(g)^{s}=g^{r s} f\left(g^{s}\right)^{s}$. Hence ϕ_{h} is determined as

$$
\phi_{h}(x)=x^{r} f(x)^{s} .
$$

We can reverse our construction above. Suppose we are given a polynomial $\phi(x)=$ $x^{r} f(x)^{s}$ and a $\phi(x)$-stable subgroup N of order d, where $d s=q-1$. Consider the
polynomial $h(x)=x^{r} f\left(x^{s}\right)$. Then G is $h(x)$-stable. Now it is clear, from the construction above, $h(x)$ is the unique polynomial of the given type such that $\phi_{h}=\phi$. We therefore have the following theorem.

THEOREM 2.3. $x^{\tau} f\left(x^{s}\right)$ is a group permutation polynomial over $G=\mathbf{F}_{q}^{*}$ if and only if $x^{\tau} f(x)^{s}$ is a group permutation polynomial over $N=\left\{g^{s} \mid g \in G\right\}$.

It is an easy matter to prove the following two well-known results [6] using Theorem 2.3.

Corollary 2.4. Let $(r, q-1)=1$. Then $h(x)=x^{r}\left(f\left(x^{s}\right)\right)^{(q-1) / s}$ is a permutation polynomial over \mathbb{F}_{q} if and only if $f\left(x^{s}\right)$ has no root in \mathbb{F}_{q}^{*}.

Proof: $h(x)$ is a permutation polynomial over F_{q} if and only if

$$
\phi(x)=x^{r}\left(f(x)^{(q-1) / s}\right)^{s}=x^{r} f(x)^{q-1}
$$

is a permutation polynomial over $N=\left\{g^{s} \mid g \in \mathbb{F}_{q}^{*}\right\}$ if and only if $f(x)$ has no root in N if and only if $f\left(x^{s}\right)$ has no root in \mathbb{F}_{q}^{*}.

Corollary 2.5. $h(x)=x\left(x^{(q-1) / 2}+a\right)$ is a permutation polynomial over F_{q} if and only if $\left(a^{2}-1\right)^{(q-1) / 2}=1$.

Proof: $h(x)$ is a permutation polynomial over \mathbb{F}_{q} if and only if $\phi(x)=x(x+a)^{(q-1) / 2}$ is a permutation polynomial over $\{ \pm 1\}$ if and only if $\phi(1) \phi(-1)=-\left(a^{2}-1\right)^{(q-1) / 2}=$ -1 .

In [10], the authors examined permutation properties of the polynomials

$$
h_{k, r, s}(x)=x^{r}\left(1+x^{s}+\cdots+x^{s k}\right)
$$

over \mathbb{F}_{q}, where k, r, s are positive integers. The study of these polynomials originated in [7]. Under suitable assumptions (see [10, Theorem 4.7]) it is proved, using the notion of circulant matrices, that if $h_{k, r, s}(x)$ is a permutation polynomial over \mathbb{F}_{q}, then $(k+1)^{s} \equiv$ $(-1)^{r-1}(\bmod p)$. Here we present a quick proof of this using Theorem 2.3. Suppose $h_{k, r, s}(x)$ is a permutation polynomial over $G=F_{q}^{*}$. By Theorem $2.3 \phi(x)=x^{\tau}(1+x+$ $\left.\cdots+x^{k}\right)^{s}$ is a permutation polynomial over $N=G^{s}$. Let $d=(q-1) / s$. As proved in $[10](k+1, d)=1$ so that x^{k+1} permutes N and $N-\{1\}$. We thus have, in \mathbb{F}_{q}^{*},

$$
\begin{aligned}
(-1)^{d-1}=\prod_{a \in N} a=\prod_{a \in N} \phi(a) & =(k+1)^{s} \prod_{1 \neq a \in N} a^{r}\left(\frac{1-a^{k+1}}{1-a}\right)^{s} \\
& =(k+1)^{s}(-1)^{(d-1) r}\left(\frac{\prod_{a \neq 1}\left(1-a^{k+1}\right)}{\prod_{a \neq 1}(1-a)}\right)^{s} \\
& =(k+1)^{s}(-1)^{(d-1) r}\left(\frac{\prod_{a \neq 1}(1-a)}{\prod_{a \neq 1}(1-a)}\right)^{s} \\
& =(k+1)^{s}(-1)^{(d-1) r} .
\end{aligned}
$$

Therefore, we have $(k+1)^{s} \equiv(-1)^{(d-1)(r-1)} \equiv(-1)^{r-1}(\bmod p)$.

