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PERFECT SIMULATION OF M/G/c QUEUES
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Abstract

In this paper we describe a perfect simulation algorithm for the stable M/G/c queue.
Sigman (2011) showed how to build a dominated coupling-from-the-past algorithm
for perfect simulation of the super-stable M/G/c queue operating under first-come–
first-served discipline. Sigman’s method used a dominating process provided by the
corresponding M/G/1 queue (using Wolff’s sample path monotonicity, which applies
when service durations are coupled in order of initiation of service). The method exploited
the fact that the workload process for the M/G/1 queue remains the same under different
queueing disciplines, in particular under the processor sharing discipline, for which a
dynamic reversibility property holds. We generalise Sigman’s construction to the stable
case by comparing the M/G/c queue to a copy run under random assignment. This allows
us to produce a naïve perfect simulation algorithm based on running the dominating
process back to the time it first empties. We also construct a more efficient algorithm that
uses sandwiching by lower and upper processes constructed as coupled M/G/c queues
started respectively from the empty state and the state of the M/G/c queue under random
assignment. A careful analysis shows that appropriate ordering relationships can still be
maintained, so long as service durations continue to be coupled in order of initiation of
service. We summarise statistical checks of simulation output, and demonstrate that the
mean run-time is finite so long as the second moment of the service duration distribution
is finite.
Keywords: Coalescence; dominated coupling-from-the-past; dynamic reversibility; first-
come–first-served discipline; first-in–first-out discipline; Kiefer–Wolfowitz workload
vector; pathwise domination; perfect simulation; processor sharing discipline; M/G/c
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1. Introduction

Coupling methods for queues have a celebrated history, stretching back to the seminal work
of Loynes [20], who discussed stability results for very general queues using what would
today be described as coupling comparisons, together with recursive formulations of queueing
dynamics using queues whose commencements originate further and further back in the past.
More recently Wolff [32] (correcting [31]) showed how to establish comparisons between
different queueing service disciplines for a single queue with multiple servers. Here the coupling
argument involves assigning the nth service duration to the nth initiation of customer service
(as opposed to the nth customer arrival time).
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The work of [20], together with subsequent work on stochastically recursive systems and
renovating events (for example [5]) is now viewed as one of the precursors of the celebrated
coupling-from-the-past (CFTP) algorithm of Propp and Wilson [25], the first of a series of
practical algorithms for performing exact or perfect simulation. It was thus a natural step from
the first CFTP algorithms to consider how to apply CFTP to the problem of simulating from
the equilibria of queueing systems: a variety of CFTP techniques applied to various queues
of finite capacity were discussed in [24]. The finite capacity requirement appeared to be an
inevitable constraint, imposed by the nature of the original algorithm [25], which uses maximal
and minimal elements of the state-space to generate upper and lower bounding processes.
Clearly, a queue without finite capacity will not in general possess a state-space with maximal
element. However, the CFTP idea need not be limited to bounded processes. Working in
the context of stochastic geometry, it has been shown how to replace the maximal element by
a suitable dominating random process, so as to produce a dominated CFTP algorithm [14],
[18]. Indeed, Kendall [15] has shown how in principle dominated CFTP can be applied to
any regular geometrically ergodic Markov chain, using Foster–Lyapunov criteria, small set
regeneration, and a dominating process which is in fact a D/M/1 queue. (Extensions to a
class of nongeometrically ergodic chains are given in [8].) The work in [15] strongly indicates
that one should search for practical dominated CFTP algorithms which solve the problem of
simulating from the equilibria of geometrically ergodic queues. Very recently, Sigman [28] has
shown how to use dominated CFTP in the so-called ‘super-stable’case of the M/G/c queue with
first-come–first-served (FCFS) discipline. Here ‘super-stable’ means that arrival and service
rates are such that the queue remains stable even if c − 1 of the servers are removed.

Sigman’s work uses the fact that the M/G/c queue is dominated by an M/G/1 queue under
FCFS discipline (equivalent in this single-server case to first-in–first-out (FIFO) discipline),
which itself is stable by virtue of super-stability of the original queue; the trajectory of an
equilibrium instance of the dominating queue can be generated from times in the arbitrarily
distant past using the observation that the queue workload does not depend on service discipline,
and therefore these trajectories can be reconstructed from a dynamically reversible relative
which uses a processor sharing (PS) discipline. Thus, the strategy is as follows.

1. Given the same inputs, the total workload of a super-stable M/G/c queue is samplewise
dominated by the total workload of an M/G/1 queue.

2. Using the PS discipline, an M/G/1 [PS] queue is dynamically reversible in time (and has
the same workload process as the corresponding M/G/1 [FIFO] queue).

3. Thus, the M/G/1 [PS] queue can be used as a dominating process.

4. Coalescence occurs when the M/G/1 [PS] queue empties.

5. The workload process of the M/G/1 [PS] queue can be decoded to generate the arrival
times and service durations of the underlying arrival process.

The second moment of the service duration must be finite if the algorithm is to have finite mean
run-time.

Sigman’s approach [28] is limited to the super-stable case by the need to dominate the target
queue using a simple M/G/1 queue. A different approach [29] uses regenerative techniques
to extend to the merely stable case, but this different approach unfortunately results in run-
times of infinite mean [30]. In this paper we show how to generalise the approach of [28] to
deal with stable M/G/1 queues. The essence of the idea is to replace the dominating M/G/1
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queue by an M/G/c queue run with random assignment (RA) (this may also be viewed as
an independent collection of c different M/G/1 queues; hence, we write it indifferently as
M/G/c [RA]=[M/G/1]c); and then to useWolff’s observation [31] that samplewise monotonicity
between M/G/c [FCFS] and [M/G/1]c can be arranged if service durations are assigned in order
of initiation of service. The idea is simple enough; however, considerable care needs to be
exercised in order to ensure that the dominating process really does dominate the target chain
in an appropriate sense. (This idea, which forms the basis of our Algorithm 1, was proposed
independently in [4], although that paper does not contain a proof of the algorithm’s correctness.)
Moreover, in order to achieve smaller run-times by using a refined algorithm, it is necessary to
show that appropriate ordering (or sandwiching) relationships are maintained between upper
and lower processes started at different initial times −T . The attraction of this extension to
Sigman’s work [28] is that it allows simulation methods to be applied precisely in the case when
M/G/c queues will be most relevant; namely, when using a single server (c = 1) would result
in loss of stability.

It is appropriate here to mention some further related papers on perfect simulation and
queueing. Fernandez et al. [9] studied exclusion models via ensembles of Peierls contours
in a spatial problem as a kind of spatially distributed loss network; however, the methods are
specific to loss networks with Poisson inputs and exponential lifetimes. Blanchet and Dong [3]
applied dominated CFTP to a GI/GI/c/c loss process, using a GI/GI/∞ queue as the dominating
process. Rather than waiting until the dominating process empties (a time which generally
grows exponentially in the arrival rate), they looked for a time interval [a, b] for which all
customers present at time a have departed by time b, and over the entirety of which the infinite
server system has less than c customers. The two processes will have coalesced by time b,
and so coalescence is determined by watching the dominating process alone. The authors
overcame a significant technical difficulty in [3] by showing how to simulate a renewal process
input in reverse time; however, their method for coupling target and dominating processes
involved truncation of an infinite server system, and this cannot be applied in our M/G/c context.
Mousavi and Glynn [22] discussed perfect simulation for reflected Brownian motion in a wedge
(consequently gaining information on heavy-traffic approximation for queues). Attention was
focused on stochastic differential equation problems, and links were made with the approach of
[2] to exact simulation for solutions to stochastic differential equations. Blanchet and Chen [6]
showed how to perform perfect simulation for the workload vector of a network of d queueing
stations with Poisson inputs, in which each arrival brings a vector of service times describing the
additional work to be carried out at each station. This requires the existence of a finite moment
generating function for the vector of service times, although this is subsequently relaxed in [4].

We conclude this introductory section by setting out the plan of the paper. In Section 2 we
review notation and fundamental facts for our target queue M/G/c and the intended dominating
process [M/G/1]c. In Section 3 we describe extensions (Theorems 3.2 and 3.3) of a classical
domination result from queueing theory (Theorem 3.1), which prove the queue comparisons
necessary to establish the required domination relationships. In Section 4 we provide a proof of
a simple dominated CFTP algorithm (Algorithm 1) based on the regeneration which happens
when the dominating process [M/G/1]c empties. However, the run-time for this algorithm will
be large in cases when the target process M/G/c [FCFS] rarely empties, which is precisely
the set of circumstances for which multi-server queues have practical utility! In Section 5 we
describe and prove the validity of a refined algorithm (Algorithm 2), based on the sandwiching
of the target process between pairs of upper and lower processes themselves generated from the
dominating process: the regeneration used in the simple algorithm is replaced by consideration
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of when these upper and lower processes agree at time 0. At the price of increased complexity
(proving domination relationships hold not just between lower, target, upper, and dominating
processes, but also between different pairs of upper and lower processes), the algorithm run-time
can be substantially decreased. Empirical demonstrations of the savings which can be obtained,
as well as the correctness of the algorithm in the computable M/M/c case, are demonstrated
by representative simulations in Section 6. Finally, in Section 7 we discuss further research
possibilities.

