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SPECTRAL CONCENTRATION FOR PERTURBED EQUATIONS OF
HARMONIC OSCILLATOR TYPE

B. M.BROWN AnD M. S. P. EASTHAM

Abstract

Sturm-—Liouville potentials of the form“ f (ex) are considered,
wherea > 0, f decays sufficiently rapidly at infinity, and is a
small positive parameter. It is shown that there are a finite number
N (¢) of spectral concentration points, and computational evidence
is given to support the conjecture théte) increases to infinity as
decreases to zero.

1. Introduction

A long-standing result of Weylq] establishes the discreteness of the spectrum associate
with the Sturm—Liouville equation

Y/ + A —q)}y(x) =0 (0< x < 0) 1)
when the potential

g(x) —» oo as x — oo. (2)

Here, as usual;(x) is real-valued and locally integrable[i, co), and there is a boundary
condition atx = 0 which, for convenience, we take to be the Dirichlet conditig®) = 0.
Thus, subject to conditior2, equation 1) has an increasing sequence of real eigenvalues
{1, } with 1o finite andx,, — oo asn — oo (see [8, Section 5.4] an@]). Simple examples
are the harmonic oscillator (or Hermite) potentjgk) = x2, for which A, = 4n + 3, and
the Airy potentialg (x) = x.

Recently, in the context of their theory of spectral instability and complex resonance
Aslanyan and Davies [1] have drawn attention to the potential

ge(x) = x? exp(—ex?) ©)

wheree (> 0) is areal parameter. In an obvious sergéy) approximates to the harmonic
oscillator potential? whene is small. However, becausg is L(0, co), another result
going back to Weyl (seeB| Section 5.4] andd]) is that, withg. in place ofg in equation
(1), the spectrum is continuous in the spectral intef@abo) and there are no positive
eigenvalues. The original, (= 4n 4 3) are perturbed off the real axis into points known
as complex resonances, as discussed in [1] and elsewhere [6, Chapter 16].

Inthis paper, we show that recent theoretical and computational methods for investigati
spectral concentration can be applied to potentials of which equation (3) is an example, &
our results indicate the extent to which complex resonances influence the real spectrum
such potentials. To define spectral concentration, we recall that, irrespective of conditi
(2), the equation (1) has associated with it a non-decreasing spectral function

p(p) (=00 < p < 00)
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Spectral concentration

which is unigue when equation (1) is in the Weyl limit-point case. The Fourier-transforn
and Parseval formulae for equatidr) @re expressed in terms ofw) [8, Chapter 6]. Then,
following [2, Section 1], we say that spectral concentration occurs at a pegiffit

1. p’ exists and is continuous in a neighbourhoog.gf and
2. p’ has alocal maximum ato.

For potentials such a8); itis natural to speculate that spectral concentration occurs nee
to the unperturbed eigenvalugs whene is suitably small (see7], Section 20.3]). In this
paper we show that, for a class of potentials of which equa8pis(an example, spectral
concentration occurs near to only a finite numie&e) of thei,,. More precisely, we show
that there is an intervaD, M (¢)) within which spectral concentration points are confined,
and we obtain an estimate for the growthidfe) ase — 0.

In Section2, we give a formula fop’ which is the basis for both our theoretical and
computational methods, and we introduce the class of potentials to be consig@gheing
an example. The main result @fi(¢) is then stated as a theorem. In Secti8r@nd4, we
present our computational findings on the location of spectral concentration for a numb
of examples of the type (3). These findings indicate that, dscreases to zerd|(¢) is
non-decreasing with spectral concentration occurring first in connectiomitihwould
be interesting to have a theoretical proof of this property, and we return to this matter at t
end of the paper.

