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Abstract
Researchers of time series cross-sectional data regularly face the change-point problem, which requires

them to discern between significant parametric shifts that can be deemed structural changes and minor

parametric shifts that must be considered noise. In this paper, we develop a general Bayesian method for

change-point detection in high-dimensional data and present its application in the context of the fixed-effect

model. Our proposed method, hidden Markov Bayesian bridge model, jointly estimates high-dimensional

regime-specific parameters and hidden regime transitions in a unified way. We apply our method to Alvarez,

Garrett, and Lange’s (1991, American Political Science Review 85, 539–556) study of the relationship between
government partisanship and economic growth and Allee and Scalera’s (2012, International Organization 66,
243–276) study of membership effects in international organizations. In both applications, we found that the

proposed method successfully identify substantively meaningful temporal heterogeneity in parameters of

regression models.

Keywords: Bayesian inference, change-point detection, regularization, shrinkage, high-dimensional data

1 Introduction

Many of the datasets encountered by political scientists in applied research take the form of

repeated observations from a fixed number of subjects, the most well-known of which is time

series cross-sectional (TSCS) data. When examining these time series data, researchers frequently

run into the change-point problem because an underlying theory predicts that the effect of some

variables will change or because researchers are concerned that unknown breaks will result in

model misspecification and omitted variable bias. In any scenario, identifying change points in

regression coefficients has a significant impact on substantive findings.

Detecting change points in regression parameters requires researchers to distinguish between

major parametric shifts that can be interpreted as structural changes andminor parametric shifts

that must be interpreted as noise. There are two statistical challenges that arise when attempting

to identify major change points. First, two “unknowns” in the change-point problem (change

points and regime-dependent parameters) must be jointly estimated. Separate estimates, such
as data segmentation and separate model fitting, introduce the danger of overfitting or incorrect

data splitting. Second, due to the possibility of rank deficiency in subsample data, parameter

regularization must be considered in conjunction with the joint estimation of change points and

regime-dependent parameters.

In this paper, we propose a new Bayesian method for joint estimation of change points and

regime-specific regression parameters in high-dimensional data. Our proposedmethod combines

Bayesian methods for parameter regularization, change-point detection, and variable selection.

We first introduce the hiddenMarkov Bayesian bridgemodel (HMBB), which combines a Bayesian

bridgemodel for parameter regularizationwith a hiddenMarkovmodel formultiple change-point

detection. In thispaper,wepresentHMBB in thecontextofTSCSdatabecauseTSCSdatahavebeen

the core of dynamicmodel development in political science literature (Beck 2001; Beck et al. 1993;
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Beck and Katz 1995; Beck and Katz 2011; Box-Steffensmeier et al. 2014; Brandt and Freeman 2006;
Hazlett and Wainstein 2022; Imai and Kim 2021; Pang, Liu, and Xu 2022; Western and Kleykamp

2004; Wucherpfennig et al. 2021).
Having said that, ourwork closely follows the development of change-pointmodels in political

science, economics, and statistics. In political science, Beck (1983) introduced the idea of change

points asa special caseof time-varyingparametermodelswitha sharpchange.Afterward,Western

and Kleykamp (2004) elaborated on the benefits of using a Bayesian modeling method to the

change-point problem. According to Western and Kleykamp, the Bayesian approach “combines

the advantages of diagnostic and parametric approaches but addresses their limitations. . . .Like

diagnostic methods, the Bayesian analysis treats the timing of change as uncertain and the

locationof a changepoint as aparameter tobeestimated. . . .Likeparametricmodels, theBayesian

model yields statistical inferences about regression coefficients. However, these inferences reflect

prior uncertainty about the location of the change point that is unaccounted for in conventional

models” (355). After Western and Kleykamp (2004), Spirling (2007b) developed the concept of

Bayesian change-point modeling in the setting of a limited dependent variable based on Carlin,

Gelfand, and Smith (1992). On the other hand, Park (2010, 2011b, 2012) extended Chib’s (1998)

multiple-change-point model to binary, ordinal, count, and panel data cases. Blackwell (2018)

relaxed the restriction of the fixed change-point numbers in over-dispersed count datamodels by

employing Fox et al.’s (2011) hierarchical Dirichlet process approach. Furthermore, Kent, Wilson,
and Cranmer (2022) presented a change-point detection method using a permutation-based

parameter distribution.1

We will discuss the change-point problem in regression models with a large number of

predictors in the sections that follow. Following that, we provide a fixed-effects HMBB for TSCS

data and describe our proposed estimation and model diagnostic procedures. We demonstrate

the proposed method’s performance on simulated data. Then, we apply our method to Alvarez,

Garrett, and Lange’s (1991) study of the relationship between government partisanship and

economicgrowth, aswell asAlleeandScalera’s (2012) studyofmembershipeffects in international

organizations (IOs). Our proposed method is freely available as an open-source R package

BridgeChange (https://github.com/jongheepark/BridgeChange).

2 Problem

The change-point problem in regressionmodels with a large number of predictors is illustrated in

Figure 1. The difficulty of detecting substantial fromminor changes in time-varying characteristics

is illustrated inpanel (a). Theground truth shows twomajor shifts (vertical graybars) in twogroups

of parameters (A andC). All parameters, however, have changed slightly. The number and location

of major changes, as well as regime-specific parameter values, are the two main quantities of

importance in the change-point analysis. We need a principledmethod to identify major changes

(vertical gray bars) from minor changes (local fluctuations). It is also important to note that the

regime shifts in panel (a) are abrupt, but not deterministic. Separate regression after data splitting

(or using a period dummy regression model) does not adequately represent the data generating

process with stochastic regime transitions.