2. Dynamic reversibility

In this section we work with the Mλ/G/c queue with arrival rate λ under two different
allocation rules: first-come–first-served (Mλ/G/c [FCFS]) and random assignment (Mλ/G/c
[RA]); in this second case each arrival is assigned randomly and independently to one of the c

servers without regard to load on each server. The Mλ/G/c [RA] queue will serve as a dominating
process for the dominated CFTP algorithm to be described in later sections. The queue Mλ/G/c
[RA] may be viewed as a system of c independent Mλ/c/G/1 [FCFS] queues, each with arrival
rate λ/c. To emphasise this, we sometimes write Mλ/G/c [RA] as [Mλ/c/G/1]c.

We follow the notation of [1] and [28]. Firstly, we consider a general ·/ · /c [FCFS]
queue and review the Kiefer–Wolfowitz construction of a workload vector [19]. Let V (t) =
(V (1, t), V (2, t), . . . , V (c, t)) denote the workload vector at time t ≥ 0. To be explicit, the
V (1, t) ≤ V (2, t) ≤ · · · represent the ordered amounts of residual work in the system for
the c servers at time t , bearing in mind the FCFS queueing discipline. Customer n arrives
at time tn (for 0 ≤ t1 ≤ t2 ≤ · · · ). Interarrival times are Tn = tn+1 − tn (where we set
t0 = 0). Observing V just before arrival of the nth customer (but definitely after the arrival of
the (n−1)th customer) generates the process Wn: in the tn−1 < tn case, we have Wn = V (tn−).
This satisfies the Kiefer–Wolfowitz recursion

Wn+1 = R(Wn + Sne − Tnf )+ for n ≥ 0 , (2.1)

where

• Wn + Sne adds Sn to the first coordinate only of the vector Wn;

• Wn + Sne − Tnf subtracts Tn from each of the coordinates of Wn + Sne;

• R(Wn +Sne−Tnf ) reorders the coordinates of the vector Wn +Sne−Tnf in increasing
order;

• R(Wn + Sne − Tnf )+ replaces negative coordinates of R(Wn + Sne − Tnf ) by 0s.

Since each of these operations is a coordinatewise monotonic function of the previous workload
vector Wn and the service duration Sn, an argument from recursion shows that the coordinates of
Wn depend monotonically on the initial workload vector and the sequence of service durations,
once the arrival time sequence is fixed. See, for example, remarks in [23] on join shortest
workload disciplines for systems of parallel FIFO queues—corresponding to ·/ · /c [FCFS].
If tn ≤ t < tn+1 then we obtain V (t) from Wn by subtracting t − tn from all the workload
components and then taking positive parts

V (t) = (Wn − (t − tn)f )+. (2.2)

Arguing as before, the coordinates of V (t) depend monotonically on the initial workload vector
and the sequence of service durations, once the arrival time sequence is fixed.
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We are specifically interested in the Mλ/G/c [FCFS] queue with arrival rate λ and independent
and identically distributed service durations Sn. Let G be the common distribution of the Sn,
and set E[S] = 1/μ. We shall assume throughout that E[S2] < ∞, in order to guarantee finite
mean run-time of our algorithms (as detailed in Section 6). Write ρ = λ/μ; we consider the
stable case ρ < c. We will compare this to the [Mλ/c/G/1]c system with total arrival rate λ

and service durations as above. That is, rather than operating under FCFS, we assign incoming
customers to one of c independent M/G/1 queues uniformly at random. Each of these queues
sees arrivals at rate λ/c and, therefore, has subcritical traffic intensity λ/(cμ). As noted in [28],
it is a classical fact from queueing theory that the workload of an individual Mλ/c/G/1 queue
is invariant under changes of work-conserving discipline. We can exploit this by using the PS
discipline, since under this discipline the single-server queue workload vector process can be
viewed as dynamically reversible [26, Section 5.7.3]. This means that the reverse process is a
system of the same type, with customers again arriving at a Poisson rate λ/c, and with workloads
having the same distribution G as Sn, but with the state now representing the amount of work
already performed on customers still in the system. Since each of the c independent copies of
Mλ/c/G/1 is dynamically reversible under PS, it follows that the Mλ/G/c [RA]=[Mλ/c/G/1]c

queue is itself dynamically reversible under PS applied to each component queue.

3. Domination of Mλ/G/c

In this section we develop results based on the observation [32] that it is possible to arrange
for the Mλ/G/c queue to be pathwise dominated by c-server queues using other queueing
disciplines, if the two queues are coupled by listing initiations of service in order and assigning
the same service duration to the nth initiation of service in each queue. (As noted below, this
assignation in order of initiation of service is crucial.) The fundamental idea is to establish that
the non-FCFS system completes less total work by any fixed time, since corresponding services
initiate later (when listed in order of initiation as above).

Let Qt denote the queue length at time t , and write |V (t)| = V (1, t) + · · · + V (c, t) for
the total workload (remaining work) at time t . We begin by citing a classic result proved in
queueing theory monographs.

Theorem 3.1. ([1, Chapter XII].) We consider an Mλ/G/c queueing system under various
queueing disciplines. We use ≤so to refer to stochastic ordering of distribution functions,
and use tildes to refer to quantities pertaining to the system when it evolves under a possibly
non-FCFS allocation rule; unadorned quantities pertain to the system when it evolves under
an FCFS allocation rule. For any (possibly non-FCFS) allocation rule, it holds for initially
empty systems that

Qt ≤so Q̃t , |V (t)| ≤so |Ṽ (t)| for all t ≥ 0.

Similarly, |Wn| ≤so |W̃n| for all n.

Note that the concept of a Kiefer–Wolfowitz workload vector is not well-defined for general
non-FCFS queues: nevertheless, the total amount of work |Ṽ(t)|, respectively |W̃n|, can be
defined unambiguously as the total amount of residual work currently in the system. (Indeed,
given an arrival at time tn we can generate a service duration Sn and increase the total workload
by this amount: |V (tn)| = |V (tn−)| + Sn. Speaking algorithmically, this service duration is
then stored ready for use at the time of the nth initiation of service; in non-FCFS queues this
will not typically be the time at which the nth customer to arrive commences service.)
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It follows immediately that the queue length and residual workload of the M/G/c queue under
FCFS are stochastically dominated by those of the same queue with any alternative allocation
rule. In fact this result generalises to general GI/G/c queues. However, the result does not
carry over to domination in the sense of sample paths if the corresponding coupling assigns the
same service duration to the same individual (where ‘same’ means same in order of arrival);
see Wolff’s correction [32] of [31]. To establish such a domination, one has to take some care
to link service durations between the two different systems in the right way; namely, to ensure
that the same service duration is assigned to the nth initiation of service in each queue. For
the purposes of our dominated CFTP argument, we need to generalise this result to cases when
the allocation rule may change at some fixed time, and also to certain cases where each of an
initial subsequence of service durations is reduced to 0 (this device allows us to include cases
in which one of the systems is not empty at time 0).

The argument given below is a modest extension of [1, Chapter XII], but is central to the
arguments of later sections of the current paper.

Theorem 3.2. Consider an FCFS c-server queueing system viewed as a function of

(a) the sequence of arrival times, (customers arriving at times 0 ≤ t1 ≤ t2 ≤ t3 ≤ · · · ), and

(b) the sequence of service durations S1, S2, S3, . . . assigned in order of initiation of service
(positive except for a possible initial subsequence of 0s).

Then this system depends monotonically on the inputs 0 ≤ t1 ≤ t2 ≤ t3 ≤ · · · and service
durations S1, S2, S3, . . . , in the sense that for each m the mth initiation of service Jm and the
mth time of departure Dm are increasing functions of these inputs. Moreover, if the arrival
times are fixed then for each t ≥ 0 the Kiefer–Wolfowitz workload vector V (t) (considered
coordinate-by-coordinate) depends monotonically on the initial workload vector (measured
immediately after time 0) and the sequence of service durations corresponding to nonzero
arrival times.

Proof. As noted in the discussion of (2.1) and (2.2), the coordinates of the Kiefer–Wolfowitz
workload vector depend monotonically on the initial workload vector and the sequence of
service durations once the sequence of arrival times is fixed. This settles the second part of the
theorem. It remains to prove the first part.

