FRACTIONAL CONVOLUTION

DAVID MUSTARD ${ }^{1}$

(Received 23 January 1995; revised 23 April 1996)

Abstract

A continuous one-parameter set of binary operators on $L^{2}(\mathbb{R})$ called fractional convolution operators and which includes those of multiplication and convolution as particular cases is constructed by means of the Condon-Bargmann fractional Fourier transform. A fractional convolution theorem generalizes the standard Fourier convolution theorems and a fractional unit distribution generalizes the unit and delta distributions. Some explicit double-integral formulas for the fractional convolution between two functions are given and the induced operation between their corresponding Wigner distributions is found.

1. Introduction

The operation $*$, of convolution, on the space $L^{2}(\mathbb{R})$ is the dual under the FourierPlancherel operator \mathscr{F} of the operation \times, of multiplication [6]; that is, defining

$$
\begin{equation*}
\mathscr{F} f(y)=\widehat{f}(y)=(2 \pi)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-i y x} f(x) d x \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f * g(y)=(2 \pi)^{-\frac{1}{2}} \int_{\mathbb{R}} f(y-x) g(x) d x \tag{1.2}
\end{equation*}
$$

one gets for the convolution theorem the dual pair

$$
\begin{equation*}
\widehat{f \times g}=\widehat{f} * \widehat{g} \quad \text { and } \quad \widehat{f * g}=\widehat{f} \times \widehat{g} . \tag{1.3}
\end{equation*}
$$

In the context of signal processing the multiplication of signal f by signal g corresponds to a modulation of f by g whereas the convolution of f with g corresponds to a filtering of f by the filter with spectral response \widehat{g} [10]. It is of interest to see whether these two operations can be extended to a one-parameter family of operations $\left\{*_{\theta}\right\}$ in

[^0]which $*$ and \times appear just as particular cases. The operations $*_{\theta}$ between multiplication and convolution would then correspond to an influence between modulation and filtering.

In this paper I construct such a set of "fractional convolution" operators $\left\{*_{\theta}\right\}_{\theta \in \mathbb{I}}$ (where $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}$), in which $*_{0}=\times$ and $*_{\pi / 2}=*$, by means of the CondonBargmann fractional Fourier transform [1,4,8,9] and investigate some of its formal properties. The operator $*_{\theta}$ is commutative, associative and bilinear and obeys a fractional convolution theorem that includes both results (1.3) as particular cases. I find a "fractional unit" for $*_{\theta}$ that generalizes the units under x and $*$ and a deconvolution formula.

From the initial triple-integral construction of $f *_{\theta} g$ I get some other representations. Two are double-integral formulas and one shows $f *_{\theta} g$ as a product of certain elementary operations and Fourier transform operations.

In another paper [9] I have shown the Radon-transform relationship between the Condon-Bargmann fractional Fourier transform $\mathscr{F}_{\theta} f$ and the Wigner distribution $[2,7,11] W_{f}$ of f. The Wigner distributions $W_{f g}$ and $W_{f * g}$ are equal to onedimensional convolutions of W_{f} and W_{g} in the directions of the two axes in the Wigner plane. I define a θ-angled one-dimensional convolution, also denoted by $*_{\theta}$, between W_{f} and W_{g}, generalizing the two axial ones, and show that $W_{f *_{\theta} g}=W_{f} *_{\theta} W_{g}$, which generalizes and extends the earlier results.

2. The fractional convolution operator $*_{\theta}$

The integer powers of \mathscr{F} form a cyclic group of order 4 of unitary operators on $L^{2}(\mathbb{R})[6]$ in which the inner product and associated 2-norm are defined by

$$
\langle f, g\rangle=(2 \pi)^{-1 / 2} \int_{\mathbb{R}} \bar{f}(x) g(x) d x \quad \text { and } \quad\|f\|=\langle f, f\rangle^{1 / 2}
$$

This finite discrete group can be imbedded in a continuous one-parameter group of unitary operators, $\left\{\mathscr{F}_{\theta}\right\}_{\theta \in \mathbb{I}}$, the Condon-Bargmann group of fractional Fourier transforms [1, 4, 8, 9], obeying

$$
\begin{equation*}
\forall \theta_{1}, \theta_{2} \in \mathbb{T} \quad \mathscr{F}_{\theta_{1}} \mathscr{F}_{\theta_{2}}=\mathscr{F}_{\theta_{1}+\theta_{2}} \text { and } \forall k \in \mathbb{Z} \quad \mathscr{F}^{k}=\mathscr{F}_{k \pi / 2} \tag{2.1}
\end{equation*}
$$