3. H-UNIFORMITY

Let ω be the primitive element of the multiplicative group $G=\mathrm{F}_{q}^{*}$ so that $G=\langle\omega\rangle$, and let H be a subgroup of order s of G. Let $d=(q-1) / s$. Then $H=\left\langle\omega^{d}\right\rangle$ and

$$
G=H \cup H \omega \cup \cdots \cup H \omega^{d-1} .
$$

Let $P(G)$ be the group of permutation polynomials over $G=\boldsymbol{F}_{q}^{*}$ and let $P(G / H)$ be the subgroup of $P(G)$ consisting of permutation polynomials of G which induces a permutation of G / H.

Observe that $f \in P(G / H)$ if and only if there is a permutation π in S_{d}, the symmetric group on $\{0,1, \ldots, d-1\}$, and permutation polynomials f_{0}, \ldots, f_{d-1} of H such that

$$
f: h \omega^{i} \mapsto f_{i}(h) \omega^{\pi(i)}
$$

for all $h \in H$ and $0 \leqslant i \leqslant d-1$. If all $f_{i}(x) \in P(H)$ are monomials of degree r with $(r, s)=1$, then f is called an H-uniform permutation of G of index $r[1]$. An $f \in P(G)$ is called an H-uniform polynomial of index r if $f(x)$ is of the form

$$
f(x)=x^{r}\left(a_{0}+a_{1} x^{s}+\cdots+a_{d-1} x^{(d-1) s}\right)
$$

with $a_{i} \in \mathbb{F}_{q}[\mathbf{1}]$.
The following two results are proved in [1].
Theorem 3.1. Let $\pi \in S_{d}, f_{i} \in P(H), 0 \leqslant i \leqslant d-1$ where

$$
f_{i}(x)=a_{i, 1} x+\cdots+a_{i, s-1} x^{s-1}
$$

Then there exists a unique permutation polynomial $f \in P(G / H)$ of degree $\leqslant q-2$ such that

1. the coefficients of $x^{s}, x^{2 s}, \ldots, x^{(d-1) s}$ are all zero;
2. $f\left(h \omega^{i}\right)=f_{i}(h) \omega^{\pi(i)}$ for all $h \in H$ and $0 \leqslant i \leqslant d-1$;
3. if there exists j such that $a_{i, j}=0$ for all i, then the coefficients in f of $x^{j}, x^{s+j}, \ldots, x^{(d-1) s+j}$ are all zero.
Corollary 3.2. If $(r, s)=1$, and $\alpha_{0}, \ldots, \alpha_{d-1} \in H$, then there exists a polynomial of the form $f(x)=x^{r}\left(a_{0}+a_{1} x^{s}+\cdots+a_{d-1} x^{(d-1) s}\right)$ in $P(G)$ such that $f\left(h \omega^{i}\right)=\alpha_{i} h^{r} \omega^{\pi(i)}$ for all i. That is, every H-uniform permutation is induced by a suitable H-uniform polynomial.

Brison [1] considered a pair of finite subgroups $H \leqslant G \leqslant K^{*}$ inside any field K and has conjectured that every H-uniform polynomial is a H-uniform permutation and proved it in several cases. Even in this general setting, the following argument shows that his conjecture is true. Let H be a subgroup of a finite subgroup $G=\langle\omega\rangle$ of K^{*} and suppose that

$$
f(x)=x^{r}\left(a_{0}+a_{1} x^{s}+\cdots+a_{d-1} x^{(d-1) s}\right)
$$

is a H-uniform polynomial, where $s=|H|$. For any $a, b \in G$ with $a^{s}=b^{s}$, we have

$$
\begin{aligned}
f(a)^{s} & =a^{r s}\left(a_{0}+a_{1} a^{s}+\cdots+a_{d-1} a^{(d-1) s}\right)^{s} \\
& =b^{r s}\left(a_{0}+a_{1} b^{s}+\cdots+a_{d-1} b^{(d-1) s}\right)^{s} \\
& =f(b)^{s} .
\end{aligned}
$$