Let t̃m ≥ tm, S̃m ≥ Sm, J̃m, and D̃m be the time of arrival, the service duration, the time of
initiation of service, and the time of departure for the mth individual of the comparison FCFS
system. We need to show that J̃m ≥ Jm and D̃m ≥ Dm for all m. We have stipulated that the
two sequences of service durations {Sm : m ≥ 1} and {S̃m : m ≥ 1} contain positive service
durations except for initial subsequences of 0s.

We will use an inductive proof, and prepare for this by establishing useful representations
of Dm, D̃m, and Jm+c, J̃m+c. We concentrate on Dm, Jm+c, etc, for simplicity. First note that
for any allocation policy

Jm+c ≥ max{tm+c, Dm} (3.1)

with equality holding in the case when the FCFS policy applies, since the (m + c)th service
starts either when the (m + c)th customer arrives (if there is a spare server, which is to say
when Dm ≤ tm+c), or if not then service initiates exactly when the relevant departure frees up
a server: this happens at time Dm in the case of the FCFS policy, and otherwise can happen no
earlier.

https://doi.org/10.1239/aap/1449859799 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1449859799


Perfect simulation of M/G/c queues 1045

On the other hand, the mth departure time Dm is given by

Dm = min (m){J1 + S1, J2 + S2, J3 + S3, . . .}, (3.2)

where min (m) denotes the operation that returns the mth order statistic. We now refine this so
as to involve only finitely many times of completions of service on the right-hand side.

First note that only at most c customers can actually be in service at time Jm+c. Therefore,

Dm ≤ Jm+c. (3.3)

It follows that

Dm ≤ Jm+c ≤ Jm+c+r ≤ Jm+c+r + Sm+c+r whenever r ≥ 0. (3.4)

If Sm+c > 0 then also Sm+c+r > 0 for r ≥ 0, so in this case Dm ≤ Jm+c+r < Jm+c+r +Sm+c+r

for r ≥ 0. Thus, in this case we can improve on (3.2) and write Dm in terms of an order statistic
over a specific finite population:

Dm = min (m){J1 + S1, J2 + S2, J3 + S3, . . . , Jm+c−1 + Sm+c−1}. (3.5)

On the other hand, if Sm+c = 0 then also S1 = S2 = S3 = · · · = Sm+c = 0. In that case
service is immediate on arrival, so tm = Jm = Jm + Sm = Dm, and so (3.5) still holds (noting
that there must be at least one server, so c ≥ 1).

Consider the inductive hypothesis that D̃u ≥ Du for u = 1, . . . , m − 1 and J̃v ≥ Jv for
v = 1, . . . , m + c − 1. This holds for m = 1, since under FCFS the first c people are served
at their arrival times, so D̃u = t̃u + S̃u ≥ tu + Su for u = 1, . . . , c. Suppose that the inductive
hypothesis holds for m = n. Then we can apply the monotonic formulae (3.1) and (3.5) and
deduce that the inductive hypothesis holds for the m = n + 1 case too. Thus, the first part of
the theorem follows by mathematical induction.

Consider two instances of M/G/c [FCFS], coupled monotonically using the construction
implied in Theorem 3.2, based on the same sequence of arrival times, using sequences of service
durations that agree once arrival times become positive, and such that the Kiefer–Wolfowitz
workload vector of one strictly dominates that of the other at time 0+. We can remark that the
queues can couple successfully (which is to say, attain the same state at the same time, called
the coupling time) only at a time when both instances have idle servers. For the monotonicity
implies that one has total workload strictly larger than the other up to the time when they
first couple successfully. Since arrival times are fixed and shared by both systems, successful
coupling of the two processes cannot occur at the time of an arrival (which simply increases
the workload by equal amounts for each queue). On the other hand, if both queues have c or
more individuals in the system then the workloads decrease at the same rate. It follows that
successful coupling will occur at a time when

(a) an arrival does not happen;

(b) there are strictly fewer than c individuals in the smaller system (hence, the smaller system
has an idle server).

The coupling implies that at the coupling time the same will be true of the larger system (that
is, it too will have an idle server).
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Theorem 3.3. Consider a c-server queueing system viewed as a function of

(a) the sequence of arrival times (customers arriving at times 0 ≤ t1 ≤ t2 ≤ t3 ≤ · · · ), and

(b) the sequence of service durations S1, S2, S3, . . . assigned in order of initiation of service
(positive except for a possible initial subsequence of 0s).

Consider the following cases of different allocation rules, in some cases varying over time:

Case 1: ·/ · /c [RA];

Case 2: ·/ · /c [RA] until a specified nonrandom time T , then switching to ·/ · /c [FCFS];

Case 3: ·/ · /c [RA] until a specified nonrandom time T ′, 0 ≤ T ′ ≤ T , then switching to ·/ · /c
[FCFS];

Case 4: ·/ · /c [FCFS].

For the sake of an explicit construction, when initiations of service tie then we break the ties
using order of arrival time. On change of allocation rule to FCFS, customers in the system
but not yet being served are placed at the front of the queue in order of arrival-time; service
initiates immediately for the appropriate number of customers if there are servers free. If all
this holds then the k case dominates the k+1 case, in the sense that the mth initiation of service
in the k + 1 case occurs no later than the mth initiation of service in the k case, and the mth
departure in the k + 1 case occurs no later than the mth departure in the k case.

Moreover, for all times t ≥ T ′ the Kiefer–Wolfowitz workload vector for case 3 dominates
(coordinate-by-coordinate) that of case 4, with similar domination holding for cases 2 and 3
for all t ≥ T .

Proof. First observe that the desired relationships between case 1 and case 2, and between
case 2 and case 3, follow immediately once we have established the desired relationship between
case 3 and case 4. The two compared systems evolve in exactly the same way up to time
T , respectively T ′, and so we may simply argue in terms of the processes started at time
T , respectively T ′, for example, in case 1 adjusting the sequence of arrival times by tn �→
min{tn − T , 0} and replacing service durations of services initiated before T by the residual
service duration at T .

The argument therefore depends on the comparison between case 3 and the FCFS case 4.
Letting quantities with tildes refer to case 3, and using the notation of the proof of Theorem
3.2, we have, from the arguments for (3.5),

D̃m = min (m){J̃1 + S1, J̃2 + S2, J̃3 + S3, . . . , J̃m+c−1 + Sm+c−1},
Dm = min (m){J1 + S1, J2 + S2, J3 + S3, . . . , Jm+c−1 + Sm+c−1},

(noting that here the service durations agree when considered in order of initiation) and from
the arguments for (3.1), and the fact that FCFS holds for case 4,

J̃m+c ≥ max{tm+c, D̃m}, Jm+c = max{tm+c, Dm}.
Consider the inductive hypothesis that D̃u ≥ Du for u = 1, . . . , m − 1 and J̃v ≥ Jv for

v = 1, . . . , m + c − 1. This holds for m = 1, since under FCFS the first c people are served
at their arrival times while service cannot occur earlier under any other allocation policy, so
J̃u ≥ Ju = tu and D̃u = J̃u + Su ≥ tu + Su for u = 1, . . . , c. Suppose that the inductive
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Figure 1: Illustration (with three servers) of how cases 3′ and 4′ are instantiated at time T ′ from the
evolution over [0, T ′) of cases 1 and 4, respectively. (a) Arrivals at times t1, . . . , t5 and a possible
allocation to servers 1–3 in the M/G/3 [RA] process. Lengths of blocks represent size of workloads
S1, . . . , S5; work completed by time T ′ is shaded dark grey. (b) Allocation of the residual workloads to
servers at time T ′ in case 3′ (under FCFS). (c) Illustration of how the same set of arrivals and service
durations are handled by the FCFS process in case 4, and (d) how the corresponding residual workloads

are used to instantiate case 4′ at T ′.

hypothesis holds for m = n. Then we can apply the above monotonic formulae and deduce
that the inductive hypothesis holds for the m = n + 1 case too. Thus, the theorem follows by
mathematical induction.

We now prove the claimed Kiefer–Wolfowitz domination between cases 3 and 4 for all times
t ≥ T ′. (The proof that case 2 dominates case 3 for t ≥ T follows similarly.) To do this we
construct two new ·/ · /c [FCFS] processes (called cases 3′ and 4′) as follows. Both systems
have arrival times t ′i = max{ti , T ′}, and case 3′ (respectively 4′) has service durations given by
the residual service durations in case 1 (respectively case 4) at time T ′. That is, the system in
case 3′ has service durations R

(3)
1 , R

(3)
2 , . . . , where

R
(3)
i = max{J (1)

i + Si, T
′} − max{J (1)

i , T ′},

case 4′ has service durations R
(4)
1 , R

(4)
2 , . . . , where

R
(4)
i = max{J (4)

i + Si, T
′} − max{J (4)

i , T ′},

and where J
(1)
i and J

(4)
i are the times of ith initiation of service in cases 1 and 4, respectively

(see Figure 1).
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Now consider the Kiefer–Wolfowitz vectors for these processes. We claim that (with
subscripts corresponding in an obvious way to the cases being considered)

(i) V4′(T ′) = V4(T
′);

(ii) V3′(T ′) = V3(T
′);

(iii) V4′(T ′) � V3′(T ′), where � denotes coordinatewise domination.