This one-dimensional fractional Fourier operator is defined by

$$
\begin{equation*}
\mathscr{F}_{\theta} f(y)=f_{\theta}(y)=(2 \pi)^{-1 / 2} \int_{\mathbb{R}} K_{\theta}(x, y) f(x) d x \quad(\theta \in \mathbb{T}) \tag{2.2a}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{0}(x, y)=\sqrt{2 \pi} \delta(x-y) \quad \text { and } \quad K_{\pi}(x, y)=\sqrt{2 \pi} \delta(x+y) \tag{2.2b}
\end{equation*}
$$

(giving $\mathscr{F}_{0}=\mathscr{F}^{0}=\mathscr{I}$, the identity operator, and $\mathscr{F}_{\pi}=\mathscr{F}^{2}=\mathscr{P}$, the reversal operator, defined by $\mathscr{P} f(x)=f(-x)$) and where for $0<|\theta|<\pi$

$$
\begin{equation*}
K_{\theta}(x, y)=A_{\theta} \exp \left[\frac{-i}{2 \sin \theta}\left\{-\left(x^{2}+y^{2}\right) \cos \theta+2 x y\right\}\right], \tag{2.2c}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{\theta}=|\sin \theta|^{-1 / 2} \exp \left[-\frac{i}{2}\left(\frac{\pi}{2} \operatorname{sgn} \theta-\theta\right)\right] \tag{2.2~d}
\end{equation*}
$$

If one rewrites (1.3) replacing $*$ by " $*_{\pi / 2}$ " and \times by " $*_{0}$ " and using the notation of (2.2a) they suggest a generalization to a theorem involving a fractional convolution operator and a definition of $*_{\theta}$ provided that $*_{\theta}$ satisfies $*_{\pi / 2}=*_{-\pi / 2}$ and $*_{0}=*_{\pi}$.

DEFINITION 2.1. Let $f, g \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ then the fractional convolution $f *_{\theta} g$ is defined by

$$
\begin{equation*}
f *_{\theta} g=\left(f_{-\theta} g_{-\theta}\right)_{\theta} \quad(\theta \in \mathbb{T}) \tag{2.3}
\end{equation*}
$$

PROPOSITION 2.1.

$$
\begin{equation*}
\forall \phi \in \mathbb{T} \quad *_{\phi}=*_{\phi+\pi} . \tag{2.4}
\end{equation*}
$$

Proof. From Definition 2.1 and (2.1)

$$
\begin{equation*}
f_{0} *_{\phi+\pi} g_{0}=\left(f_{-(\phi+\pi)} g_{-(\phi+\pi)}\right)_{\phi+\pi}=\left[\mathscr{F}_{\pi}\left(f_{-(\phi+\pi)} g_{-(\phi+\pi)}\right)\right]_{\phi} \tag{2.5}
\end{equation*}
$$

But $\mathscr{F}_{\pi}=\mathscr{P}$, the reversal operator, for which $\mathscr{P}(f g)=(\mathscr{P} f)(\mathscr{P} g)=f_{\pi} g_{\pi}$, so

$$
\begin{equation*}
\mathscr{F}_{\pi}\left(f_{-(\phi+\pi)} g_{-(\phi+\pi)}\right)=f_{-(\phi+\pi)+\pi} g_{-(\phi+\pi)+\pi}=f_{-\phi} g_{-\phi} \tag{2.6}
\end{equation*}
$$

Using (2.6) in (2.5):

$$
f_{0} *_{\phi+\pi} g_{0}=\left(f_{-\phi} g_{-\phi}\right)_{\phi}
$$

that is, by (2.3),

$$
f_{0} *_{\phi+\pi} g_{0}=f_{0} *_{\phi} g_{0}
$$

which is just what the proposition claims.

COROLLARY.

$$
\begin{equation*}
*_{0}=*_{\pi} \quad \text { and } \quad *_{\pi / 2}=*_{-\pi / 2} \tag{2.7}
\end{equation*}
$$

so the definition of $*_{\theta}$ does satisfy the proviso made earlier.