Panel (b) in Figure 1 reveals a caseof rankdeficiency in the change-point analysis evenwhen the

pooled data have full rank. Despite the fact that the entire sample hasN > K , whereNdenotes the
number of observations andK denotes thenumber of predictors, oneof the subsamples identified

1 Change-point models have been widely used in applied work in political science such as the study of court (Hendershot
et al. 2013; Pang et al. 2012; Park 2011a), terrorist attacks (Brandt and Sandler 2010; Santifort, Sandler, and Brandt 2013),
congress (Smith et al. 1999; Wawro and Katznelson 2014), civil war (Cederman, Gleditsch, and Wucherpfennig 2017), war
casualties (Spirling 2007a), and international conflict (Nieman 2015).
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Figure 1. Illustration of the change-point problem in regression models with a large number of predictors.

by a hidden regime may have Nm ≤ K , where Nm denotes the number of observations in regime

m and K denotes the number of predictors.
In order to address the problems in Figure 1, we need a statistical method that combines

change-point models with high-dimensional regression models. Recently, there has been a surge

of high-dimensional change-point detection methods in frequentist approaches (e.g., Chan, Yau,

and Zhang 2014; Frick, Munk, and Sieling 2014; Lee et al. 2018; Lee, Seo, and Shin 2016). Most of
thesemethods focus on simple cases of high-dimensional change-point problems in which only a

small subset of parameters are time-varying or the case under consideration is limited to a single-

break case.

Our strategy is to take a full advantage of recent developments in regularizationmethods in the

statistics literature (Carvalho, Polson, and Scott 2010; Chernozhukov et al. 2017; Fan and Li 2001;
Hoerl andKennard 1970;ParkandCasella2008;Polson2012; Tibshirani 1996; Tibshiranietal.2004;
Zou and Hastie 2005). In particular, we emphasize that a Bayesian shrinkage approach to high-

dimensional regression provides an effective framework for regularizing high-dimensional model

parameters while also providing a credible measure of estimation uncertainty (Kyung et al. 2010;
Polson and Scott 2010).

3 Method

We introduce our proposedmethod for examining change-point effects in regressionmodels with

a largenumberof predictors in this section. Anexampleprocedure for implementing theproposed

method is as follows:

1. model specification based on a theory and available data,

2. model fitting using multiple HMBBs with a varying number of break points,

3. model diagnostic using the Watanabe–Akaike Information Criterion (WAIC),

4. posterior summary of hidden state transitions and time-varying parameters.

3.1 Bridge Estimator
We begin with the Bridge estimator for parameter regularization (Frank and Friedman 1993; Fu

1998). The Bridge estimator is motivated by the penalized likelihood formulation shown below:

β̂bridge = arg min
β∈Rp

{1
2

n∑
t=1

(yt −x�t β)2 +ν

p∑
j=1

|βj |α
}
, (1)

where 0 < α ≤ 2 (Frank and Friedman 1993; Fu 1998). The above formula has an interesting feature
in that the popular lasso estimator and ridge regression can be obtained as special cases of
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this estimator when α = 1 and α = 2, respectively. The variable selection feature of the bridge

regression is asymptotic when 0 < α ≤ 1 (Frank and Friedman 1993; Huang, Horowitz, and Ma

2008).Becauseof this generality, Equation (1) hasgarneredan increasingattention in thestatistical

literature (Armagan 2009; Fan and Li 2001; Huang et al. 2009; Huang et al. 2008; Liu et al. 2007;
Polson, Scott, and Windle 2014).

We employ Polson et al.’s (2014) Bayesian approach of the bridge model in this research.
A significant novelty in Polson et al.’s (2014) Bayesian method is the use of Lévy processes to
create joint priors for βj and local shrinkage parameters (λj ). A combined prior distribution of the

regression parameter b and the local shrinkage parameter Λ = diag(λ1, . . . ,λj ) is represented as

follows using scale mixes of normal representation:

p(β,Λ|τ,α ) ∝
p∏
j=1

exp

(
−
β 2
j

2τ2
λj

)
p(λj ), (2)

where p(λj ) is the density of 2Sα/2 and Sα is the Lévy alpha-stable distribution.

Equation (2) increases the efficiency of the Markov chain Monte Carlo (MCMC) method by

allowing posterior samples of local shrinkage parameters (Λ = diag(λ1, . . . ,λj )) to be sampled

independently of global shrinkage parameter sampling (τ). The dependence of the sampling of

the global shrinkage parameter on the sample of the local shrinkage parameter has been cited as

a significant restriction of Bayesian shrinkage models (Hans 2010; Polson et al. 2014).
In the case of a linear regression model with β as regression slope parameters and σ2 as

a residual variance parameter, the posterior distribution of the Bayesian bridge model can be

written as

p(β,σ2,Λ,α ,ν |y,X) ∝ p(y|β,σ2)p(β,Λ|τ,α )p(σ2)p(α )p(ν) (3)

∝ exp
[
− 1

2σ2
(y−Xβ)�(y−Xβ)

] p∏
j=1

exp

(
−
β 2
j

2τ2
λj

)
p(λj )

×
(
1

σ2

) a0
2 +1

exp

(
− b0

2σ2

)
νc0−1 exp(−d0ν).

