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Estimating the date of infection from
individual response times
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It is characteristic of both naturally occurring and experimental infections that
the affected individuals do not fall ill or die at the same time. If one defines the
‘response time’ of an individual as the interval between the earliest date on which
he could have been exposed to infection (as by eating contaminated food) and the
date on which he fell ill, then the distribution of individual response times is
always skewed with a long tail to the right. The true distribution has often been
taken as log-normal, since probit proportion of responses plotted against logarithm
of time since exposure approximates to a straight line (Sartwell, 1950, 1952;
Meynell & Meynell, 1958; Meynell, 1963). Sartwell (1966) pointed out that, if the
true distribution is indeed log-normal, an unknown date of exposure, a;, can be
estimated from the dates of the individual responses by the method of quantiles
(Aitchison & Brown, 1963, §6.24). This is so but, owing to the actual distributions
observed in practice, the earliest date of exposure can be equally well estimated
by another method, and it is shown here that the two estimates necessarily dis-
agree.

Assuming first that the true distribution is log-normal, then it is clear from Fig. 1
that, because the plot of the distribution gives a straight line, the log individual
response times corresponding to, say, 109, and 909, responses are symmetrically
placed about the median response time for 509, responses. However, this will only
be so when the earliest date of exposure is correctly chosen for, if this is taken as
either before or after the real date, the corresponding plots in Fig. 1 are convex
or concave upwards (see Aitchison & Brown, 1963, Fig. 6.3). In general, therefore,
if b, is the calendar date of the median response time and b,, b; are the dates
corresponding to per cent responses, ¢ and 100—g, then the earliest date of exposure,
ar, is the solution of the equation

log (b;-ay)-log (b—ay) = log (bs-ay)—log (by—ay),
which is readily seen to be

_ bbby
L = Gy by— 25, 1)
The method can be illustrated by experiment 30 of Martin (1946) in which mice
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were injected intravenously with Mycobacterium tuberculosis. The numbers of mice
found dead on successive days were 1, 0, 2, 6, 6, 6, 4, 5,4, 0,0, 1, 0, 0, 1; the first
death occurred 15 days after challenge; and all the inoculated mice died. Suppose
all that is known is the number of mice dying on a given day of the month. If the
first mouse is assumed to have died on the 20th, a plot of proportion of mice dying
against calendar date shows the median date (b,) to be 24-6 and the dates (b, b,)
corresponding to 109, and 909, deaths to be 21-8 and 28-2. Hence from (1)

a; = 12.

That is, the estimated date of infection was the 12th compared to the assumed
date, the 5th.*
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Fig. 1. Three distributions of response times plotted with either logarithm or recipro-
cal of time since inoculation (curves on left and right of figure, respectively). Ordin-
ate: percentage responses, on probit scale. Abscissa: logarithmic time below,
reciprocal time above. A, Experiment 20 of Martin (1946). Curves 4 and B, log-
normal distributions with dispersion factors of 1:1 and 1-5 respectively.

* Even when the true distribution is log-normal, the estimation of a is recognized as being
imprecise (Aitchison & Brown, 1963). In using quantiles, the values of b,, b,, and b; were
obtained from a curve fitted to the observations. However, ¢ can also be estimated directly
from the data by Cohen’s method (Aitchison & Brown, 1963, § 6.22). This was done here, but,
although Martin’s experiment was deliberately selected as an example because it appeared
log-normal on probit paper, the estimate of ¢ was wildly inaccurate, namely, more than 210
days before the first death.
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It will be seen that the estimation of a; depends, not upon the logarithm of
the individual response time being normally distributed when measured from the
correct time origin, but merely upon it being symmetrically distributed. The log-
arithm is far from being the only suitable function for, in many infections, the
reciprocal also appears to be symmetrically distributed (Cavalli & Magni, 1943;
Bryan, 1957). Host-pathogen systems are highly unlikely to fall into two funda-
mentally different classes, corresponding to the two transformations. It seems far
more probable that many data can be fitted equally well in either way. On exami-
nation, this proved to be so, the reason being that, although response times are
distributed, they always fall fairly close to the mean. Assuming a log-normal
distribution, the degree of scatter can be expressed by the ‘dispersion factor’
(Sartwell, 1950) = time corresponding to 849, response/median response time.
Its minimum value is 1-0, observed if all the hosts respond simultaneously, and the
observed value rarely exceeds 1-5 in either epidemics (Sartwell, 1950, 1952, 1966;
Williams, 1965) or experimental infections, and is often less. Given such small
values, it is apparent from Fig. 1 that the corresponding log-normal distributions
will appear virtually linear when plotted against reciprocal time, and, furthermore,
that it will be almost impossible to determine which distribution truly describes
the observations, remembering that these are always somewhat erratic and that
the sample sizes tend to be small. Assuming the reciprocal of individual response
time to be symmetrically distributed and the time of infection, a5, correctly chosen,

we have
1 1 1 1

by—ap b—ar by—ag by—ap

whose solution is
2 = 2b,b; — by(by + by)
B by +b;—2b,

(2)

In Martin’s experiment, ap= —0-6. That is, the date of infection is given as
0-6 days before the 1st of the month.

Neither estimate is accurate to a useful degree in this example, but, quite apart
from this, the whole procedure is open to a fundamental objection. We have seen
that either the logarithm or the reciprocal of time can be used to estimate a.
However, comparison of equations (1) and (2) shows

ap = 2a;—b,.
In other words, ay and a; must always differ. The objection to these procedures
is, therefore, that although either method is valid in itself, neither is of practical

value because there is at present no reason a priori to accept one rather than the
other.

SUMMARY

In principle, an unknown date of infection can be estimated from individual
response times, provided some function of these with suitable origin is symmetri-
cally distributed. Observed times are always skewly distributed, and either loga-
rithm or reciprocal of time can be used to produce symmetry. Either is equally
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justifiable but the resulting estimates are not only very imprecise but are also
inconsistent, so that neither is of practical value.
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