We are now ready for the fractional convolution theorem.
THEOREM 2.1. Let $f, g \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ then

$$
\begin{equation*}
\forall \theta, \phi \in \mathbb{T} \quad\left(f_{0} *_{\phi} g_{0}\right)_{\theta}=f_{\theta} *_{\phi+\theta} g_{\theta} \tag{2.8}
\end{equation*}
$$

Proof. From (2.3) and using (2.1)

$$
\begin{equation*}
\left(f_{0} *_{\phi} g_{0}\right)_{\theta}=\left(\left(f_{-\phi} g_{-\phi}\right)_{\phi}\right)_{\theta}=\left(f_{-\phi} g_{-\phi}\right)_{\phi+\theta} \tag{2.9}
\end{equation*}
$$

and

$$
f_{\theta} *_{\phi+\theta} g_{\theta}=\left(f_{\theta-(\phi+\theta)} g_{\theta-(\phi+\theta)}\right)_{\phi+\theta}=\left(f_{-\phi} g_{-\phi}\right)_{\phi+\theta}
$$

that is, using (2.9), the required result, (2.8).

COROLLARY. Taking $\phi=0$ and $\theta=\pi / 2$ (2.8) yields $\widehat{f g}=\widehat{f} * \widehat{g}$; then taking $\phi=\pi / 2$ and $\theta=\pi / 2$ and using (2.7) (2.8) yields $\widehat{f * g}=\widehat{f} \widehat{g}$ so both the standard convolution results appear as particular cases of the fractional convolution theorem.

PROPOSITION 2.2. $*_{\theta}$ is associative; that is,

$$
\begin{equation*}
\forall \theta \in \mathbb{T} \quad \forall f, g, h \quad f *_{\theta}\left(g *_{\theta} h\right)=\left(f *_{\theta} g\right) *_{\theta} h . \tag{2.10}
\end{equation*}
$$

Proof. From the definition (2.3) and (2.1)

$$
f *_{\theta}\left(g *_{\theta} h\right)=f *_{\theta}\left(g_{-\theta} h_{-\theta}\right)_{\theta}=\left(f_{-\theta}\left(g_{-\theta} h_{-\theta}\right)_{\theta-\theta}\right)_{\theta}=\left(f_{-\theta} g_{-\theta} h_{-\theta}\right)_{\theta}
$$

from which the result is obvious.

REMARK. Generally for $\left(\theta_{1}-\theta_{2}\right) / \pi \notin \mathbb{Z} \quad f *_{\theta_{1}}\left(g *_{\theta_{2}} h\right) \neq\left(f *_{\theta_{1}} g\right) *_{\theta_{2}} h$.

3. The fractional convolution unit I_{θ} and deconvolution

DEFINITION 3.1. Define the distribution 1_{θ} by

$$
\begin{equation*}
1_{\theta}=\mathscr{F}_{\theta} 1 \quad(\theta \in \mathbb{I}) \tag{3.1}
\end{equation*}
$$

The relations between the unit for $\times, 1$, and the unit for $*$ (as in (1.2)), $\sqrt{2 \pi} \delta$, are now expressed $1_{\pi / 2}=\sqrt{2 \pi} \delta$ and $\sqrt{2 \pi} \delta_{\pi / 2}=1$ and so

$$
\begin{equation*}
l_{\theta}=\sqrt{2 \pi} \delta_{\pi / 2+\theta} \tag{3.2}
\end{equation*}
$$

From (2.2) one gets immediately for $0<|\theta|<\pi$

$$
\begin{equation*}
\sqrt{2 \pi} \delta_{\theta}(y)=|\sin \theta|^{-1 / 2} \exp \left[-\frac{i}{2}\left(\frac{\pi}{2} \operatorname{sgn} \theta-\theta-y^{2} \cot \theta\right)\right] . \tag{3.3}
\end{equation*}
$$

Replacing θ by $\pi / 2+\theta$ in (3.3) and using (3.2) one gets for $|\theta|<\pi / 2$ the explicit function

$$
\begin{equation*}
\mathbf{1}_{\theta}(y)=|\cos \theta|^{-1 / 2} \exp \left[-\frac{i}{2}\left(-\theta+y^{2} \tan \theta\right)\right] . \tag{3.4}
\end{equation*}
$$