3.2 HMBB
Now, we allow the Bayesian bridge model’s parameters to vary in response to a hidden state

transition. Tobemoreprecise, letSdenote a vector of hidden state variableswhere st is an integer-

valued hidden state variable at t

S = {(s1, . . . , sn ) : st ∈ {1, . . . ,M }, t = 1, . . . ,n}, (4)

and P as a forward movingM ×M transition matrix where pi is the ith row of P andM is the total
number of hidden states. For example, if we assumea single break,M = 2 andP is a 2×2 transition
matrix. For efficient sampling of hidden states, we adopt Chib’s (1998) non-ergodic transition of

hidden states where a hidden state variable starts from state 1 andmoves forward to the terminal

state (M).
Fromtheabovedescription,wecandevelopa fixed-effectsHMBB forTSCSdatausing thegroup-

demeaned data (ȳ, x̄):

ȳi t =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x̄�i tβ1 + εi t , εi t ∼ N (0,σ2

1 ) for t0 ≤ t < τ1
...

...
...

...
...

x̄�i tβM + εi t , εi t ∼ N (0,σ2
M ) for τM−1 ≤ t <T

(5)
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whereτm is thebreakpoint between regimem−1and regimem. In order to allowmanypredictors,
we use the Bayesian bridge prior for β as shown in Equation (2). The posterior distribution of the

resulting model is

p(β,σ2,Λ,α ,τ,P|ȳ, x̄) =
∫

p(ȳ1 |x̄1,β,σ2
1 ,Λ1,α1,τ1) (6)

×
T∏
t=2

M∑
m=1

p(ȳt |Ȳt−1, X̄t−1,βm ,σ
2
m ,Λm ,αm ,τm ,P)

×p(st =m |st−1,β,σ2,Λ,α ,τ,P)p(P)p(β,Λ)p(σ2)p(α )p(τ)dS,

where ȳt = (ȳ1t , . . . , ȳnt ) and x̄t = (x̄1t , . . . , x̄nt ). Ȳt−1 and X̄t−1 indicate all the group-demeaned
data up to t − 1. The subscript m in model parameters (β,σ2,Λ,α ,ν) indicates hidden states it

belongs to.2

If we ignore the Markov property of hidden regimes, we can simplify Equation (6) as

p(Θ |D) =
T∏
t=1

M∑
m=1

p(st =m)×p(Θm |Dt )

by setting Dt = (ȳt , x̄t ) andΘ = (β,σ2,Λ,α ,ν). The posterior distribution takes a form of amixture

distribution. From this, it becomes clear that HMBB estimates can be considered as weighted

averages of Bayesian bridge regression model estimates fitted to subsets of data partitioned by

known change points. Because we do not know the location and number of change points in

reality, the hidden state variable is added as a latent variable and sampled from data in HMBB.

The sampling algorithm is discussed in Appendix A.

3.3 Model Diagnostics using WAIC
After fitting multiple HMBBs with a varying number of breaks (or different model specifications),

researchers must assess the model’s fit to observed data. Model checking is a critical step in

Bayesian analysis in general. This is especially true in the case of change-point analysis, where

the break points are unknown.

We recommend the WAIC for model diagnostics of HMBB because of its low computational

cost.3 WAIC is a fully Bayesian estimate of model uncertainty. WAIC approximates the expected

2 A random-effects HMBB can be written in a similar way by letting parameters of the random-effects model vary across
subjects:

yi t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x�
i t
β1 +w

�
i t
bi + εi t , bi ∼ N(0,D1), εi t ∼ N(0,σ2

1 ) for t0 ≤ t < τ1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

x�
i t
βM +w�

i t
bi + εi t , bi ∼ N(0,DM ), εi t ∼ N(0,σ2

M ) for τM−1 ≤ t <T

.

Then, the Bayesian bridge prior is used as the prior distribution ofβ. The posterior distribution of the resultingmodel will
take the following form:

p(β,D,σ2,Λ,α ,τ,P |y,X,W) =
∫

p(y1 |X1,W1,β1,bi ,D1,σ
2
1 ,Λ1,α1,τ1) (7)

T∏
t=2

M∑
m=1

p(yt |Yt−1,Xt−1,Wt−1,βm ,bi ,Dm ,σ
2
m ,Λm ,αm ,τm ,P)

p(st =m |st−1,β,bi ,D,σ2,Λ,α ,τ,P)

p(P)p(β,Λ)p(D)p(σ2)p(α )p(τ)dbi dS.

Although we do not discuss a random-effects HMBB in this paper, it is available in BridgeChange.
3 We also examined the approximate logmarginal likelihood (Chib 1995). However, in our test, the approximate logmarginal
likelihood of HMBB does not show a satisfactory result. The software to compute the approximate logmarginal likelihood
of HMBB is available in BridgeChange. We discuss the computational algorithm to estimate the approximate logmarginal
likelihood of HMBB in the Supplementary Material.
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log pointwise predictive density by subtracting a bias for the effective number of parameters from

the sum of log pointwise predictive density. Using Gelman, Hwang, and Vehtari’s (2014) formula,

a WAIC of HMBB withM latent states (MM ) is

WAICMM
= −2

( n∑
t=1

log

⎡⎢⎢⎢⎢⎣
1

G

G∑
g=1

p(yt |β(g ),σ2,(g ),Λ(g ),α (g ),τ (g ),P(g ),MM )

⎤⎥⎥⎥⎥⎦︸�����������������������������������������������������������������������︷︷�����������������������������������������������������������������������︸
the expected log pointwise predictive density

−

n∑
t=1

VG
g=1

[
logp(yt |β(g ),σ2,(g ),Λ(g ),α (g ),τ (g ),P(g ),MM )

]
︸���������������������������������������������������������������������︷︷���������������������������������������������������������������������︸

bias for the effective number of parameters

)
,

where G is the MCMC simulation size, V [·] indicates a variance, and θ(g ) are the gth simulated
outputs for θ.