The proof that V4(t) � V3(t) for all t ≥ T ′ follows from these three claims: it is immediate
that the required domination holds at time T ′; domination at all subsequent times follows by
applying the final part of Theorem 3.2, since cases 3 and 4 both operate a FCFS policy over
[T ′, ∞), with the same arrival times and associated service durations over this period.

It therefore remains to prove claims (i)–(iii) above. For (i), note that any service duration Si

which has completed service by time T ′ under case 4 will correspond to an arrival time t ′i = T ′
and residual service duration R

(4)
i = 0 for case 4′: such service durations therefore make no

contribution to workload vectors V4′(T ′) and V4(T
′). Next consider any pairs (T ′, R(4)

i ) for
which R

(4)
i < Si (i.e. customers who arrive by time T ′ and who have had some, but not all, of

their workload served by case 4 before this time). There can clearly be no more than c such
customers, and by construction they make the same positive contribution to both workload
vectors V4′(T ′) and V4(T

′) (subject to appropriate labelling of servers for case 4′). The only
other customers who contribute to V4(T

′) (and V4′(T ′)) are those who arrive before time T ′ but
who are yet to start service by this time (i.e. for which J

(4)
i > T ′). These customers correspond

to inputs of the form (T ′, Si) for case 4′. Consider the first such arrival: in case 4 this customer
is placed in queue at its arrival time ti < T ′, being allocated to the server with the least residual
workload at time ti . But since all c servers in case 4 must be busy over the entire period [ti , T ′]
(for if not, the customer arriving at time ti would necessarily have commenced service by T ′),
this server still has the least residual workload at time T ′. It follows that this customer will
be allocated to the same server in case 4′ at T ′. Arguing inductively along these lines, it is
clear that all customers arriving over [ti , T ′] are allocated to identical servers in cases 4 and 4′,
implying that V4′(T ′) = V4(T

′), as required.
For (ii), note that the workload vector V3′(T ′) is instantiated using the residual workloads

at T ′ from case 1 and then applying an FCFS policy, whereas the vector V3(T
′) uses the residual

workloads at T ′ from case 3, again under FCFS (due to the change of service discipline in case 3
at time T ′, as described in the statement of the theorem). But since the systems in cases 1 and 3
are identical over the period [0, T ′), it is clear that V3′(T ′) = V3(T

′).
Finally, claim (iii) follows from Theorem 3.2 applied to the two FCFS systems in cases 3′

and 4′, which use the same sequence of arrival times (t ′1, t ′2, . . . ) and possibly different sequences
of service durations. But since J

(1)
i ≥ J

(4)
i for all i, it follows that R

(3)
i ≥ R

(4)
i (see Figure 1

for an illustration), and so service durations for case 3′ are at least as big as those for case 4′,
which provides the required monotonicity.

We close this section with a standard lemma which assures us that actual numbers of
customers in the systems also obey the comparisons indicated in Theorems 3.2 and 3.3, so
long as the arrival processes agree. (Note that the same is not true of total residual workload.)

Lemma 3.1. Consider two queueing systems, such that arrivals happen at the same time for
each system, initiations of service happen earlier in the first than in the second (J̃m ≥ Jm for
all m), and service durations are shorter in the first than in the second when indexed by order
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of initiation of service (S̃m ≥ Sm for all m). Then numbers in the second system X̃t exceed
numbers in the first system Xt at any specific time t .

Proof. Let Xt , X̃t be numbers in the system at time t . Since J̃m + S̃m ≥ Jm +Sm for any m,
the representation (3.2) shows that departures happen later in the second system

D̃m ≥ Dm for any m.

At a given time t we know that the same number #{m : tm ≤ t} of customers have entered each
of the systems. However, the above inequality for departures shows that fewer have left the
second system than the first. Accordingly,

X̃t = #{m : tm ≤ t} − #{m : D̃m ≤ t} ≥ Xt = #{m : tm ≤ t} − #{m : Dm ≤ t}.

4. Simple dominated CFTP for M/G/c

We seek a CFTP algorithm for an M/G/c [FCFS] queueing system. The key step is to
find a dominating process which is reversible. Sigman [28] showed how to do this if the
system is super-stable (arrival rate less than service rate of single server, i.e. ρ < 1). Observe
that the system is dominated by an M/G/1 [FCFS] queue, note that the workload process of the
M/G/1 [FCFS] queue is the same as that of the same queue under processor sharing M/G/1 [PS],
exploit the dynamic time reversibility of the M/G/1 [PS] workload process (exchange residual
workload for work so far completed on customers in service) to simulate it backwards in time
until empty, then use the observed departure times and associated service durations to evolve
the Kiefer–Wolfowitz vector for the M/G/c [FCFS] queue forwards until time 0.

In this section we show how to improve on this by lifting the super-stability requirement,
leaving only the minimal stability requirement (arrival rate less than total service rates of all
servers, i.e. ρ < c). The idea is as follows: the results of the previous section show that
the system is dominated by an M/G/c [RA]=[Mλ/c/G/1 FCFS]c queueing system with RA
allocation policy. Sigman [28] noted that naïve pathwise domination fails; however, we can
and will exploit the pathwise domination which holds when service durations are assigned in
order of initiation of service. Again we can extend the dominating process backwards in time
using the PS representation. The simplest way to construct a dominated CFTP is then to extend
backwards in time till the dominating M/G/c [RA] system becomes completely empty, because
this allows us to identify service durations with initiations of service in a way which is consistent
with further extensions backwards in time. In effect we are exploiting the ‘regenerative atom’
idea noted in [18]. The resulting sequences of arrival times and service durations can then be
used to construct a realization of an M/G/c [FCFS] queue that is subordinate to the dominating
process. Since this can be extended further back in time, using further emptying times of the
dominating process, we have produced the tail end of a ‘simulation from time minus infinity’
which must therefore be in equilibrium at time 0 (for a more mathematical account of this idea,
see [16]).

So the steps of the algorithm are as follows.

Algorithm 1. The algorithm description involves some random processes and associated ran-
dom quantities which are run backwards in time: such quantities are crowned with a hat (for
example, Ŷ below). We summarise the algorithm in 4 steps.

1. Consider an [M/G/1 PS]c process Ŷ , run backwards in time in statistical equilibrium.
Make a draw from Ŷ (0), the state of the process at time 0.
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2. Simulate the c components of the reversed-time process (Ŷ (t̂) : t̂ ≥ 0) over the range
[0, τ̂ ], where τ̂ is the smallest reversed time such that all components are empty at τ̂ .

3. Use (Ŷ (t̂) : t̂ ∈ [0, τ̂ ]) to construct its (dynamic) time reversal and, thus, to build
(Y (t) : τ ≤ t ≤ 0), an M/G/c [RA]=[M/G/1 FCFS]c process (here we set τ = −τ̂ ).

4. Use Y to evolve X, an M/G/c [FCFS] process, over [τ, 0] = [−τ̂ , 0], started in the empty
state.

Because of the comparison Theorems 3.2 and 3.3, and Lemma 3.1, we may further extend Ŷ

forwards in reversed time, and thus Y backwards in time, and use this construction to build
further variants of X started in the empty state from any time earlier than τ . Suitably extended
back in time, Y dominates all these versions; moreover, agreement of any two variants X(1)

and X(2) is enforced at the point when Y visits the empty state subsequent to both of their
starting times. The arguments discussed in [16] then show that the common value X(0) of all
these variants must be a draw from the statistical equilibrium of the M/G/c [FCFS] queue under
consideration.

We now discuss in turn the details of each of these steps.

Step 1: generating a draw from the PS queue system in equilibrium. Thanks to the Pollaczek–
Khintchine formula for an M/G/1 queue, we know that the equilibrium distribution for the
residual workload of Ŷj at time 0 (where j ∈ {1, . . . , c} denotes the j th server) is distributed
as

Q̂j (0)∑
i=1

Ŝe
j,i (0).

Here Ŝe
j,i (0) are independent and identically distributed draws from the distribution of service

durations in equilibrium, with distribution function

Ge(x) = μ

∫ x

0
Ḡ(y)dy for x ≥ 0

(for Ḡ(y) = 1 − G(y) the complementary distribution function of a service duration), while
Q̂j (0) is an independent random variable with geometric distribution given by

P[Q̂j (0) = n] =
(

ρ

c

)n(
1 − ρ

c

)
for n ≥ 0.