Proposition 3.1. $\mathbf{1}_{\theta}$ is the unit under fractional convolution $*_{\theta}$; that is,

$$
\begin{equation*}
\forall f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R}) \quad 1_{\theta} *_{\theta} f=f \tag{3.5}
\end{equation*}
$$

Proof. From the definitions of $*_{\theta}$ and 1_{θ} in (2.3) and (3.1) and (2.1)

$$
1_{\theta} *_{\theta} f=\left(1_{\theta-\theta} f_{-\theta}\right)_{\theta}=\left(1_{0} f_{-\theta}\right)_{\theta}=f_{-\theta+\theta}=f .
$$

Given $f *_{\theta} g$, where f is known, then to deconvolve it by a further fractional convolution with some x, so as to recover g, means x must satisfy

$$
\begin{equation*}
\forall g \quad x *_{\theta}\left(f *_{\theta} g\right)=g . \tag{3.6}
\end{equation*}
$$

By Propositions 2.2 and 3.1 this means x must satisfy

$$
\begin{equation*}
x *_{\theta} f=1_{\theta} ; \tag{3.7}
\end{equation*}
$$

that is, x is a convolutional inverse of f.

Proposition 3.2. If $\left(1 / f_{-\theta}\right)_{\theta}$ exists then it is a convolutional inverse of f and solves the deconvolution problem (3.6).

Proof. Formally solve (3.7) for x using (2.3), (3.1) and (2.1).
(If the given f is in $L^{2}(\mathbb{R})$ then $1 / f_{-\theta}$ is not and so $\left(1 / f_{-\theta}\right)_{\theta}$ exists only in a distributional sense.)

4. Explicit formulas for $f *_{\theta} g$

The calculation of a fractional convolution directly from Definition 2.1 involves three integrations however a little manipulation yields double-integral formulas.

One gets

$$
\begin{equation*}
f *_{\theta} g(t)=(2 \pi)^{-1} \int_{\mathbb{R}^{2}} C_{\theta}(u, v ; t) f(u) g(v) d u d v \tag{4.1a}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{\theta}(u, v ; t)=|\sin \theta|^{-1} \exp [i(u-t)(v-t) \cot \theta] 1_{-\theta}(u+v-t) \tag{4.1b}
\end{equation*}
$$

a double-integral formula symmetric in f and g.
Changing the variables in (4.1) by putting $z=u+v-t$ and $w=u-v$ leads to

$$
\begin{equation*}
f *_{\theta} g(t)=(2 \pi)^{-1 / 2} \int_{\mathbb{R}} \frac{\exp \left[i\left(\frac{z-t}{2}\right)^{2} \cot \theta\right]}{|\sin \theta|^{1 / 2}} 1_{-\theta}(z) Q_{\theta}(f, g ; z+t) d z \tag{4.2a}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{\theta}(f, g ; z)=(2 \pi)^{-1 / 2} \int_{\mathbb{R}} \frac{\exp \left[-i w^{2} \cot \theta\right]}{|\sin \theta|^{1 / 2}} f\left(\frac{z}{2}+w\right) g\left(\frac{z}{2}-w\right) d w \tag{4.2b}
\end{equation*}
$$

a repeated integral, again symmetric in f and g.
To develop numerical algorithms to approximate $f *_{\theta} g$ it may be useful to represent it as the result of elementary operations for which efficient algorithms are already known.

Define the chirp and scaling groups of unitary operators $\left\{C_{a}\right\}_{a \in \mathbb{R}}$ and $\left\{S_{a}\right\}_{a \in \mathbb{R}^{*}}$ (where $\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$) by $C_{a} f(t)=\exp \left[i a t^{2} / 2\right] f(t)$ and $S_{a} f(t)=|a|^{1 / 2} f(a t)$ then the fractional Fourier transform \mathscr{F}_{θ} of (2.2) can be written

$$
\mathscr{F}_{\theta}=\alpha_{\theta} C_{\mathrm{cot} \theta} S_{c s c \theta} \mathscr{F} C_{\mathrm{cot} \theta} \quad \text { where } \quad \alpha_{\theta}=\exp \left[-i \frac{1}{2}\left(\frac{\pi}{2} \operatorname{sgn} \theta-\theta\right)\right]
$$

