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SPECTRAL CONCENTRATION FOR PERTURBED EQUATIONS OF
HARMONIC OSCILLATOR TYPE

B. M.BROWN and M. S. P. EASTHAM

Abstract

Sturm–Liouville potentials of the formxaf (εx) are considered,
wherea > 0, f decays sufficiently rapidly at infinity, andε is a
small positive parameter. It is shown that there are a finite number
N(ε) of spectral concentration points, and computational evidence
is given to support the conjecture thatN(ε) increases to infinity asε
decreases to zero.

1. Introduction

A long-standing result of Weyl [9] establishes the discreteness of the spectrum associated
with the Sturm–Liouville equation

y′′(x)+ {λ− q(x)}y(x) = 0 (0 6 x < ∞) (1)

when the potential

q(x) → ∞ as x → ∞. (2)

Here, as usual,q(x) is real-valued and locally integrable in[0,∞), and there is a boundary
condition atx = 0 which, for convenience, we take to be the Dirichlet conditiony(0) = 0.
Thus, subject to condition (2), equation (1) has an increasing sequence of real eigenvalues
{λn} with λ0 finite andλn → ∞ asn → ∞ (see [8, Section 5.4] and [9]). Simple examples
are the harmonic oscillator (or Hermite) potentialq(x) = x2, for whichλn = 4n+ 3, and
the Airy potentialq(x) = x.

Recently, in the context of their theory of spectral instability and complex resonances,
Aslanyan and Davies [1] have drawn attention to the potential

qε(x) = x2 exp(−ε2x2) (3)

whereε (> 0) is a real parameter. In an obvious sense,qε(x) approximates to the harmonic
oscillator potentialx2 whenε is small. However, becauseqε is L(0,∞), another result
going back to Weyl (see [8, Section 5.4] and [9]) is that, withqε in place ofq in equation
(1), the spectrum is continuous in the spectral interval[0,∞) and there are no positive
eigenvalues. The originalλn (= 4n + 3) are perturbed off the real axis into points known
as complex resonances, as discussed in [1] and elsewhere [6, Chapter 16].

In this paper, we show that recent theoretical and computational methods for investigating
spectral concentration can be applied to potentials of which equation (3) is an example, and
our results indicate the extent to which complex resonances influence the real spectrum for
such potentials. To define spectral concentration, we recall that, irrespective of condition
(2), the equation (1) has associated with it a non-decreasing spectral function

ρ(µ) (−∞ < µ < ∞)
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Spectral concentration

which is unique when equation (1) is in the Weyl limit-point case. The Fourier-transform
and Parseval formulae for equation (1) are expressed in terms ofρ(µ) [8, Chapter 6]. Then,
following [2, Section 1], we say that spectral concentration occurs at a pointµ0 if

1. ρ′ exists and is continuous in a neighbourhood ofµ0, and

2. ρ′ has a local maximum atµ0.

For potentials such as (3), it is natural to speculate that spectral concentration occurs near
to the unperturbed eigenvaluesλn whenε is suitably small (see [7, Section 20.3]). In this
paper we show that, for a class of potentials of which equation (3) is an example, spectral
concentration occurs near to only a finite numberN(ε) of theλn. More precisely, we show
that there is an interval(0,M(ε)) within which spectral concentration points are confined,
and we obtain an estimate for the growth ofM(ε) asε → 0.

In Section2, we give a formula forρ′ which is the basis for both our theoretical and
computational methods, and we introduce the class of potentials to be considered, (3) being
an example. The main result onM(ε) is then stated as a theorem. In Sections3 and4, we
present our computational findings on the location of spectral concentration for a number
of examples of the type (3). These findings indicate that, asε decreases to zero,N(ε) is
non-decreasing with spectral concentration occurring first in connection withλ0. It would
be interesting to have a theoretical proof of this property, and we return to this matter at the
end of the paper.