2. Localisation of spectral concentration

We begin by presenting a recent formula fdrwhich is valid when the potentigl(x)
in equation (1) satisfies

q(x) € L(0, o0) 4

andu > 0. We recall that the Dirichlet boundary conditie0) = 0 has been imposed.
Then, withu = 52, we have

o
mp'(n) = s exp (—S_l/ q(x)sin 2 (x, u)dx) (5)
0
(see[3, Section 2]5]), whered (x, w), considered as a function of satisfies the first-order
differential equation
0'(x,w) =5 — s 2 (x) SO (x, 1) (6)

and the initial conditior® (0, u) = 0.
The class of potentials to be considered, which includes that given by equation (3), is

ge(x) = x“ f(ex), (1)
wherea > 0,¢ > 0,

1“FLf (1) € L(O, 00) ®)
and

f(@) — 1 ast - 0. 9)

Now ¢, certainly satisfies conditiod], and hence there is a continuous spectrunfer 0
with equation (5) valid for the corresponding spectral funcip(u). Also, as in the case
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of potential (3)g. is a perturbation of the potentiat, the latter having a discrete spectrum
consisting of eigenvalues, .

The condition (8) also implies that. (x) € L(0, co), and our first resultis then a simple
consequence of [5, Theorem 1].

Property 2.1. There is a numbei (¢) depending ore, such thatp/ (1) > 0 for all
u > M(e).

It follows from this property thap, does not have a local maximum in the interval
(M (¢), 00), and hence spectral concentration can occur only in the finite int@vad (¢)).
Information on the nature o#f/(¢) ase — 0 can be obtained from the more detailed
results in p, Sections 3 and 4 ] subject to differentiability conditions @n We as-
sume, for example, that exists, so that the theory in [5, Section 4] is applicable. As
in [5, Section 4], we require several infinite integrals involvipg ¢, andq. as follows:
1,1, 1", J,J' K, K', L, L', LandH are respectively the integrals 06 co) with
the integrands

\gel. lacl. g1, 1(xqe)'l, [(xqe)”l,

a?, 1geqll, xq?, 1xg®)'l, lge(xqe)], xlg2l.

As conditions omy, (or f) atoo, these integrals are all taken to be convergent, and the eas
ily verified sufficient conditions are stated in the following theorem. The only comment con
cerns the condition > 1, which arises becaugé(x) contains a term(a — 1)x4=2 f (ex),
and integrability down ta = O requiresz > 1.

Theorem 2.2. Leta > 1 and let f’ be ACioc[0, 00). Suppose that conditior{8) and (9)
hold, and suppose that
L) € L(0,00),  1“TLf"(1) € L(O, 00). (10)
Then there are numbeirsands, independent of, such that Propertg.1 holds, with
M(e) = (ve 1 4+ 5¢)2. (11)
Further,v = g1/3 with

00 00 2 00
=2 a 2 a 2a+1 02 . 2
8 (/0 tlf(t)ldt>= (/0 tlf(t)lddt> +/0 2t g (z)dr} (12)

Proof. By [5, equation (4.5)] we have!’ (1) > Owhenu > o2 ando is the unique positive
zero of the quartic

s*— As>—Bs—C (13)
with
1

A— —J”,
2

3 1 1 1 1 1
A+ NAK+ L+ LI+ =1 +21(Z) + 212+ L
4(+2«/§) +SL A SLA I+ 21 2 (G + 207+ 1),

1 _
C:21K+H+§K/+21L.

B =
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In each of the infinite integrals occurring here, we make the change of vatiabler to
factor out the dependence enThis gives

A =ae™ 4,
B — ﬂ€—20—3+ﬂ16—2a—1 +‘32€_a+1,
C = ye—Sa—Z + V16—2a,

whereq, B, 81, B2, y andy; are independent of. In particular,8 arises from the terms
21(2I% + L) in B, and is therefore as stated in equation (12). Then, with

w = et (14)
in the quartic (13), it is a question of the unique positive zegmf the quartic
Q(w) = w — ae™w? — (B + Pre“ 2 + Boe® T Hw — (ye T+ ne® ). (15)

Now wg cannot in general be expressed in a convenient way in terms of the coefficients
0. We therefore seek to identify an explicit valuwe (> 0) of w which makesQ (w1) > 0.
We can then say that; > wg (= €**t1¢), and hence Proper8.1 holds with

MO = () (16)
We consider
w1 = B3 4 5e7+2, a7)
wheres (> 0) is to be chosen independentefThen, by equation (15),
O(w1)/w1 > P+ 3p%35¢71? 4 3835220 +4