Thus f induces a permutation on G / H, that is, $f \in P(G / H)$. As before, we have

$$
f\left(h \omega^{i}\right)=f_{i}(h) \omega^{\pi(i)}
$$

for some $f_{0}, \ldots, f_{d-1} \in P(H)$ and $\pi \in S_{d}$, where $d=|G / H|$. In particular,

$$
\omega^{i r}\left(a_{0}+a_{1} \omega^{i s}+\cdots+a_{d-1} \omega^{i(d-1) s}\right)=f\left(\omega^{i}\right)=f_{i}(1) \omega^{\pi(i)} .
$$

Thus we have

$$
f\left(h \omega^{i}\right)=h^{\tau} \omega^{i \tau}\left(a_{0}+a_{1} \omega^{i s}+\cdots+a_{d-1} \omega^{i(d-1) s}\right)=h^{\tau} f_{i}(1) \omega^{\pi(i)} .
$$

Therefore, we have:
Theorem 3.3. $f \in P(G)$ is an H-uniform permutation if and only if it is an H-uniform polynomial.

4. New Criteria for group permutation polynomials

Let H be a subgroup of order s of \mathbb{F}_{q}^{*}. The following generalised version of the Hermite criterion for group permutation polynomials is proved in [1].

Theorem 4.1. For $f(x) \in \mathbb{F}_{q}[x]$, let

$$
f(x)^{t}=q_{t}(x)\left(x^{s}-1\right)+f_{t}(x), \quad \operatorname{deg}\left(f_{t}\right)<s,
$$

and let $f_{t}(0)$ be the constant term of $f_{t}(x)$. Then $f(x)$ induces a permutation on H if and only if

1. $f_{s}(x)=1$,
2. $f_{t}(0)=0$ for each $1 \leqslant t \leqslant s-1$.

For $f \in \mathbb{F}_{q}[x]$ of degree $\leqslant s$, we shall define, following Turnwald [11], three quantities u, w, v and investigate their properties. First define the symmetric polynomials $S_{k}(f)$ on the values of f by the equation

$$
\prod_{a \in H}(x-f(a))=\sum_{k=0}^{s}(-1)^{k} S_{k}(f) x^{s-k} .
$$

Let $u=u(f)$ be the smallest positive integer k such that $S_{k}(f) \neq 0$ if such k exists and otherwise set $u=\infty$. It is easy to see that $u=s-\operatorname{deg}\left(x^{s}-\prod_{a \in H}(x-f(a))\right)$. Next let

$$
P_{k}(f)=\sum_{a \in H} f(a)^{k}
$$

and define $w=w(f)$ to be the smallest positive integer k such that $P_{k}(f) \neq 0$ if such k exists, otherwise set $w=\infty$. Replacing $f(x)$ by $f(x)^{k}\left(\bmod x^{s}-1\right)$, we see that w is the smallest positive integer such that $f(x)^{k}\left(\bmod x^{s}-1\right)$ has a nonzero constant term. Finally let

$$
v=v(f)=|f(H) \cap H| .
$$

Theorem 4.2. If f is a group permutation polynomial over H, then $u=w=$ $v=s$.

Proof: Since a permutation polynomial $g(x)$ of H permutes the elements of H, we have $u(f)=u(f \circ g), w(f)=w(f \circ g)$, and $v(f)=(f \circ g)$. Thus it suffices to prove the statement for $f(x)=x$. Suppose $f(x)=x$. Since H is the set of roots of $x^{s}-1$, we have

$$
\prod_{a \in H}(x-f(a))=\prod_{a \in H}(x-a)=x^{s}-1,
$$

and hence $u(f)=s$. Also $P_{k}(f)=\sum_{a \in H} f(a)^{k}=\sum_{a \in H} a^{k} \neq 0$ if and only if $k \equiv 0(\bmod s)$. Thus $w(f)=s$. Finally it is clear that $v(f)=s$.