However, we need to know the total (not only residual) workload brought by each of the
customers currently in service. Arguing as in [28], or using a dynamic reversibility argument,
we do this by simulating from the stationary spread distribution for each of the Q̂j (0) customers
being served by server j at time 0, giving draws Hj,1, Hj,2, . . . , Hj,Q̂j (0)

: these represent the
total workload brought by each customer. Here the stationary spread distribution of service
durations is the length-biased variant of G, with complementary distribution function given by

Ḡs(x) = μxḠ(x) + Ḡe(x) for x ≥ 0.

(Our assumption that E[S2] < ∞ guarantees that the spread distribution has finite mean.)
We then draw independent uniform[0, 1] random variables Uj,i and set Ŝe

j,i (0) = Uj,iHj,i to
represent the residual workloads at time 0.
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Finally, since all of the servers in Ŷ work independently of each other, c independent draws
from this distribution deliver an equilibrium draw from Ŷ . Set

Ŷj (0) = R(Se
j,1(0), . . . , Se

j,Q̂j (0)
(0))

to be this draw from equilibrium, viewed as a list of workloads Se
j,i (0) listed in increasing order

(R being the reordering operator mentioned in Section 2).

Step 2: evolving the PS queue system in reverse time till it empties. We record the [M/G/1 PS]c

queueing system as follows: at (reversed) time t̂ , the system is defined by

Q̂j (t̂) = the number of customers for server j at time t̂ ,

Se
j,i (t̂) = the residual workload of customer i for server j at time t̂ ,

Ŷj (t̂) = R(Se
j,1(t̂), . . . , S

e
j,Q̂j (t̂)

(t̂ )), Ŷ (t̂) = (Ŷ1(t̂), Ŷ2(t̂), . . . , Ŷc(t̂)).

It is convenient to write |Ŷj (t̂)| = Q̂j (t̂) and |Ŷ (t̂)| = |Ŷ1(t̂)| + |Ŷ2(t̂)| + · · · + |Ŷc(t̂)|.
If |Ŷ (0)| = 0 (so there is no residual workload left in the system at all) then set τ̂ = 0 and

stop simulating.
Otherwise, use event-based simulation. Calculate the next event time after t̂ as follows. For

each j ∈ {1, 2, . . . , c}, all of the Q̂j customers of server j are served simultaneously by server
j at rate 1/|Ŷj (t)| until either one of the customers of one of the servers has been completely
served (and then leaves the system) or a new customer arrives (at rate λ) to be served by one or
another of the servers. Reset t̂ accordingly.

• If the event is an arrival, then generate a new service duration S for the customer (using
distribution G) and choose a server j ∈ {1, . . . , c} to which the customer is allocated.
The customer is placed in service, so increment Q̂j by +1 (so that the per-customer
service rate of server j drops accordingly).

• If the event is a departure, then record the departure time and the full service duration
of the departing customer; increment Q̂j by −1 (so that the per-customer service rate of
server j increases accordingly). If |Ŷ (t̂)| = 0 then set τ̂ = t̂ and stop simulating.

If τ̂ > 0 then record the departure times of customers as 0 ≤ t̂1 ≤ t̂2 ≤ · · · ≤ t̂k = τ̂ , and
record the associated (full) service durations as S1, . . . , Sk .

Step 3: dynamic time-reversal and construction of the M/G/c [RA]=[M/G/1 FCFS]c dominat-
ing process. Let the M/G/c [RA]=[M/G/1 FCFS]c system Y start from the empty state at time
τ = −τ̂ and run forward in time. We let |Y (t)| denote the total number of customers in Y

at time t . Arrivals occur at times τ = −t̂k ≤ −t̂k−1 ≤ · · · ≤ −t̂1. The customer arriving at
time −t̂i has associated service duration Si (obtained from records kept as specified in step 2
above), and is allocated to the same server that completed service Si in Ŷ . Reorder the set of
service durations according to the corresponding initiation of service durations in the forwards
queueing system Y . Denote this ordered list by S′ = (S′

1, . . . , S
′
k): if JY

i is the time of initiation
of service S′

i in Y then τ = JY
1 ≤ JY

2 ≤ · · · ≤ JY
k .

Note that it is possible for JY
i to be positive, in the case where Y has customers in the queue at

the (terminal!) time 0 who have yet to commence service. In the event that JY
k > 0, we extend

the simulation of Y further into the future by drawing extra (independent) arrival times over
the period (0, J Y

k ], along with associated service durations. This results in a set of additional
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service durations with associated times of initiation of service: these extra services are then
added to the list S′ in order of these times of initiation of service. (Note that this implies a
potential change in index for service durations S′

i for which JY
i > 0.)

This gives us a method of constructing a stationary version of Y started arbitrarily far back
into the past and run until the time when all customers in the system at time 0 have commenced
service. For example, our simulation of Ŷ can be extended to the second time τ̂ ′ > τ̂ of
emptying, and then these additional departure times and service durations used to feed Y over
the corresponding period of forward time [τ ′, τ ). Since the workload of the M/G/1 queue is
invariant under changes of work-conserving discipline, it follows that if Y starts from empty
at τ ′ then it will again be empty just before the arrival at time τ .

Step 4: construction of the target process M/G/c [FCFS] process. Start the M/G/c [FCFS]
queue X from the empty state at time τ , and let it evolve (using (2.1)) by generating arrivals
at times τ = −t̂k ≤ −t̂k−1 ≤ · · · ≤ −t̂1 (i.e. the same arrival times as used for Y ), but with
service duration S′

i now allocated to the arrival −t̂i . Since customers are served by X in order
of arrival, this means that service durations are once again allocated by time of initiation of
service, i.e. JX

1 ≤ JX
2 ≤ · · · . The domination arguments of Section 3 permit us to argue that

JX
i ≤ JY

i for i = 1, . . . , k, and so X satisfies |X(t)| ≤ |Y (t)| for all t ∈ [τ, 0], where |X(t)|
denotes the total number of customers in X at time t . (Note, however, that it is certainly not
the case that the residual workload in X(t) is necessarily dominated by that in Y (t).) Return
X(0) as a draw from equilibrium of an M/G/c [FCFS] process.

5. Sandwiching for the dominated CFTP algorithm

The algorithm described in Section 4 is inefficient, because it uses the regenerative atom
which is the empty system state. For typical applications of Mλ/G/c queueing systems, we
would expect 1 
 ρ < c, so that the system would frequently visit states where no more than c

people were in the system, but would only rarely visit the empty state.
A more efficient dominated CFTP algorithm exploits the domination results (Theorems

3.2, 3.3, and Lemma 3.1) to establish sandwiching. The idea is to stop the backward-in-time
simulation of the [M/G/1 PS]c process Ŷ at some time T̂ well short of the time required to
achieve empty state, but then to construct a lower envelope M/G/c [FCFS] process L (started at
the empty state at time −T̂ ) and an upper envelope M/G/c [FCFS] process U (started using the
state of the forwards dominating M/G/c [RA]=[M/G/1 FCFS]c process Y at time −T̂ ), and to
evolve these using the arrival times and service durations derived from Y in such a way that

(a) at any given time, the number of people in L lies below the number in U which in turn
lies below the number of people in Y ;

(b) similar envelope processes begun at earlier times sandwich themselves between L and
U (the so-called ‘sandwiching property’), in the sense of coordinatewise domination of
Kiefer–Wolfowitz workload vectors.

It follows from the theory of dominated CFTP [16], [18] that if we then successively decrease
−T̂ till eventually L(0) = U(0) then the common state of L(0) = U(0) will be a draw from the
equilibrium (this depends crucially on the sandwiching property mentioned above, which must
not be neglected in implementation). The delicate issue in all this is exactly the requirement
to maintain sandwiching. This requires us to match service durations to times of initiation of
service, not just with respect to individual pairs of envelope processes, but also as between a
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couple of pairs begun at different times. The trick is to extend the simulation of Ŷ beyond T̂

so that matching may be carried out in a stable way.

Algorithm 2. 1. Consider an [M/G/1 PS]c process Ŷ , run backwards in time in statistical
equilibrium. Make a draw from Ŷ (0), the state of the process at time 0.

2. Fix a suitable positive T̂ = −T . Evolve the queue for server j of Ŷ (independently of all
other servers) until the first time τ̂j ≥ T̂ that this server is empty for j = 1, . . . , c.

3. Construct Yj , an M/G/1 [FCFS] process over the corresponding reversed time interval
[−τ̂j , 0] for j = 1, . . . , c.

4. Produce lists of service durations and arrival times, L∗
T and LT .

5. Construct an upper sandwiching process, U[T ,0] over [T , 0].
6. Construct a lower sandwiching process, L[T ,0] over [T , 0].
7. Check for coalescence.

We now discuss in turn the details of each of these steps.
Step 1: produce a sample from the stationary distribution of the [M/G/1 PS]c process Ŷ . This
is performed exactly as in Algorithm 1.