2. Localisation of spectral concentration

We begin by presenting a recent formula forρ′ which is valid when the potentialq(x)
in equation (1) satisfies

q(x) ∈ L(0,∞) (4)

andµ > 0. We recall that the Dirichlet boundary conditiony(0) = 0 has been imposed.
Then, withµ = s2, we have

πρ′(µ) = s exp

(
−s−1

∫ ∞

0
q(x) sin 2θ(x, µ)dx

)
(5)

(see [3, Section 2], [5]), whereθ(x, µ), considered as a function ofx, satisfies the first-order
differential equation

θ ′(x, µ) = s − s−1q(x) sin2 θ(x, µ) (6)

and the initial conditionθ(0, µ) = 0.
The class of potentials to be considered, which includes that given by equation (3), is

qε(x) = xaf (εx), (7)

wherea > 0, ε > 0,

ta+1f (t) ∈ L(0,∞) (8)

and

f (t) → 1 ast → 0. (9)

Nowqε certainly satisfies condition (4), and hence there is a continuous spectrum forµ > 0
with equation (5) valid for the corresponding spectral functionρε(µ). Also, as in the case
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of potential (3),qε is a perturbation of the potentialxa , the latter having a discrete spectrum
consisting of eigenvaluesλn.

The condition (8) also implies thatxqε(x) ∈ L(0,∞), and our first result is then a simple
consequence of [5, Theorem 1].

Property 2.1. There is a numberM(ε) depending onε, such thatρ′′
ε (µ) > 0 for all

µ > M(ε).

It follows from this property thatρ′
ε does not have a local maximum in the interval

(M(ε),∞), and hence spectral concentration can occur only in the finite interval(0,M(ε)).
Information on the nature ofM(ε) as ε → 0 can be obtained from the more detailed
results in [5, Sections 3 and 4 ] subject to differentiability conditions onqε . We as-
sume, for example, thatq ′′

ε exists, so that the theory in [5, Section 4] is applicable. As
in [5, Section 4], we require several infinite integrals involvingqε , q ′

ε andq ′′
ε as follows:

I, I ′, I ′′, J ′ , J ′′, K, K ′, L, L′, L andH are respectively the integrals over[0,∞)with
the integrands

|qε |, |q ′
ε |, |q ′′

ε |, |(xqε)′|, |(xqε)′′|,

q2
ε , |qεq ′

ε |, xq2
ε , |(xq2

ε )
′|, |qε(xqε)′|, x|q3

ε |.
As conditions onqε (orf ) at∞, these integrals are all taken to be convergent, and the eas-

ily verified sufficient conditions are stated in the following theorem. The only comment con-
cerns the conditiona > 1, which arises becauseq ′′

ε (x) contains a terma(a−1)xa−2f (εx),
and integrability down tox = 0 requiresa > 1.

Theorem 2.2. Let a > 1 and letf ′ beACloc[0,∞). Suppose that conditions(8) and (9)
hold, and suppose that

ta+1f ′(t) ∈ L(0,∞), ta+1f ′′(t) ∈ L(0,∞). (10)

Then there are numbersν andδ, independent ofε, such that Property2.1holds, with

M(ε) = (νε−a−1 + δε)2. (11)

Further,ν = β1/3 with

β = 2

(∫ ∞

0
ta|f (t)|dt

) {
2

(∫ ∞

0
ta|f (t)|ddt

)2

+
∫ ∞

0
t2a+1f 2(t)dt

}
. (12)

Proof. By [5, equation (4.5)] we haveρ′′
ε (µ) > 0 whenµ > σ 2 andσ is the unique positive

zero of the quartic

s4 − As2 − Bs − C (13)

with

A = 1

2
J ′′,

B = 3

4
(1 + 1

2

√
3)K + 1

2
L′ + 1

2
L+ II ′ + 1

4
I ′′ + 2I (

1

2
J ′′ + 2I2 + L),

C = 2IK +H + 1

2
K ′ + 2IL.

78https://doi.org/10.1112/S1461157000000218 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000218


Spectral concentration

In each of the infinite integrals occurring here, we make the change of variableεx = t to
factor out the dependence onε. This gives