_ Ol€a+2(,31/3+ 8€a+2) _ (‘B + ﬁlea+2 + '32€2a+4)
_ (y6a+2 + }/1620+4)/3_1/3~

Grouping together the terms &112 ande?+4, we have Q(w) > 0 if

36%% > ap'P+ pr+yp
and

381352 > as + B2+ 13
Clearly, § can be chosen to satisfy both these inequalities. This proves the theorem, wi
equation (11) following from equations (16) and (17). O

It follows from equation (11) that, as— 0,
M(e) ~ (ve™*H?, (18)

and the question arises as to whether approximatfigi grovides a good estimate for the
length of an interval within which spectral concentration points must lie. The computation:
results of Section 4 suggest that approximation (18) is numerically inefficient, as we sh:
discuss later. However, it is not clear that approximatid) ¢an be improved in the absence
of any method other than the one B],Jon which Theorem 2.2 is based. The reason is that
the formulae in [5] contain a term

exp(flfooo |q(x)|dx> = exp<s_le_"_1/000 t"|f(t)|dt)
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by equation (). Thus, to avoid exponential domination by this term in the formula&]in [
we must have

(se“tH~1 < (const) (19)

for no spectral concentration. Hence no improvement in the powelirohpproximation
(18) is forthcoming.

We end this section with three examples of the typef¢r whichv can be calculated in
equation (11) and approximatiohg). We shall return to these examples when we present
our computational findings in Section 4.

Example 2.3. g(x) = x exp(—ex).

Herea = 1 and f(r) = exp(—t) in equation {2). Hence evaluation of the integrals
in equation (12) gives = 19/4. Then, for smalk, approximation (18) gives M (e)»
(19/42/3¢* = (2.826) 2.

Example 2.4. g(x) = x? exp(—e?x?).

Herea = 2 andf (1) = exp(—2) in equation { 2). Evaluation of the integrals in equation
(12) gives

1
B = 1gv/7(T +1)=0459. (20)
Thus, for smalk, approximation (18) gives M (e} (0.595)¢ 6.
Example 2.5. g (x) = x /(1 + €*x%).

Herea = 1 and f(r) = 1/(1+ % in equation {2). Evaluation of the integrals in
equation (12) gives

_ T, 2 _
B=1g0r°+2 =233

Thus for smalk, approximation (18) gives M (e} (1.76)e *.

3. First-order approximation

In this section and the next, we consider the spectral intéfyal/ (¢)) within which
spectral concentration may occur. The Sturm-Liouville equation (1), with the perturbe
potential (7), can be written

Y + A = x* = x{f(ex) = y(x) = 0. (21)

Now let us assume that there is a power series expansion
o
fO =) at" O<t<R) (22)
r=0

whereag = 1 by the property¥). Then a standard method in perturbation theory expresse:
y anda as formal power series in Substitution of these series into equatidf)produces
an asymptotic series (as— 0):

o0
Y ADe (23)
r=1
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where
o0
)L’(11) = al/o x‘”lt/ff(x)dx (24)

andy, is a normalised eigenfunction corresponding to the unperturbed eigenyalsee
[7, Sections 19.1,19.3 and 20.1]). Truncation of ser&} @fter a finite number of terms
then produces a real spectral point which, for smaalapproximates to both a complex
resonance [1, Section 5.2] and a presumed real point of spectral concenfrapo26¢0].
We shall consider the first-order approximation

A 4 A WVe, (25)

and we note here the following two particular cases.

1. a = 1. The integral in equatior2@) can be evaluated | Section 19.18 and equation
(20.1.4)] and formula (25) becomes the Titchmarsh approximation

8
An + 1—5a1x,§e. (26)

2. a = 2 anda, = 0 (for r odd) in equationZ2). The perturbation parameter is netv
rather thare, and formula (25) becomes

An + A De?
with &, = 4n 4+ 3 and, in place of equation (24),

oo
D = aZ/ x*2(x)dx.
0

Again, the integral here can be comput&d$ection 5.2], and we have the Aslanyan—
Davies approximation

3
4n + 3+ Za2(8n2 + 121 + 5)é2. (27)

In the next section, we shall see that ba?B) and 27) provide good approximations to
actual spectral concentration points.