Step 2: evolve the queue for each server of Ŷ independently until empty. Record departure times
and associated (full) service durations for each server; simulate the queue served by server j

(as in step 2 of Algorithm 1) until time

τ̂j = inf{t̂ ≥ T̂ : |Ŷj (t̂)| = 0}, j = 1, . . . , c.

Step 3: construct Yj , an M/G/1 [FCFS] process over the corresponding reversed time interval,
for j = 1, . . . , c. For each server j ∈ {1, 2, . . . , c}, we simulate Yj starting in the empty
state at time τj = −τ̂j , and we feed the simulation with arrival times and associated service
durations corresponding to the recorded departures from Ŷj . If t+ > 0 is the positive time by
which all customers in Y at time 0 have initiated service then extend each Yj simulation to cover
the range (τj , t

+], as in the detail of step 3 of Algorithm 1. Note that, since the M/G/1 [FCFS]
process Yj starts from empty at time τj , the path of Yj over [0, t+] will remain unchanged if
we decrease the value of T < 0. Furthermore, since τj ≤ T for j = 1, . . . , c, we have in fact
established the path of Y , an [M/G/1 FCFS]c process, over the interval [T , 0].
Step 4: produce lists of service and arrival times, L∗

T and LT . Form the union of all arrival
times observed in each Yj over the interval [τj , 0], and order them as t1 ≤ t2 ≤ · · · ≤ tn.
Similarly, form the union of all pairs (J, S) of time J of initiation of service and associated
service duration S from each Yj over the interval [τj , t

+], and order these in increasing order
of J . Let L∗

T = {(tk, Jk, Sk) : tk ≤ T } and LT = {(tk, Jk, Sk) : tk > T }. Finally, for each
(tk, Jk, Sk) ∈ L∗

T , replace the arrival time tk by T , Jk by Jk ∨ T , and the service duration
Sk by its residual workload at time T . That is, replace (tk, Jk, Sk) by (T , Jk ∨ T , Rk), where
Rk = (Jk + Sk) ∨ T − (Jk ∨ T ).

Step 5: construct an upper sandwiching process, U[T ,0] over [T , 0]. We construct an M/G/c
[FCFS] process U[T ,0] over [T , 0] by starting from empty at time T and feeding it the arrival
times and service durations read first from L∗

T and then from LT . The intention here is that U

can be seen to be a process which switches from the M/G/1 [RA] queue Y to an M/G/c [FCFS]
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queue at time T : Theorem 3.3 guarantees that |U | (the number of customers in the upper
process) will be dominated by |Y |.
Step 6: construct a lower sandwiching process, L[T ,0] over [T , 0]. In a similar manner we
construct an M/G/c [FCFS] process L[T ,0] over [T , 0] by starting from empty at time T and
feeding it the arrival times and service durations read once again from L∗

T and then from
LT , but now with all the service durations in L∗

T set to 0. Theorems 3.2 and 3.3 ensure that
L[T ,0] � U[T ,0] (here � denotes coordinatewise domination of the Kiefer–Wolfowitz workload
vectors).

Step 7: check for coalescence. If the residual workload vectors of U[T ,0](0) and L[T ,0](0)

agree, return their common value as a draw from equilibrium of our target process X. If not,
then replace T̂ by T̂ ′ > T̂ , and return to step 2: extend the paths of Ŷj until they have each
emptied at some time τ̂j

′ ≥ T̂ ′ etc., and continue as before.

The reader may be concerned that coalescence here occurs when the residual workload
vectors first coincide, apparently without requiring equality of numbers of customers in the
system. However, under FCFS, a disparity of numbers together with equality of residual
workload vectors would require at least one of the two systems to have strictly more than c

customers in the system. As already remarked after the proof of Theorem 3.2, coalescence for
Algorithm 2 can only occur when both processes have idle servers, and in this case equality of
residual workload vectors implies equality of the numbers of customers in the system.

Since L[T ,0] is a version of our target M/G/c [FCFS] process started from empty, a standard
dominated CFTP argument [16], [18] shows that the above algorithm really does return a perfect
draw from the correct equilibrium distribution, as long as the upper and lower processes really
do satisfy the ‘sandwiching property’. The following theorem establishes a rigorous validation
of sandwiching for Algorithm 2.

Theorem 5.1. Let L[T ,0] and L[T ′,0] (respectively U[T ,0] and U[T ′,0]) be lower (respectively
upper) sandwiching processes, defined as above, started at times T ′ < T < 0. Then, for all
times t ∈ [T , 0],

L[T ,0](t) � L[T ′,0](t) � U[T ′,0](t) � U[T ,0](t),

where � once again denotes coordinatewise domination of the Kiefer–Wolfowitz workload
vectors.

Proof. Let τ̂j (respectively τ̂ ′
j ) be the first time after T̂ = −T (respectively T̂ ′ = −T ′)

that Ŷj empties for j = 1, . . . , c. As noted at the end of step 3, when we extend the simulation
of Ŷj from [0, τ̂j ] to [0, τ̂ ′

j ] its path over [0, τ̂j ] is unchanged. It follows that the list LT (created
in step 4 above) is unchanged by such an extension, i.e.

LT = {(t, J, S) ∈ LT ′ : t > T }.
Furthermore, any additional entries created in L∗

T when extending from τ̂j to τ̂ ′
j (which must

satisfy tk ≤ T ) have zero residual service durations at time T . Extending the simulation of Ŷj

(j = 1, . . . , c) from [0, τ̂j ] to [0, τ̂ ′
j ] thus has no effect on the paths of U[T ,0] and L[T ,0]. We

may, therefore, assume that the lists L∗
T , LT , L∗

T ′ , and LT ′ are all constructed by running each
Ŷj process over the longer intervals [0, τ̂ ′

j ].
Now we simply observe that U[T ′,0] is (as remarked in step 5 above) a process which switches

from the M/G/1 [RA] queue Y to an M/G/c [FCFS] queue at time T ′, whereas U[T ,0] switches
from Y to M/G/c [FCFS] at a later time T > T ′: Theorem 3.3 shows that U[T ,0] must therefore
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dominate U[T ′,0]. Similarly, L[T ,0] and L[T ′,0] are two M/G/c [FCFS] processes, which can be
viewed as both starting from empty at time T ′ and with all service durations corresponding to
pre-T arrival times set to 0 for L[T ,0]: Theorem 3.2 shows that L[T ′,0] dominates L[T ,0], as
required.

Bearing in mind the remark made at the end of Theorem 3.2, we see that coalescence of the
two sandwiching processes can occur only when both upper and lower sandwiching processes
have strictly fewer than c individuals in the system. There follows an almost obvious remark:
in the c = 1 case Algorithm 2 offers no advantage over Algorithm 1, which itself reduces to the
c = 1 case of [28]. However, if c > 1 then it is possible for Algorithm 2 to produce coalescence
when started prior to the latest time (prior to time 0) at which the equilibrium queue has an idle
server. For large c it follows that Algorithm 2 offers substantial practical advantages in terms
of reduced run-time.

6. Assessment of algorithms for the M/M/c case

So far we have introduced, and proved the correctness of, two algorithms for perfectly
sampling from the stationary distribution of the Kiefer–Wolfowitz workload vector for stable
M/G/c queues. In this section we briefly investigate and compare the performance of these
algorithms, mainly in the special case when service durations are exponentially distributed
(i.e. for an M/M/c queue). We begin with a discussion of choice of back-off strategy for
Algorithm 2, and then present some simulation results which indicate that this algorithm may
be substantially faster than (the rather naïve) Algorithm 1. These observations are reinforced
by theoretical bounds on the run-time of the two algorithms, which can be found in Section 6.3.
We do not present here a complete analysis of our algorithms’performance, but we do elucidate
the relative efficiency of Algorithm 2.

6.1. Back-off strategies

In Algorithm 2 it is necessary to specify a method for choosing the sequence of times
{T̂ , T̂ ′, . . . } at which to check for coalescence. We briefly discuss two options. The first is to
use the well-known ‘binary back-off’method (set T̂ = 1, T̂ ′ = 2, and continue to double in this
way for as long as necessary), as is employed in many CFTP algorithms. The second is to use
a sequence of stopping times determined by the dominating Ŷj processes. For j = 1, . . . , c let
τ̂j = inf{t > 0 : |Ŷj | = 0}, and let τ̂− and τ̂+ be the minimum and maximum of these times;
suppose that server j− is the one that empties for the first time at τ̂−. The first time at which
we can possibly check for coalescence is when running U and L over [−τ̂−, 0]. If this does
not lead to coalescence then the path of Ŷj− needs to be extended until it empties once again,
at which point we update the values of τ̂−, τ̂+, and j− and repeat. However, since server j−
is starting from empty at time τ̂−, it is quite likely to empty again after only a relatively short
period of time, and it may therefore be computationally expensive to check for coalescence
as soon as this server is once again empty. In what follows we make use of a binary back-off
strategy whenever making use of Algorithm 2.