4 Simulation Study

4.1 Simulated Data
We construct 24 sets of TSCS data with varied group sizes (n = (10,20)), time lengths (t = (30,60)),

predictor sizes (k = (20,30)), and break numbers (m = (0,1,2)) to evaluate the validity of our

proposedmethod. We set xt ∼ Nk (0, Ik ) and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
β1 ∼ N (2,1), for t0 ≤ t < τ1,

β2 ∼ N (−2,1), for t1 ≤ t < τ2 if m ≥ 1,

β2 ∼ N (2,1), for t2 ≤ t < τ3 if m ≥ 2.

From this, we generate yt as

yt =

systematic component︷︸︸︷
xtβst +

stochastic component︷���������������������︸︸���������������������︷
α+CHOL(σst ωt It )εt ,

α ∼ N (0,5), (individual effects)
σM = (

√
2,
√
3,
√
2), (state-level heterogeneity)

ωt ∼ N (0,1), (contemporaneous shocks)
εt ∼ N (0,1), (observation error)

where CHOL indicates the Cholesky factorization. That is, the observed data are generated by

the systematic component, time-invariant group-level factors, time-varying contemporaneous

shocks, and time-varying observation error.

The fixed-effects HMBB of BridgeChange uses pre-transformed data for the input. The pre-
transformation is done by plm package in R (Croissant and Millo 2008). For the one-way fixed-
effects HMBB, the data are transformed into group-centered (either by time or group) data. For

the two-way fixed-effects HMBB, the data are transformed into doubly group-centered data.

4.2 Simulation Results
Figure 2 summarizes the results of the simulation. Panel (a) shows the root-mean-square errors

(RMSEs) of the frequentist fixed-effects model using plm package (FE) and three fixed-effects
HMBBs with break numbers of 0, 1, and 2 (HMBB breaks 0, 1, and 2). The formula for RMSE is

RMSE =

√√√
K −1T −1

K∑
k=1

T∑
t=1

(β̂k ,t −β truek ,t
)2.
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Figure 2. Simulation outcomes from24 sets of TSCS data. The brown circles indicate the true break numbers.
Panel (a) indicates the root-mean-square error of time-varying parameters. Panel (b) is WAIC. A lower WAIC
score indicates a good predictive accuracy.

The brown circles indicate the true break numbers in panel (a). When the true break value is 0

(left), the fixed-effects model and the fixed-effects HMBB with no break have the lowest RMSEs.

When the true break number is 1 (center), the RMSEs of no-breakmodels (FE or HMBB break 0) are

much greater than those of HMBB with multiple breaks, indicating a poor model fit. Panel (b) in

Figure 2 also shows that WAIC scores successfully identify true models (brown circles).

One interestingpattern inFigure2 is theover-detectionofhiddenstatesbybothRMSEandWAIC.
When theground truth is timeseriesdatawithasinglebreak (themiddlecolumn),RMSEsandWAIC

scores sometimes favor two-breakmodels over one breakmodels, which are closer to the ground

truth. RMSEs and WAIC scores do not, however, favor models with fewer breaks than the ground

truth. That is, there is no sign of under-detection of hidden states by HMBB.

Generally speaking, under-detection is a significantly more problematic issue than over-

detection. Figure 4 illustrates this point. We compare the simulation results with one break (a)

and two breaks (b) for n = 20, t = 60, and k = 30. The ground truth of panel (a) is time series

data with a single break, and the ground truth of panel (b) is time series data with two breaks.

Thus, the right column of panel (a) shows the case of the hidden state over-detection, and the

left column of panel (b) shows the case of the hidden state under-detection. The left column of

panel (a) and the right column of panel (b) show the cases where the number of hidden states is

correctly assumed. It is clear that substantive results obtained using either of the two models in

panel (a) are self-evidently similar, whereas substantive results obtained using the two models

in panel (b) are vastly different. The under-detected model (the left column of panel (b)) fails to

capture an upward parameter shift in t > 40.
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Figure 3. Simulation outcomes from 24 sets of TSCS data. Panel (a) shows recovered hidden states
(gray) over true states (black). We jittered hidden state estimates for easy comparison. Panel (b) is
a stabilized Gelman–Rubin statistics (Vats and Knudson 2021). The values close to 1 indicate good
convergence.

Figure 3 shows additional simulation results. Panel (a) compares recovered hidden states

(bright thin lines) with the ground truth (thick lines). Panel (a) clearly demonstrates that HMBB

successfully uncovers hidden state structures under various setups. Panel (b) shows convergence

diagnostics of the simulation results using a stabilizedGelman–Rubin statistics (Vats andKnudson

2021). Thevalues that are close to 1 indicate goodconvergenceofMarkov chains. All Gelman–Rubin

statistics are close to 1.