Theorem 4.3. If $w<\infty$, then $w \leqslant v$.
Proof: Let $g(x)=d \sum_{a \in H}(x-f(a))^{q-1}+x^{q-1}$. Since

$$
\begin{aligned}
(x-f(a))^{q-1} & =\frac{(x-f(a))^{q}}{x-f(a)}=\frac{x^{q}-f(a)^{q}}{x-f(a)} \\
& =x^{q-1}+x^{q-2} f(a)+\cdots+x f(a)^{q-2}+f(a)^{q-1}
\end{aligned}
$$

we have

$$
\begin{aligned}
g(x) & =d\left(s x^{q-1}+P_{1}(f) x^{q-2}+\cdots+P_{q-2}(f) x+P_{q-1}(f)\right)+x^{q-1} \\
& =d\left(P_{1}(f) x^{q-2}+\cdots+P_{q-2}(f) x+P_{q-1}(f)\right) .
\end{aligned}
$$

Therefore $\operatorname{deg} g=q-1-w$. For each $b \in \mathbb{F}_{q}^{*}$, let $n_{b}=|\{a \in H \mid f(a)=b\}|$. Then $g(b)=d \sum_{a \in H}(b-f(a))^{q-1}+1=d\left(s-n_{b}\right)+1=-d n_{b}$. In particular, if $0 \neq b \notin f(H)$, then $g(b)=0$. Thus $\operatorname{deg} g \geqslant q-1-v$. Since $\operatorname{deg} g=q-1-w$, we conclude that $w \leqslant v$. $\quad \square$

Theorem 4.4. If $f(H) \varsubsetneqq H$, then $v+u \leqslant s$.

Proof: Consider the polynomial $g(x)=x^{s}-1-\prod_{a \in H}(x-f(a))$. Note $f(x)$ is a permutation polynomial of H if and only if $g(x)=0$. Since $g(f(b))=0$ for all $b \in H$, we have $v \leqslant \operatorname{deg} g$. But $g(x)=S_{1}(f) x^{s-1}-S_{2}(f) x^{s-2}+\cdots+(-1)^{3+1} S_{s}(f)-1$. Thus $\operatorname{deg} g=s-u$. Hence $v \leqslant s-u$.

Theorem 4.5. If $f \neq 0$ and $w<\infty$, then $u \leqslant w$.
Proof: By Newton's formula, for any $k \geqslant 1$ we have

$$
P_{k}=S_{1} P_{k-1}-S_{2} P_{k-2}+\cdots+(-1)^{k-2} S_{k-1} P_{1}+(-1)^{k-1} k S_{k} .
$$

In particular, $P_{w}=(-1)^{w-1} w S_{w}$. Thus it suffices to show that p does not divide w. But if $w=p j$, then

$$
\begin{equation*}
0 \neq P_{w}=\sum_{a \in H} f(a)^{p j}=\left(\sum_{a \in H} f(a)^{j}\right)^{p} \tag{D}
\end{equation*}
$$

and hence $P_{j} \neq 0$, a contradiction.
Theorem 4.6. If $f(0)=0$, then $u \geqslant s /(\operatorname{deg} f)$.
Proof: Let $n=\operatorname{deg} f$ and suppose $1<k<s / n$. Then

$$
\operatorname{deg} S_{k}\left(f\left(x_{1}\right), \ldots, f\left(x_{s}\right)\right) \leqslant n k<s
$$

By the fundamental theorem of symmetric polynomials, we have

$$
S_{k}\left(f\left(x_{1}\right), \ldots, f\left(x_{s}\right)\right)=P\left(S_{1}\left(x_{1}, \ldots, x_{s}\right), \cdots, S_{s-1}\left(x_{1}, \ldots, x_{s}\right)\right)
$$

for some polynomial P and the constant term of P is obtained when $x_{1}=\cdots=x_{s}=0$. Since $f(0)=0$, this constant term is 0 . Now let $H=\left\{a_{1}, \ldots, a_{s}\right\}$, so that

$$
S_{k}\left(f\left(a_{1}\right), \ldots, f\left(a_{s}\right)\right)=P\left(S_{1}\left(a_{1}, \ldots, a_{s}\right), \ldots, S_{s-1}\left(a_{1}, \ldots, a_{s-1}\right)\right) .
$$