6.2. Example of simulation output

Both of our two algorithms produce a perfect sample from the stationary distribution of the
Kiefer–Wolfowitz workload vector. In Figure 2 we show the result of using Algorithm 2 for an
M/G/c queue with λ = c = 25 and service distributions following a uniform[0, 1] distribution;
here we have chosen to display the last six coordinates of the workload vector (for which, recall,
the coordinates are ordered monotonically by remaining workload).
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Figure 2: Equilibrium distribution of the final six coordinates of the Kiefer–Wolfowitz workload vector
when λ = c = 25 and service durations are uniformly distributed on [0, 1]. (Produced from 5000 draws

using Algorithm 2.)

When service durations follow an exponential distribution (i.e. X is an M/M/c queue) there
is a well-known closed form for the distribution of the number of customers in the system under
stationarity:

πk =
(

ρ

c

)k
c(k∧c)

(k ∧ c)!π0 for k ≥ 0.

We have compared the theoretical distribution to the empirical distribution obtained by output
from large numbers of runs of Algorithm 2 for a wide variety of different sets of parameter
values and achieved good agreement: by way of illustration, the result of doing this when
λ = 10, μ = 2, and c = 10 is shown in Figure 3. Note that these parameters clearly satisfy
1 < ρ = λ/μ < c, and so this is an example of a stable, but not super-stable, queue. A
chi-squared test between the theoretical and observed distributions here gave a p-value of 0.62,
indicating good agreement.

It is also of interest to compare how far one has to simulate the dominating process Ŷ for
each algorithm, and we have performed such a comparison for a variety of sets of parameter
values. In Figure 4 we give an indication of how much quicker it may be to detect coalescence
via Algorithm 2 rather than simply waiting for Ŷ to empty (as in Algorithm 1). For this
example we once again set λ = 10, μ = 2, and c = 10, and performed 5000 runs of each
algorithm. For Algorithm 1 we recorded the value of τ̂ (the time taken for Ŷ to empty),
while for Algorithm 2 we employed a binary back-off approach (as is common in many CFTP
algorithms) and recorded the minimum value of T̂ needed to determine coalescence of our
upper and lower sandwiching processes. Note that the binary back-off approach means that
it is possible for Algorithm 2 to take longer than Algorithm 1 to detect coalescence (e.g. if Ŷ

empties at time 0 < τ̂ < 1 then Algorithm 2 will not detect this until T̂ = 1; similar phenomena
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Figure 3: Number of customers for an M/M/c queue in equilibrium when λ = 10, μ = 2, and c = 10.
Solid bars show the theoretical number of customers in the system; shaded bars show the result of 5000

draws using Algorithm 2.

Figure 4: Distribution of time taken for coalescence to be detected under Algorithms 1 and 2 applied to
an M/M/c queue for 5000 runs with λ = 10, μ = 2, and c = 10. Solid bars show the distribution of
log2(τ̂ +1) for Algorithm 1, where τ̂ is the first time at which Ŷ empties; shaded bars show the distribution
of log2(T̂ + 1) for Algorithm 2, where T̂ is the smallest time needed to detect coalescence using binary

back-off.

arise in several perfect simulation algorithms involving binary back-off) but that, in general,
Algorithm 2 is significantly faster. In Figures 5(a) and 5(b) we show similar run-time results
for Algorithm 2 using substantially larger values of λ and c (while maintaining ρ = λ/2). The
coalescence time τ̂ here clearly does not increase significantly: in the following section we give
an heuristic argument which explains why this is to be expected, at least when service times
are exponentially distributed.

Of course, such a comparison does not take into account the additional computational
demands of checking for coalescence (usually repeatedly) in Algorithm 2, nor the fact that some
of the servers in the [M/G/1]c process may not empty until a time which is significantly greater
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Figure 5: Sample of run-time distributions for a selection of M/M/c queues. (a) Coalescence time
(measured as in Figure 4) for Algorithm 2 applied to an M/M/c queue for 5000 runs with λ = 30, μ = 2,
and c = 30. Chi-squared test on the distribution of the number of customers in the system gave a p-value
of 0.84. (b) Coalescence time (measured as in Figure 4) for Algorithm 2 applied to an M/M/c queue
for 5000 runs with λ = 50, μ = 2, and c = 50. Chi-squared test on the distribution of the number of

customers in the system gave a p-value of 0.38.

than T̂ (especially when ρ is close to 1), and so this is by no means a complete discussion of the
relative efficiency of each algorithm. However, it emphasises just how much sooner it is possible
for coalescence to be detected, without the need to wait for the dominating process to empty
completely. (Note that the computational demands of Algorithms 1 and 2 may be compared
as follows: running from an emptying time τ < 0, Algorithm 1 requires simulation of an
[M/G/1]c and an M/G/c [FCFS]. Running from a time T < 0, Algorithm 2 requires simulation
of an [M/G/1]c and two coupled M/G/c [FCFS]. Bearing this in mind, and exploiting the remark
after the proof of Theorem 3.2, the choice between Algorithms 1 and 2 should depend on an
heuristic comparison of the first moments of the emptying time τ and the latest time (prior to 0)
at which the equilibrium queue M/G/c [FCFS] has an idle server.)

6.3. Notes on convergence rates

The run-time of Algorithm 1 is equal to the time taken for the [M/G/1 PS]c dominating
process Ŷ to empty. It is well known [1, Theorem 5.7] that in equilibrium the mean time for the
M/G/1 queue to empty is finite if and only if the service duration distribution has a finite second
moment. Using our standing assumption that E[S2] < ∞, it follows that each server in Ŷ will
almost surely empty in finite time, and that the time taken until we see a simultaneous empty
period for all c servers (that is, the time taken for the dominating process to completely empty)
will itself be finite. Thus, Algorithm 1 has finite mean run-time if and only if E[S2] < ∞. The
same observation holds for Algorithm 2, for which a finite run-time is also dependent upon
each server in Ŷ emptying in finite time.

Stronger conditions on the moments of S allow a better bound on run-times. For example,
note that the time taken for Ŷ to completely empty has an exponential moment (that is, Ŷ

is geometrically ergodic) if and only if the Mλ/c/G/1 queue (and indeed the M/G/c [FCFS]
target process) is geometrically ergodic; this is equivalent to S itself having a finite exponential
moment [21, Theorem 16.4.1]. More general conditions for existence of moments of the
stationary waiting time for a GI/GI/c queue have recently been determined in [10].

Existence of an exponential moment is rather a strong demand, but bounds on algorithm
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run-time can still be produced under weaker drift conditions. In particular, if E[Sm] < ∞
for some m ≥ 2 then Hou and Liu [13] showed the embedded M/G/1 queue (and, hence, the
embedded M/G/c queue) to be polynomially ergodic, which in turn implies that the run-time
of Algorithms 1 and 2 will possess a finite mth moment. (A similar result is true in a much
wider context: Connor and Kendall [8] described a generic (but impractical) perfect simulation
algorithm for a class of so-called tame chains. This extends the work in [15] to chains which
satisfy a geometric Foster–Lyapunov drift condition at a state-dependent subsampling time;
see [7] for more details. In particular, if the M/G/c queue is tame, with E[Sm] < ∞ for some
m ≥ 2, then [7, Proposition 4.3] can be used to show that the dominating process of [8] for the
M/G/c queue is polynomially ergodic.)

The mean run-time behaviour of Algorithm 1 can be estimated using simple renewal-
theoretic arguments. First, consider an M/G/1 queue with service duration distributed as
the random variable S, and with arrival intensity λ/c. By Pollaczek–Khintchine theory, in
statistical equilibrium the probability of this being empty is 1 − ρ/c, where ρ = λE[S] [1,
Theorem 5.2]. Consequently, the [M/G/1]c dominating process, used in both Algorithms 1
and 2, has probability (1 − ρ/c)c of being completely empty at a given time.

Second, consider the start- and end-times of the busy periods of the whole system [M/G/1]c.
These form an alternating renewal process: completely empty periods have exponential(λ)

durations, while busy periods are distributed as a random variable B1, being the time it takes
for [M/G/1]c to empty completely if it starts off with just one new customer. Alternating renewal
theory allows us to deduce that

1/λ

1/λ + E[B1] =
(

1 − ρ

c

)c

.

Now let Be be the time till the queue empties, if it is started in equilibrium.
A stochastic comparison argument shows that Be stochastically dominates B1 except when

the equilibrium queue is empty (probability (1 − ρ/c)c). Consequently, we may deduce that

E[Be] ≥
(

1 −
(

1 − ρ

c

)c)
E[B1]

=
(

1 −
(

1 − ρ

c

)c)
(1 − ρ/c)−c − 1

λ

≥ (1 − ρ/c)−c − 2

λ
.

This carries over to a lower bound on the run-time of Algorithm 1, which is given by the
complete emptying time of an [M/G/1 PS]c system.