A = αε−a,
B = βε−2a−3 + β1ε

−2a−1 + β2ε
−a+1,

C = γ ε−3a−2 + γ1ε
−2a,

whereα, β, β1, β2, γ andγ1 are independent ofε. In particular,β arises from the terms
2I (2I2 + L) in B, and is therefore as stated in equation (12). Then, with

w = εa+1s (14)

in the quartic (13), it is a question of the unique positive zerow0 of the quartic

Q(w) ≡ w4 − αεa+2w2 − (β + β1ε
a+2 + β2ε

2a+4)w − (γ εa+2 + γ1ε
2a+4). (15)

Noww0 cannot in general be expressed in a convenient way in terms of the coefficients in
Q. We therefore seek to identify an explicit valuew1 (> 0) ofw which makesQ(w1) > 0.
We can then say thatw1 > w0 (= εa+1σ), and hence Property2.1holds with

M(ε) = (ε−a−1w1)
2. (16)

We consider

w1 = β1/3 + δεa+2, (17)

whereδ (> 0) is to be chosen independent ofε. Then, by equation (15),

Q(w1)/w1 > β + 3β2/3δεa+2 + 3β1/3δ2ε2a+4

− αεa+2(β1/3 + δεa+2)− (β + β1ε
a+2 + β2ε

2a+4)

− (γ εa+2 + γ1ε
2a+4)β−1/3.

Grouping together the terms inεa+2 andε2a+4, we have Q(w1) > 0 if

3β2/3δ > αβ1/3 + β1 + γβ−1/3

and

3β1/3δ2 > αδ + β2 + γ1β
−1/3.

Clearly,δ can be chosen to satisfy both these inequalities. This proves the theorem, with
equation (11) following from equations (16) and (17).

It follows from equation (11) that, asε → 0,

M(ε) ∼ (νε−a−1)2, (18)

and the question arises as to whether approximation (18) provides a good estimate for the
length of an interval within which spectral concentration points must lie. The computational
results of Section 4 suggest that approximation (18) is numerically inefficient, as we shall
discuss later. However, it is not clear that approximation (18) can be improved in the absence
of any method other than the one in [5], on which Theorem 2.2 is based. The reason is that
the formulae in [5] contain a term

exp

(
s−1

∫ ∞

0
|q(x)|dx

)
= exp

(
s−1ε−a−1

∫ ∞

0
ta|f (t)|dt

)

79https://doi.org/10.1112/S1461157000000218 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000218


Spectral concentration

by equation (7). Thus, to avoid exponential domination by this term in the formulae in [5],
we must have

(sεa+1)−1 6 (const.) (19)

for no spectral concentration. Hence no improvement in the power ofε in approximation
(18) is forthcoming.

We end this section with three examples of the type (7) for whichν can be calculated in
equation (11) and approximation (18). We shall return to these examples when we present
our computational findings in Section 4.

Example 2.3. q(x) = x exp(−εx).
Herea = 1 andf (t) = exp(−t) in equation (12). Hence evaluation of the integrals

in equation (12) gives β= 19/4. Then, for smallε, approximation (18) gives M(ε)∼
(19/4)2/3ε−4 = (2.826)ε−4.

Example 2.4. q(x) = x2 exp(−ε2x2).

Herea = 2 andf (t) = exp(−t2) in equation (12). Evaluation of the integrals in equation
(12) gives

β = 1

16

√
π(π + 1)= 0.459. (20)

Thus, for smallε, approximation (18) gives M(ε)∼ (0.595)ε−6.

Example 2.5. q(x) = x/(1 + ε4x4).

Herea = 1 andf (t) = 1/(1 + t4) in equation (12). Evaluation of the integrals in
equation (12) gives

β = π

16
(π2 + 2) = 2.33.

Thus for smallε, approximation (18) gives M(ε)∼ (1.76)ε−4.