To summarize, Bayesian model diagnostics with WAIC give a solid framework for avoiding

the problem of under-detection. However, WAIC frequently exposes researchers to the problem

of over-detection. Comparing hidden state transitions between multiple models, as we did in

Figure 4, is the best way to check for the over-detection problem. We will cover a more practical

guidance in greater detail when we examine applications.
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Figure 4. Over-detection (a) and under-detection (b) of hidden states: The top plot in each panel shows the
posterior estimates of time-varying parameters, which is computed by p(βk ,t |y) =

∑M
m=1 p(βk , st =m |y). The

bottomplot showshidden state probabilities (p(st |y)). The data are simulated from n = 20, t = 60, and k = 30.

5 Applications

In this section,weapply our proposedmethod to two studies in political science. The first example

is Alvarez et al.’s (1991) study of partisan sources of economic growth, and the second example is
Allee and Scalera’s (2012) study on the IOmembership effects.
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Table 1. WAIC scores of HMBBs on Alvarez et al. (1991): The estimation is based on 10,000 MCMC runs after
discarding the first 10,000 MCMC runs.

Model Break 0 Break 1 Break 2

No interaction 678 665 663

Partial interaction 668 646 642

Full interaction 670 664 654

5.1 Alvarez et al.’s (1991) Study of Partisan Politics and Economic Growth
Alvarez et al. (1991) investigate how government partisanship and the level of labor union

centralization affect economic growth in advanced countries using a longitudinal dataset of

16 OECD countries. They discovered that centralized labor organizations have a conditional

effect on economic growth: Centralized labor organizations are “conducive to better economic

performance when the Left was politically powerful.” In contrast, weaker union movements “had

desirable consequences for growth and inflation when governments were dominated by rightist

parties” (551). Since then, the growth-promoting effect of left-party government and inclusive

labor has received ongoing attention in comparative political economy literature (Beck et al. 1993;
Boix 1997; Franzese Jr. 2002; Garrett 1998; Rueda 2008; Scruggs 2001; Soskice and Iversen 2000;

Western 1998).

The annual growth rate observed at country i and year t is the dependent variable of Alvarez
et al. (1991). The independent variables are lagged growth rate (lagg1), weighted OECD demand
(opengdp), weighted OECD export (openex), weighted OECD import (openimp), cabinet com-
position of left-leaning parties (leftc), and the degree of labor organization encompassment
(central).4 We add a year-fixed effect to Alvarez et al.’s (1991) partial interaction model,

yi t = αt +β1opengdpi t +β2openimpi t +β3openexi t +β4lefti t+

β5centrali t +β6leftci t ×centrali t +β7lagg1+ εi t .

Our main goal in the replication is to check whether the key explanatory variables (central,
leftc, and leftc×central) have time-varying effects during the sample period. We consider
three different model specifications (no interaction model, a partial interaction model, and a

full interaction model) using the original input variables of Alvarez et al. (1991). Then, given the
short duration of the TSCS data (T = 15), we set the top limit of breaks to two for each model

specification, providingninemodels to compare. Thepanelmethodemployed is theone-way year

fixed effects. The country fixed effects are not used due to the time-invariant predictor (central).
The WAIC scores of the tested models are listed in Table 1. The partial interaction model with

two breaks has the lowest WAIC score (642), followed by the same model with one break (646).

However, as illustrated in the center-left in panel (a) of Figure 5, the initial regime of the two-break

partial interactionmodels lasts only one year and appears to be redundant given the absence of a

comparable pattern in the other models. Panel (b) of Figure 5 compares posterior estimates of

time-varying parameters of the single-break partial interaction HMBB (left) with the two-break

partial interaction HMBBs (right). Except the starting point difference, the two models produce

almost identical posterior estimates of time-varying parameters. As a result, we will interpret the

data using the single-break partial interaction model.

4 For the replication of Alvarez et al. (1991), we use the agl dataset in the R package pcse (Bailey and Katz 2011). Alvarez
et al.’s (1991) original dataset begins in 1969, whereas agl dataset begins in 1970. The variable names shown in this section
are the same as in pcse.
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Figure 5.Hidden state transitions and time-varyingmovements of parameters in Alvarez et al.’s (1991) partial
interaction model.

Panel (b) of Figure 5 shows the posterior estimates of time-varying parameters for a single-

break HMBB (left) and a two-break HMBB (right). As expected, the left plot, generated using a

single-break HMBB, exhibits a pattern identical to that of the right plot, generated using a two-

break HMBB except the initial regime in the right plot.

Last,we compareHMBBestimateswith conventional fixed-effects estimates in Figure6. Several

interesting patterns are worth noting. First, conventional fixed-effects estimates take the form of

weighted averages of regime-specific HMBB values for certain covariates (e.g., central, inter,
lagg1, andleftc), butnot forothers. Second, the interaction term(inter) and its twoconstituent
terms (central and leftc) exhibit the most pronounced parametric change, which adds an
interesting twist to Alvarez et al.’s (1991) original conclusion. Only until 1978 did the left party
government have a growth-promoting influence in the presence of centralized labor organizations.
After that, the effect waned significantly, signaling the start of a new era, the era of neo-liberal

reform (Frieden 2020; Helleiner 1994).