But $x^{s}-1=\prod_{i=1}^{s}\left(x-a_{i}\right)=x^{s}-S_{1} x^{s-1}+S_{2} x^{s-2}-\cdots+(-1)^{s-1} S_{s-1} x-1$. Thus $S_{i}\left(a_{1}, \ldots, a_{s}\right)=0$ for all $i=1, \ldots, s-1$. Therefore

$$
S_{i}\left(f\left(a_{1}\right), \ldots, f\left(a_{s}\right)\right)=P(0, \ldots, 0)=0
$$

Consequently, if $1<k<s / n$, then $S_{k}(f)=0$. Hence $u \geqslant s / n$.
Corollary 4.7. If $f(0)=0$ and $f(H) \varsubsetneqq H$, then $v \leqslant s-s /(\operatorname{deg} f)$.
Thedrem 4.8. Let $f(H) \subset H, f(0)=0$ and $\operatorname{deg} f=n$. Then the following statements are equivalent:

1. f is a group permutation polynomial over H;
2. $u=s$;
3. $w=s$;
4. $v=s$;
5. $v>s-(s / n)$;
6. $u>s-v$;
7. $u>(s / 2)$;
8. $s-u<w$.

Proof: Clearly (1) implies all. Note that $w<\infty$ since $f(H) \subset H$. By Theorem 4.5, (2) implies (3). By Theorem 4.3, (3) implies (4). Clearly (4) implies (1). By Corollary 4.7, (5) implies (1). Finally (6) implies (1) by Theorem 4.4.

References

[1] O.J. Brison, 'On group-permutation polynomials', Portugal Math. 59 (1993), 335-383.
[2] L. Carlitz and C. Wells, 'The number of solutions of a special system of equations in a finite field', Acta Arith. 12 (1966), 77-84.
[3] L.E. Dickson, Linear Groups with an exposition of the Galois field theory (Dover, New York, 1958).
[4] R. Lidl and G.L. Mullen, 'When does a polynomial over a finite field permute the elements of the field?', Amer. Math. Monthly 100 (1988), 243-246.
[5] R. Lidl and G.L. Mullen, 'When does a polynomial over a finite field permute the elements of the field? II', Amer. Math. Monthly 95 (1993), 71-74.
[6] R. Lidl and H. Niederreiter, Finite fields, Encyclopedia Math. Appl. 20 (Addison-Wesley, Reading, MA, 1983).
[7] R. Matthews, 'Permutation properties of the polynomials over a finite field', Proc. Amer. Math. Soc. 120 (1994), 47-51.
[8] G.L. Mullen, 'Permutation polynomials: a matrix analog of Schur's conjecture and a survey of recent results', Finite Fields Appl. 1 (1995), 242-258.
[9] N. Niederreiter and K.H. Robinson, 'Complete mappings of finite fields', J. Austral. Math. Soc. 33 (1982), 197-212.
[10] Y.H. Park and J.B. Lee, 'Permutation polynomials with exponents in an arithmetic progression', Bull. Austral. Math. Soc. 57 (1998), 243-252.
[11] G. Turnwald, 'A new criterion for permutation polynomials', Finite Fields Appl. 1 (1995), 64-82.
[12] D. Wan and R. Lidl, 'Permutation polynomials of the form $x^{r} f\left(x^{(q-1) / d}\right)$ and their group structures', Montash. Math. 112 (1991), 149-163.

Department of Mathematics	Department of Mathematics
Kangwon National University	Yonsei University
Chuncheon 200-701	Seoul 120-749
Korea	Korea
e-mail: yhpark@math.kangwon.ac.kr	e-mail: leejb@bubble.yonsei.ac.kr

[^0]: Received 27th March, 2000
 This work is supported by BSRI-97-1423
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/01 \$A2.00+0.00.