4. Computer-assisted investigation

In [2] and [3], we developed computational procedures to locate spectral concentratic
on the basis of formulae such &) @nd (6). An example in?] close to the spirit of this
paper is the potential(x) = x — ex2. We now note that these procedures also apply to the
present potentials (7), and we recall the main features as sta&d&iedtion 3]. In formulae
(5) and g), the potentiay is nowg., and correspondingly andé are denoted by, and
O .

We first select a rand®, M] for u, within which to carry out the computational investi-
gation. This range is chosen to contain a convenient number (say 5 or 10) of the unperturt
eigenvalue$,,. We also choose a decreasing sequence of valuesitti the aim of exhibit-
ing (a) the approach of the spectral concentration points ta,thend (b) the appearance
of new spectral concentration points. For each choicg tife procedure is as follows.

1. Foragivenry., the numerical computation @f is performed over the range, M] at
increments of 102. Here we use equatioB)and the numerical solution of equation
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(6) at each mesh point, subjectddO, 1) = 0. Purpose-written code is then used to
examine the output gf_and determine any local maxima at this level of precision.

2. The approximate spectral concentration points found in Stage 1 are used as gc
starting values to refine the location of the actual points to a higher precision. Tht
the process in Stage 1 is repeated now, but only in neighbourhoods of the approxim:
points, and with a mesh size of 19

An additional remark on this procedure is occasioned by the observation that spect
concentration becomes intensecdsecomes small, in the sense that the spectral concen
tration shows itself as a very sharp spike in the grappoff the base of this spike is less
than the Stage 1 increment of 1) this local maximum may not appear in Stage 1. We deal
with this difficulty by working with a sufficiently fine mesh of valuesafand by tracking
the location of each spectral concentration point decreases. If any such point seems to
be absent when a certain valueca reached, a neighbourhood of the last-known point is
searched with the-mesh size of 10° to reveal the sharp spike. To illustrate the sharpness
of the spike, we give in Tabl#& values ofp/ (o £ ) and p/ (1) in the case of the first
spectral concentration poipl for Example4.1below (see the second column of TaB)e

Table 1: Intensity of spectral concentration

€ o n o pi(mo—mn  pi(no)  pL(no+n)
0.18 1.77 001 053 49.81 1.17
0.12 1.974956 10°  0.2308 1446 0.1979

Table 2: Spectral concentration points for Example

€

0.36 1.48(1.29)

0.18 1.77(1.81)

0.16 1.84(1.87) 2.51(2.66)

0.13 1.94(1.96) 2.79(2.93)

0.12 1.98(1.99) 292(3.02 3.40(3.57)

0.10 204(2.05) 3.14(3.20 3.69(3.89)

0.09 207(2.08) 3.24(3.29) 3.92(4.06) 4.28(4.58)

008 210(2.11) 3.34(3.38) 4.13(4.22) 458(4.82 4.98(5.25)
005 219(2.19) 3.63(3.64) 4.68(4.71) 5.50(5.56) 6.16(6.26)
0.03 225(2.25) 3.82(3.82 5.03(5.03) 6.03(6.05) 6.91(6.93)

In [2] and [3], we noted that spectral concentration is also associated with a certain tra
sitional behaviour of the functiof(x, 1) which appears in equatioB). Without repeating
the details here, we have found tl#atx, 1) exhibits a similar behaviour, thus once again
providing indirect evidence of spectral concentration. This evidence is particularly usef
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whene becomes small because the= ¢.) in equation §) becomes more like? over a
long x-interval (O, X), and numerical integration in equatids) becomes computationally
less reliable.

In Tables2, 3and4, we return to Examplea 3,2.4and2.5respectively (now re-labelled
as Exampled.1,4.2and4.3), and we present our computational findings on the location of
spectral concentration points. The figures in brackets are the approxim&®rs 27),
as the case may be. The chogemnange covers the first five unperturbed eigenvalygs
but there is no difficulty in taking a longer range.