It is instructive to consider specific cases. In Table 1 we show how the lower bound increases
quickly with the arrival rate when λ = c = 2ρ, and indicates the effect of increasing ρ when
λ = c is held constant. The lower bound when λ = c = 10 and ρ = 5 is comparable to the
simulation results for Algorithm 1 displayed in Figure 4, for which the mean run-time was 143.
Furthermore, this analysis indicates that Algorithm 1 is infeasible for large c, even when ρ/c

is significantly smaller than 1.
A corresponding analysis for Algorithm 2 is more intransigent, as one has to estimate the

mean coupling time of upper- and lower-processes which are coupled M/G/c, coupled by having
the same arrival processes and obtaining service durations in the same sequential order from
a fixed sequence. We are not yet able to give a useful analysis of this coupling, which would

https://doi.org/10.1239/aap/1449859799 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1449859799


1060 S. B. CONNOR AND W. S. KENDALL

Table 1: Lower bound on the mean run time for Algorithm 1 (E[Be]) for some specific queue parameters.

λ c ρ Lower bound on E[Be] λ c ρ Lower bound on E[Be]
10 10 5 102 30 30 5.0 7.85
20 20 10 52 429 30 30 10.0 6392
30 30 15 3.58 × 107 30 30 20.0 6.86 × 1012

40 40 20 2.75 × 1010 30 30 25.0 7.37 × 1021

50 50 25 2.25 × 1013 30 30 29.5 7.37 × 1051

involve consideration of the coupled Kiefer–Wolfowitz workload vectors. Instead we offer an
heuristic argument, working instead with the Markov processes given by numbers of customers
in the system for two coupled M/M/c queues with the same stable parameters. These queues X

and Y are defined as follows: X is begun at X0, a draw from the stationary distribution; Y is
begun at Y0 = 0. Both X and Y use the same Poisson stream of arrivals. Departures from X

and Y are coupled so that X ≥ Y always: any departure from Y always coincides with a
departure from X. Thus, the continuous-time Markov chains X and Y are immersion coupled
([17]; this kind of coupling is also called Markovian or co-adapted). Their joint transition rates
are given by

X → X + 1, Y → Y + 1 at rate λ,

X → X − 1, Y → Y − 1 at rate (Y ∧ c)μ,

X → X − 1, Y → Y at rate ((X ∧ c) − (Y ∧ c))μ.

We wish to consider E[Tcouple], where Tcouple = inf{t : Xt = Yt }. Note that P[Tcouple ≤ t] =
P[upper- and lower-processes (begun at time −t) coalesce by time 0].

To this end, we introduce a further process Z ≥ X ≥ Y with Z0 = X0 and coupled to Y as
follows:

Z → Z + 1, Y → Y + 1 at rate λ,

Z → Z − 1, Y → Y − 1 at rate (Y ∧ c)μ,

Z → Z − 1, Y → Y at rate μ when Y < c and Z > Y.

Then T̃couple stochastically dominates Tcouple; hence, E[T̃couple] ≥ E[Tcouple], where

T̃couple = inf{t : Zt = Yt }.
To estimate E[T̃couple], it suffices to find positive constants α and β such that

U = α(Z − Y ) + βY + t

is a nonnegative supermartingale up to the coupling time T̃ . For then we can apply the methodol-
ogy of the proofs of Foster–Lyapunov criteria: E[T̃couple] ≤ E[UT̃couple

] ≤ E[U0] = αE[Z0] =
αE[X0], which at last can be computed using detailed balance [1, p. 77]. Accordingly, consider
the transition rates of the Markov chain (Z, Y ): using these we may deduce that, before the
coupling time,

E[Ut+δt | Ut ] − Ut = −αμ1{Yt<c}δt − β(μ(Yt ∧ c) − λ)δt + δt + o(δt).
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Table 2: Heuristic overestimate of the mean run time for Algorithm 2 for some specific queue parameters.

Heuristic upper bound Heuristic upper bound
λ c ρ of mean run-time λ c ρ of mean run-time

10 10 5 5.04 30 30 5.0 1.00
20 20 10 10.00 30 30 10.0 5.00
30 30 15 15.00 30 30 20.0 40.10
40 40 20 20.00 30 30 25.0 131.25
50 50 25 25.00 30 30 29.5 4853.97

For U to be a supermartingale before the coupling time, it is necessary and sufficient that this
expression be nonpositive for small δt . Nonpositivity follows if

β(cμ − λ) ≥ 1 (Yt ≥ c case),

αμ + β(μ(Yt ∧ c) − λ) ≥ αμ − βλ ≥ 1 (Yt < c case).

Using ρ = λ/μ, we set

β = 1

λ

ρ

c − ρ
, α = 1

λ

cρ

c − ρ

(note that stability of the M/G/c queues requires ρ ≤ c), and deduce that

E[Tcouple] ≤ 1

λ

cρ

c − ρ
E[X0]. (6.1)

Again, it is instructive to consider specific cases. In Table 2 we tabulate corresponding
heuristic over-estimates for Algorithm 2 for the same ranges of parameter values as found in
Table 1. Note that ρ = λE[S]. Note too that the large growth in mean run-time at the foot of
the second column of Table 2 is an inevitable consequence of heavy-traffic in the dominating
[M/G/1]c queue.

Compare the results on log2 run-times displayed in Figure 4 and Figure 5 (for which the mean
values of T̂ for the results in Figure 4 (λ = c = 10, ρ = 5), Figure 5(a) (λ = c = 30, ρ = 15),
and Figure 5(b) (λ = c = 50, ρ = 25) are 2.27, 2.99, and 3.32, respectively). Bearing in mind
the demands of binary back-off, this suggests that this heuristic over-estimate is a reasonable
indication of the feasibility of Algorithm 2 for substantial values of c.

7. Conclusion

In this paper we have described the construction of two dominated CFTP Algorithms 1 and 2
for a general stable M/G/c [FCFS] queue, and have shown that the algorithms have finite mean
run-time when the typical service duration has finite second moment.

The second of these, Algorithm 2, is more complex and requires more delicacy and care in
description and in implementation; however, despite this increased complexity, it demonstrates
the potential for considerably reduced actual run-times compared with the first, more naïve,
algorithm. In particular, Algorithm 2 will be preferable in cases when the M/G/c [FCFS] queue
is stable rather than super-stable. This is because Algorithm 1 has a run-time comparable to the
time at which the queue first empties; this time may be expected to be large when super-stability
fails.
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There has been significant contemporary interest in perfect simulation for queueing prob-
lems: we have noted the work of [3] for GI/GI/c/c loss processes, and of [22] on a Brownian
model for heavy-traffic situations. A particular motivation for this is provided in [12], where
it was established that a crucial measure of queue efficiency (mean waiting time) can be
substantially affected by more subtle features than simply the first two moments of service
time and arrival rate. In such cases it is of clear value to have access to perfect simulation
methods such as these two dominated CFTP algorithms.

We close by mentioning four further questions raised by this work.

1. It is natural to ask whether dominated CFTP methods can be extended to the case of
renewal process input; the work of [3] on the same problem in the context of loss
processes may be very helpful here. We believe this should be feasible, particularly
because the ‘impractical’ dominated CFTP algorithms for polynomially ergodic Markov
chains address similar problems [8]. However, we have not considered the details of such
an extension.

2. It would be interesting to know whether anything theoretical can be said about the relative
merits of the two back-off strategies for Algorithm 2 outlined in Section 6.1.

3. It is natural to ask whether it is possible to implement dominated CFTP for a suitably wide
class of queueing networks. Sigman [30] describes several applications to networks of
the method in [28] for the super-stable case. It is not clear to us how one would contrive
to construct a dominating process for such problems in the stable case, so this question
seems to us to be challenging.

4. Finally, one might ask whether in the context of M/G/c [FCFS] it is possible to carry out
dominated CFTP simultaneously for a suitable range of c (the number of servers); what
might be described as ‘omnithermal dominated CFTP’, to borrow a term used to describe
Grimmett’s coupling of random-cluster processes for all values of a specific parameter
[11], and applied to CFTP in [25]. In his doctoral thesis [27], Shah showed how to
implement omnithermal dominated CFTP for area-interaction point processes; the issue
for stable M/G/c [FCFS] queues is one of detecting at what stage there is coalescence
for all c in the range. It is straightforward to carry out omnithermal dominated CFTP in
the case of Algorithm 1 in a relatively efficient manner: once an emptying time τ has
been established for the instance with lowest c in range, then this will serve for all higher
values of c, using a simple workload domination argument; see, e.g. [23]. (Indeed, the
value of τ can be updated to the most recent emptying time for the current value of c

after the queue has been simulated for that value.) However, it remains an open question
whether one can establish a comparably efficient omnithermal dominated CFTP based
on Algorithm 2.
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