Applying this representation of \mathscr{F}_{θ} to the definition of $f *_{\theta} g$ yields

$$
\begin{equation*}
f *_{\theta} g=A_{-\theta} C_{\cot \theta} \mathscr{F}^{-1} C_{-\cos \theta \sin \theta} \mathscr{F}\left[\left(C_{-\cot \theta} f\right) *\left(C_{-\cot \theta} g\right)\right], \tag{4.3}
\end{equation*}
$$

where A_{θ} is defined in (2.2d).

5. Fractional convolution and the Wigner distribution

One member of the Cohen class $\left\{C_{f}\right\}$ of generalised phase-space distributions [3] associated with a function $f \in L^{2}(\mathbb{R})$ is the Wigner distribution [11] $W: L^{2}(\mathbb{R}) \rightarrow$ $L^{2}\left(\mathbb{R}^{2}\right)$ where $f \mapsto W_{f}$ and

$$
\begin{equation*}
W_{f}(\mathbf{x})=(2 \pi)^{-1 / 2} \int_{\mathbb{R}} e^{-i x_{2} p} f\left(x_{1}+\frac{p}{2}\right) \bar{f}\left(x_{1}-\frac{p}{2}\right) d p \tag{5.1}
\end{equation*}
$$

Many members of the Cohen class have marginal distributions along the two axes given by

$$
(2 \pi)^{-1 / 2} \int_{\mathbb{R}} C_{f}(\mathbf{x}) d x_{1}=\left|\widehat{f}\left(x_{2}\right)\right|^{2} \quad \text { and } \quad(2 \pi)^{-1 / 2} \int_{\mathbb{R}} C_{f}(\mathbf{x}) d x_{2}=\left|f\left(x_{1}\right)\right|^{2}
$$

and this has the natural generalization that

$$
\begin{equation*}
\forall \theta \in \mathbb{T} \quad(2 \pi)^{-1 / 2} \int_{\ell(r, \theta)} C_{f}(x) d \ell=\left|f_{\theta}(r)\right|^{2} \tag{5.2}
\end{equation*}
$$

where $d \ell$ is the element of Euclidean arc length along the line $\ell(r, \theta)$ whose equation is $x_{1} \cos \theta+x_{2} \sin \theta=r$. This generalization states that the Radon transform [5] of C_{f} is the energy-density function $\left|f_{\theta}(r)\right|^{2}$ of the fractional Fourier transform regarded as a function on \mathbb{R}^{2} in polar coordinates r and θ. In another paper [9] I have shown that this Radon-transform relationship (2) with the fractional Fourier transform holds only for the Wigner distribution W_{f}.

One now naturally asks what is the operation between W_{f} and W_{g} that is induced by fractional convolution under the map $f \mapsto W_{f}$. First define $*^{1}$ and $*^{2}$ as the one-dimensional convolutions in the Wigner plane with respect to the first and second arguments.

DEfinition 5.1.

$$
\begin{equation*}
W_{f} *^{1} W_{g}(\mathbf{x})=(2 \pi)^{-1 / 2} \int_{\mathbb{R}} W_{f}\left(x_{1}-u, x_{2}\right) W_{g}\left(u, x_{2}\right) d u \tag{5.3a}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{f} *^{2} W_{g}(\mathbf{x})=(2 \pi)^{-1 / 2} \int_{\mathbb{R}} W_{f}\left(x_{1}, x_{2}-u\right) W_{g}\left(x_{1}, u\right) d u \tag{5.3b}
\end{equation*}
$$

It is easy to show the following relationships linking multiplication and convolution between f and g to $*^{1}$ and $*^{2}$ between W_{f} and W_{g}.

PROPOSITION 5.1.

$$
\begin{equation*}
W_{f * g}=W_{f} *^{1} W_{g} \quad \text { and } \quad W_{f g}=W_{f} *^{2} W_{g} \tag{5.4}
\end{equation*}
$$

I now define "convolution in direction θ " on the Wigner plane and denote it also by " $*_{\theta}$ ".