5.2 Allee and Scalera’s (2012) Study of Membership Effects in International
Organizations
In our second example, we revisit Allee and Scalera’s (2012) study on the divergent effects of

membership in IOs from 1950 to 2006. Rose (2003) was the first to challenge the conventional

wisdom about the GATT/trade-promoting WTO’s effects. Rose concluded from an analysis of

bilateral trade data spanning 175 countries and 50 years that “the GATT/WTO seems to have a

huge effect on trade if one does not hold other things constant; the multilateral trade regime
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Figure 6. Comparison of parameter estimates: Fixed-effects estimates are obtained by the least squares
method and the panel robust standard error of MacKinnon and White (1985). HMBB estimates are obtained
from a single-break model. The detected break point is between 1978 and 1979.

matters, ceteris non paribus” (emphasis original, 111). This discovery sparked a flood of following

studies amending or questioning the null effect (e.g., Goldstein, Rivers, and Tomz 2007; Gowa and

Kim 2005; Park 2012; Subramanian and Wei 2007; Tomz, Goldstein, and Rivers 2007). Allee and

Scalera (2012) is one of recent amendments that settles conflicting evidence regarding the effects

of GATT/WTOmembership on trade.

The key explanatory variable in Allee and Scalera (2012) is the type of accession, which is

classified into three categories: early accession, automatic accession, and rigorous accession.

According toHypothesis 1 inAllee andScalera (2012), rigorousaccessionmusthaveagreater trade-

promoting effect than other types of accession because “the more rigorous a state’s accession to

an IO, and thus themorepolicy changes required to join, thegreater thebenefits itwill receive from

membership” (243). Temporal heterogeneity is one of main concerns in Allee and Scalera (2012).

They argue “although rigorous and early joiners should benefit from membership, we [Allee and

Scalera] expect those benefits to bemost pronounced in the years after accession and to fade over

time” (260). They deal with the temporal effect heterogeneity by employing a “counter” variable

that counts howmany years have passed.

Our goal of replication is to check temporal heterogeneity in the key explanatory variables of

Hypothesis 1 in Allee and Scalera (2012) using HMBB.5

5 More specifically, we chose Column (5) and Column (6) models in Table 4 of the original paper. In these two models, the
outcome variable is total national trade (imports and exports). The model formula of Column (5) model is

y ∼ lnpop1+gledgdppc +totalcont+polity+domestic19
+rigorous+colonial+earlymem.

Themodel formula of Column (6) model is

y ∼ lnpop1+gledgdppc +totalcont+polity+domestic19
+rigorous+rigorouscounter+colonial

+colonialcounter+earlymem+earlymemcounter.
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Table 2. WAIC scores of HMBBs on Allee and Scalera’s (2012) Column (5) model and Column (6) model: The
estimation is based on 10,000 MCMC runs after discarding the first 10,000 MCMC runs.

Formula Break 0 Break 1 Break 2

Column (5) 23,671 23,301 22,272

Column (6) 23,459 22,881 22,078

In words, we examine whether the effect of accession type on a country’s total national trade

may vary over time as a result of economic shocks, decaying effects of accession types, or network

effects of IO membership. Due to the significant fraction of missing observations in the original

data, we use Ranjit’s (2016) imputed data. The specification for the panel is identical to that in the

original publication (a two-way fixed-effects at the country and year level).

The results of Bayesian model diagnostics using WAIC for the two models in our replication

are summarized in Table 2. The two-break Column (6) model has the lowest WAIC score (22,078)

among the six models in comparison. Given the possibility of the over-detection, we further

examine hidden state transitions and time-varying movements of parameters in Figure 7.

Panel (a) of Figure 7 clearly shows that either 1964 or 2007 is estimated as change points

across different HMBB specifications. Panel (b) demonstrates that a single-breakHMBBof Column

(6) shows a starkly different picture from a two-break HMBB of Column (6). Compare the two

covariates at the top in panel (b). While the effect of (log) population (lnpop1) is not affected by
hidden regime transitions, the effect of the level of economic development (gled_gdppc) shows
dramatic shifts over time.

Figure 8 compares parameter estimates of the conventional fixed effects with HMBB esti-

mates. Several interesting patterns are worth noting. First, the two key explanatory variables

(rigorous and rigorouscounter) show strong time-dependent effects. In Regime 1 (1946–

1964), the marginal effect of rigorous accession on country’s total national trade is statistically
indistinguishable from 0. This is very much in accordance with reality. Between 1946 and 1954,

the proportion of sample countries with the status of rigorous accession is zero. After 1955, the

fraction gradually grew, and by 1964, only 12 countries (1%) had achieved rigorous accession. This

historical pattern in the effect of rigorous accession is unobservable using traditional fixed-effect

estimation methods.

Second, a substantial decline in rigorouscounter, the interaction of rigorous with its
“counter,” following the second break (2007) can be attributed to the economic crisis of 2008–9.

The greater negative trend in rigorouscounter following 2007 implies that countries that have
a lengthy history of rigorous admission have borne the brunt of the economic crisis.

Last, as illustrated in Figure 6, there is no consistent pattern in the association between

conventional fixed-effects and HMBB estimates. In some circumstances (e.g., gled_gdppc), the

Explanations for the included predictors are as follows:
• lnpop1: log of population,
• gled_gdppc: Gross Domestic Product (GDP), per capita,
• totalcont: total shared borders, or contiguity,
• polity: Democracy measure from the Polity dataset,
• domestic1_9: a weighted measure of domestic political conflict,
• rigorous: equals 1 if a current member joined the GATT/WTO via rigorous accession procedures, and 0 otherwise.
• rigorouscounter: number of years since a current rigorous-accession member joined the GATT/WTO via rigorous
accession,

• colonial: equals 1 if a current member joined the GATT/WTO via Article 26:5(c), or similar post-colonial accession
norms, and 0 otherwise,

• colonialcounter: number of years since a current colonial-accession member joined the GATT/WTO via colonial
accession,

• earlymem: equals 1 if a current member joined the GATT during the early years of the trade regime, and 0 otherwise,
• earlymemcounter: number of years since an early member joined the GATT/WTO.
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Figure 7. Hidden state transitions and time-varying movements of parameters in Allee and Scalera (2012)
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obtained by the least-squares method. HMBB estimates are obtained from a two-breakmodel. The detected
break points are 1964 and 2007.
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conventional fixed-effects estimates are close to the regime 2 estimates, but not in others (e.g.,

lnpop1 and earlymemcounter).