Example 4.1. g(x) = x exp(—ex); see Exampl@.3and Tabled and2.
The first five unperturbed eigenvalues are
234, 409, 552 6.78, 7.94 (28)

We note that the numbe¥ (¢) of spectral concentration points increases decreases
and, adding to what is shown in the table, we have found ah@) is 6, 7, 8, 9 or 10
whene is respectively @65, 0.06, 0.055, 0.0513 or 0051.

Example 4.2. ¢(x) = x? exp(—e?x?); see Exampl€@.4and Table3.

As noted in Sectiori, the first five unperturbed eigenvalues arer3,11, 15 and 19.
The left-hand column in Tabl® recognises that the parameter in this exampé& isather
thane.

Table 3: Spectral concentration points for Exampl2

02 211(2.25)

0.1 256(2.62 4.91(5.13)

009 261(2.66) 4.91(5.31)

0.05 280(2.81) 5.90(6.06) 7.96(8.71)

004 284(2.85) 6.16(6.25 8.70(9.17) 10.65(11.61)

0.035 286(2.86) 6.28(6.34 9.10(9.40  11.03(12.03)

0.031 288(2.88) 6.37(6.42 9.37(9.58) 11.63(1237) 13.56(14.79)
0.03 288(2.89) 6.39(6.44 9.43(9.62 11.79(1246) 13.65(14.93)
002 292(2.93) 6.61(6.63) 1001(10.09) 13.10(13.31) 15.80(16.29)
001 296(2.95) 6.81(6.81) 1053(1054) 14.11(14.15) 17.55(17.64
0.005 298(2.98) 6.91(6.91) 1077(10.77) 1457 (1458) 18.30(18.32

The values of the first spectral concentration point in T&en be compared not only
with approximation 27), but also with the complex resonances givenlinTable 6,11
column]. Thus, for example, whes? = 0.2, the complex resonance is ad2 — 0.25i
compared with our real point.21; ase decreases, the difference between the complex
resonance and our real point decreases.
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We also comment on the remark made at the end @ gction 5.1] that, for small values
of ¢, there are several resonances very close to the positive real axis but, at a certain po
they turn sharply away into the lower half-plane. This situation manifests itself in Bable
(and similarly in Table® and4) in the fact that there are only a finite number of spectral
concentration points for a givenbecause resonances sufficiently far from the real axis are
not producing spectral concentration.

Example 4.3. ¢(x) = x/(1+ €*x*); see Exampl@.5and Tables.

The first five unperturbed eigenvalues are again those giveR8n Here we give a
shortened table which exhibits the same general features as the other two. The param
values are now expressed in termsbf

Table 4: Spectral concentration points for Example

4

102 2.10(2.31)
5x 103 213(2.33)
103  229(2.34) 3.68(4.08)
104  233(234) 4.04(4.09) 5.29(552 6.13(6.79)

The location of spectral concentration points given in TaBl&and4 can be compared
to the estimates fa¥ (¢) given in Examples 2.3-2.5 by making choicesdomhus, when
e = 0.1 in Example2.3, the approximate value & (¢) is 2.826 x 10*, but the greatest
spectral concentration point from Taldlés only 369. Similarly, where = 0.2 in Example
2.4, the corresponding values are 9297 ané3.and, wher = 10~3/4in Example2.5, the
values are 1760 and@&B. These figures clearly indicate that the poweriofapproximation
(18)is notthe best possible and, following our remarks concerning inequalityitremains
an open question whether some other method would provide a better vallig pthan
equation (11) as > 0.

We conclude by returning to the question abdlk) raised at the end of Sectidn
In [2] (see also4]), we considered potentials which, although having a different nature
from (7), share the property that an unperturbed discrete spectrum becomes a continu
spectrum with spectral concentration. ExamplesZihgnd ] areg(x) = x — ex? and
g(x) = —(1+ x)~1 — ex. Both in these examples and in Sectiérof this paper, we
find that, asx decreases, spectral concentration occurs first in connection with the lowe
unperturbed eigenvalug), and then with the higher eigenvalues in turn. TM(®) is non-
decreasing as decreases to zero, and it would be interesting to know if this is a genere
property of N (¢), not confined to such examples.
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