DEFInITION 5.2. Let

$$
P_{\theta}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \tag{5.5}\\
\sin \theta & \cos \theta
\end{array}\right] \quad \text { and } \quad W_{\theta, f}(\mathbf{x})=W_{f}\left(P_{\theta} \mathbf{x}\right)
$$

then define $W_{f} *_{\theta} W_{g}$ by

$$
\begin{equation*}
W_{f} *_{\theta} W_{g}(\mathbf{x})=W_{-\theta, f} *^{2} W_{-\theta . g}\left(P_{\theta} \mathbf{x}\right) \tag{5.6}
\end{equation*}
$$

One can show (for example, from the more general result of Proposition 4.28 in [7] and using there $\mathscr{A}=P_{\theta}$ from above) that

$$
\begin{equation*}
W_{\theta . f}=W_{f_{\theta}} \tag{5.7}
\end{equation*}
$$

The generalization of the results of Proposition 5.1 and the answer to the question raised earlier are contained in the following theorem.

Theorem 5.1.

$$
\begin{equation*}
\forall \theta \in \mathbb{J}, \quad \forall f, g \in L^{2}(\mathbb{R}) \quad W_{f *_{\theta} g}=W_{f} *_{\theta} W_{g} \tag{5.8}
\end{equation*}
$$

PROOF.

$$
\begin{aligned}
W_{f *_{\theta} g}(\mathbf{x}) & =W_{\left(f_{-\theta} g_{-\theta}\right)_{\theta}}(\mathbf{x}) \quad \text { (by Definition 2.1) } \\
& =W_{f_{-\theta,-\theta}}\left(P_{\theta} \mathbf{x}\right) \quad(\text { by }(5.7) \text { and (5.5)) } \\
& =W_{f_{-\theta}} *^{2} W_{g-\theta}\left(P_{\theta} \mathbf{x}\right) \quad(\text { by }(5.4)) \\
& =W_{-\theta . f} *^{2} W_{-\theta . g}\left(P_{\theta} \mathbf{x}\right) \quad(\text { by }(5.7)) \\
& =W_{f} *_{\theta} W_{g}(\mathbf{x}) \quad \text { (by Definition 5.2) }
\end{aligned}
$$

COROLLARY. Choosing $\theta=0$ and $\theta=\pi / 2$ one recovers as particular cases the results of Proposition 5.1.

Acknowledgements

I am grateful for study leave from the University of New South Wales and for the generous hospitality of the Indian Statistical Institute (Bangalore and New Delhi) and Murdoch University (Perth). I also thank the referee for several helpful suggestions.

References

[1] V. Bargmann, "On a Hilbert space of analytic functions and an associated integral transform. Part I'", Comm. Pure Appl. Math. 14 (1961) 187-214.
[2] T. A. C. M. Claasen and W.F.G. Mecklenbräuker, "The Wigner distribution - a tool for timefrequency signal analysis III", Philips J. Res. 35 (1980) 372-389.
[3] L. Cohen, "Generalized phase-space distribution functions", J. of Math. Phys. 7 (1966) 781-786.
[4] E. U. Condon, "Immersion of the Fourier transform in a continuous group of functional transformations", Proc. Nat. Acad. Sci.USA 23 (1937) 158-164.
[5] S. R. Deans, The Radon transform and some of its applications (John Wiley, New York, 1983).
[6] H. Dym and H.P. McKean, Fourier Series and Integrals (Academic Press, New York, 1972).
[7] G. B. Folland, "Harmonic analysis in phase space", in Annals of Mathematics Studies 122, (Princeton Univ. Press, Princeton, 1989).
[8] D. Mustard, "The fractional Fourier transform and the Wigner distribution", J. Austral. Math. Soc. Ser. B 38 (1996) 209-219.
[9] D. Mustard, "Lie group imbeddings of the Fourier transform and a new family of uncertainty principles", Proceedings of the Centre for Mathematical Analysis 16 (1987) 211-222.
[10] A. Papoulis, Signal Analysis (McGraw-Hill, New York, 1977).
[11] E. Wigner, "On the quantum correction for thermodynamic equilibrium", Phys. Rev. 40 (1932) 749-759.

[^0]: 'School of Mathematics, University of New South Wales, Sydney, Australia 2052.
 (C) Australian Mathematical Society, 1998, Serial-fee code 0334-2700/98