6 Discussion

A typical way to use our method for TSCS data will be as follows. First, researchers build a set

of regression models for the change-point analysis. Next, researchers fit HMBBs with a varying

number of breaks ranging from 0 to an upper limit researchers deem ideal given the model, data,

and theory. Researchersmake an informed decision regarding the best-fittingmodel by analyzing

the WAIC scores, hidden state transitions, and parameter changes of several HMBBs.

Once researchershave selectedanappropriateHMBBusing theaboveprocedure, theywill have

K ×M regime-specific regression coefficients to analyze. When either K or M is large, it might be
difficult to interpret all the time-varying information. Although Bayesian shrinkage approaches

outperform variable selection methods such as spike and slab prior models in terms of computa-

tional efficiency, they lack the sparsityproperty. That is, inBayesian shrinkageapproaches, param-

eter estimates are never exactly zero. Thus, it would be beneficial for researchers to discriminate

between “strong” (i.e., statistically distinct from 0) and “weak” (i.e., statistically indistinguishable

from 0) signals across all K ×M parameters.

In this scenario, we can employ the decoupled shrinkage and selection (DSS) method that

minimizes an �0-type loss function on pre-regularized posterior distributions (Hahn and Carvalho

2015). The DSS loss function of the HMBB for regimem can be constructed as follows using HMBB

estimations as shrinkage inputs:

L(γm ) = arg min
γm

squared prediction loss︷�����������������︸︸�����������������︷
| |Xmβ∗m −Xmγm | |22 +

parsimony penalty︷��︸︸��︷
λ | |γm | |0 , (8)

where Xmβ
∗
m is the fitted value of the fixed-effects HMBB at regimem. λ is a nonnegative regular-

ization parameter, and γ is the new slope parameters that minimize the loss function.

To find the optimum of Equation (8), we take the popular approach of the �1 surrogation of the

�0 problem. Furthermore, to better target the �0 solution, we use the weight vector (ŵj ,m = 1
|γ̂j ,m |δ )

where δ > 0 and γ̂j ,m is the root N-consistent estimate of γj ,m as suggested by Zou (2006):

βDSSm = arg min
γm

| |Xmβ∗m −Xmγm | |22 +λ

p∑
j=1

ŵj ,m |γj ,m |. (9)

Table 3 summarizes the DSS results using a single-break HMBB fitted on the full interaction

model of Alvarez et al. (1991). Notably, regime-specific parameters that are near to zero are forced
to zero, which helps researchers concentrate on nonzero DSS estimates for succinct interpretation

of HMBB results.

7 Conclusion

WepresentedaBayesian strategy for detecting andestimating changepoints in regressionmodels

with a high number of predictors in this article. The suggestedmodel unifies a variety of statistical

methods (a Bayesian shrinkage method, a change-point model, and sparse regression) to enable

researchers to perform effective and consistent inference on time-varying parameters in a variety

of TSCS datasets.We concentrate on the fixed-effectsmethod in this article because it is one of the

most often-used ways to analyze TSCS data in political science. However, our proposed strategy

has a far broader application than the fixed-effectmodel. Our software package includes a tool for

constructing a regressionmodel fromunivariate time series data aswell asmultilevelmodelswith

changing intercepts or slopes.We intend to expand the presented strategy tomodelswith discrete

response data.
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Table 3. Variable selection of HMBB estimates using the DSSmethod: DSS indicates the sparsified estimates
of HMBB outputs. The employedmodel is a single-break HMBB fitted on the full interactionmodel of Alvarez
et al. 1991.

Regime 1 Regime 2

HMBB DSS HMBB DSS

lagg1 0.04 0.00 0.02 0.01

opengdp 0.09 0.12 −0.08 −0.07
openex 0.05 0.00 0.22 0.23

openimp 0.05 0.00 0.02 0.00

leftc 0.19 0.15 0.05 0.04

central −0.06 −0.01 −0.13 −0.13
lagg1-opengdp 0.06 0.00 0.06 0.07

lagg1-openex 0.02 0.00 0.20 0.19

lagg1-openimp 0.06 0.11 −0.28 −0.27
lagg1-leftc −0.00 0.00 0.03 0.03

lagg1-central −0.12 −0.11 −0.16 −0.15
opengdp-openex −0.04 0.00 −0.11 −0.11
opengdp-openimp −0.04 0.00 0.03 0.01

opengdp-leftc 0.09 0.11 0.01 0.00

opengdp-central −0.00 0.00 0.13 0.15

openex-openimp −0.02 0.00 −0.08 −0.06
openex-leftc 0.06 0.00 −0.07 −0.05
openex-central −0.00 0.00 0.04 0.03

openimp-leftc 0.09 0.00 0.08 0.07

openimp-central −0.04 0.00 0.02 0.01

leftc-central 0.29 0.31 0.15 0.15

Whileweare confident inourproposedmethod’s performance in regular TSCSdata settings,we

would like to point out a few limitations. First, HMBB is best suited to changes in parameter values

that are quite abrupt or significant. Dynamic linear models are better equipped to handle slow,

cyclical, or evolutionary changes (West andHarrison 1997). Second, HMBBdetermineswhether all

parameters have a common break. Assume that only a small subset of parameters changes over

time, whereas the remainder remain constant, or that parameters exhibit heterogeneous change

points. HMBBwould be incapable of identifying these parameter-specific change points precisely.

We are currently developing change-point regression models that allow for parameter-specific

breakdetectionand regularizationusing recentbreakthroughs inBayesian statistics, suchasHahn

et al. (2018). Finally, HMBB uses the Bayesian bridgemodel as a baselinemodel for shrinkage. It is
worth trying to combine different shrinkagemethods, such as the horseshoe prior (Carvalho et al.
2010), with change-point models.

Appendix A. Sampling Algorithm

We first implement centering of data (group-centering in the case of panel data) tomake parame-

ters have a common range.

1. Samplingp(β |α ,Λ,σ2,τ,P,S,y): Ifnm > p , theposterior ofβ follows themultivariatenormal

distribution, which is given by

βm |σ2,λm ,αm ,τ,P,S,ym ∼ Np

(
VX′mym
σ2
m

,V =

(
X′mXm +

σ2
m

τ2
λm I

)−1)
. (10)
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If nm ≤ p , we use Bhattacharya, Chakraborty, and Mallick’s (2016) algorithm:

(a) For each regime, sampleum ∼N (0,Dm ) and δm ∼N (0, Inm ) where dj ,j =
√

λm,j σ
2
m

τm
is the

jth diagonal entry of Dm matrix and nm is the number of observations at regimem.
(b) Set νm = Xmum +δm .

(c) Solve (XmDX
′
m + Inm )ωm = ( ym

σ2
m
−νm ).

(d) Set βm = um +DmX
′
mωm .

2. Sampling p(β0 |Λ,β,α ,τ,σ2,P,S,y): We separately estimate the intercepts for each regime

to remove any discrepancy in regression slopes in each simulation.

β0m ← ym −X
�
mβm ,

where

ym =

∑n
t=1 1{st =m}yt∑n
t=1 1{st =m} , and Xm,j =

∑n
t=1 1{st =m}Xm,t j∑n

t=1 1{st =m} . (11)

3. Sampling p(α |Λ,β,σ2,τ,P,S,y): We use a Griddy Gibbs sampler (Tanner 1996) for the

sampling of α because α is univariate and its support is bounded by (0,2].
4. Sampling p(τ |Λ,β,α ,σ2,P,S,y): Sample ν first and then transform ν to τ .

νm ∼ Gamma(c,d ),

τm = ν−
1

αm ,

where c = c0 +p/αm and d = d0 +
∑p

j=1 |βj ,m |αm .
5. Sampling S|Λ,β,α ,τ,σ2,P,y: Sample S recursively using Chib’s (1998) algorithm.

6. Sampling from P|Λ,β,α ,τ,σ2,S,y:

pk k ∼ Bet a(a0 + jk ,k −1,b0 + jk ,k+1),

where pk k is the probability of staying when the state is k, and jk ,k is the number of jumps
from state k to k, and jk ,k+1 is the number of jumps from state k to k +1.

Appendix B. How to Use BridgeChange

## install and load package
devtools::install_github("jongheepark/BridgeChange")
library(BridgeChange)

## get agl data and make plm input parameters
library(pcse)
data(agl)
index = c("country", "year") ## group id first and time id second
model = "within" ## "between" or "pooling"
effect = "time" ## "individual" or "twoway"

## formula: regular lm formula
formula <- growth ~ lagg1 + opengdp + openex + openimp + leftc + central

+ inter
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## model fitting: no break, one break, and two break model
agl.cp0 <- BridgeFixedPanel(formula=formula, data = agl,

model = model, index = index, effect = effect,
mcmc= 1000, burn = 1000, verbose=1000,
n.break = 0)

agl.cp1 <- BridgeFixedPanel(formula=formula, data = agl,
model = model, index = index, effect = effect,
mcmc= 1000, burn = 1000, verbose=1000,
n.break = 1)

agl.cp2 <- BridgeFixedPanel(formula=formula, data = agl,
model = model, index = index, effect = effect,
mcmc= 1000, burn = 1000, verbose=1000,
n.break = 2)

## model selection by WAIC
waic <- WaicCompare(list(agl.cp0, agl.cp1, agl.cp2))
plotWaic(waic)

## plot state transitions
par(mfrow=c(1,2))
plotState(agl.cp1)
plotState(agl.cp2)

## plot parameter movements
par(mfrow=c(1,3))
dotplotRegime(agl.cp0, hybrid = FALSE)
dotplotRegime(agl.cp1, hybrid = FALSE)
dotplotRegime(agl.cp2, hybrid = FALSE)

## HMBB-DSS method
agl.dss <- BridgeFixedPanelHybrid(formula=formula, data = agl,

model = model, index = index, effect = effect,
mcmc= 1000, burn = 1000, verbose=1000,
n.break = 1)

## plot DSS parameter movements
dotplotRegime(agl.dss, hybrid = TRUE)
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