3. First-order approximation

In this section and the next, we consider the spectral interval(0,M(ε)) within which
spectral concentration may occur. The Sturm–Liouville equation (1), with the perturbed
potential (7), can be written

y′′(x)+ [λ− xa − xa{f (εx)− 1}]y(x)= 0. (21)

Now let us assume that there is a power series expansion

f (t) =
∞∑
r=0

ar t
r (0 6 t < R) (22)

wherea0 = 1 by the property (9). Then a standard method in perturbation theory expresses
y andλ as formal power series inε. Substitution of these series into equation (21) produces
an asymptotic series (asε → 0):

λn +
∞∑
r=1

λ(r)n ε
r (23)
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where

λ(1)n = a1

∫ ∞

0
xa+1ψ2

n(x)dx (24)

andψn is a normalised eigenfunction corresponding to the unperturbed eigenvalueλn (see
[7, Sections 19.1,19.3 and 20.1]). Truncation of series (23) after a finite number of terms
then produces a real spectral point which, for smallε, approximates to both a complex
resonance [1, Section 5.2] and a presumed real point of spectral concentration [7, p. 260].
We shall consider the first-order approximation

λn + λ(1)n ε, (25)

and we note here the following two particular cases.

1. a = 1. The integral in equation (24) can be evaluated [7, Section 19.18 and equation
(20.1.4)] and formula (25) becomes the Titchmarsh approximation

λn + 8

15
a1λ

2
nε. (26)

2. a = 2 andar = 0 (for r odd) in equation (22). The perturbation parameter is nowε2

rather thanε, and formula (25) becomes

λn + λ(1)n ε
2

with λn = 4n+ 3 and, in place of equation (24),

λ(1)n = a2

∫ ∞

0
x4ψ2

n(x)dx.

Again, the integral here can be computed [1, Section 5.2], and we have the Aslanyan–
Davies approximation

4n+ 3 + 3

4
a2(8n

2 + 12n+ 5)ε2. (27)

In the next section, we shall see that both (26) and (27) provide good approximations to
actual spectral concentration points.

4. Computer-assisted investigation

In [2] and [3], we developed computational procedures to locate spectral concentration
on the basis of formulae such as (5) and (6). An example in [2] close to the spirit of this
paper is the potentialq(x) = x − εx2. We now note that these procedures also apply to the
present potentials (7), and we recall the main features as stated in [3, Section 3]. In formulae
(5) and (6), the potentialq is nowqε , and correspondinglyρ andθ are denoted byρε and
θε .

We first select a range[0,M] for µ, within which to carry out the computational investi-
gation. This range is chosen to contain a convenient number (say 5 or 10) of the unperturbed
eigenvaluesλn. We also choose a decreasing sequence of values ofε with the aim of exhibit-
ing (a) the approach of the spectral concentration points to theλn, and (b) the appearance
of new spectral concentration points. For each choice ofε, the procedure is as follows.

1. For a givenqε , the numerical computation ofρ′
ε is performed over the range[0,M] at

increments of 10−2. Here we use equation (5) and the numerical solution of equation
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(6) at each mesh point, subject toθε(0, µ) = 0. Purpose-written code is then used to
examine the output ofρ′

εand determine any local maxima at this level of precision.

2. The approximate spectral concentration points found in Stage 1 are used as good
starting values to refine the location of the actual points to a higher precision. Thus
the process in Stage 1 is repeated now, but only in neighbourhoods of the approximate
points, and with a mesh size of 10−6.

An additional remark on this procedure is occasioned by the observation that spectral
concentration becomes intense asε becomes small, in the sense that the spectral concen-
tration shows itself as a very sharp spike in the graph ofρ′

ε . If the base of this spike is less
than the Stage 1 increment of 10−2, this local maximum may not appear in Stage 1. We deal
with this difficulty by working with a sufficiently fine mesh of values ofε, and by tracking
the location of each spectral concentration point asε decreases. If any such point seems to
be absent when a certain value ofε is reached, a neighbourhood of the last-known point is
searched with theµ-mesh size of 10−6 to reveal the sharp spike. To illustrate the sharpness
of the spike, we give in Table1 values ofρ′

ε(µ0 ± η) andρ′
ε(µ0) in the case of the first

spectral concentration pointµ0 for Example4.1below (see the second column of Table2).

Table 1: Intensity of spectral concentration

ε µ0 η ρ′
ε(µ0 − η) ρ′

ε(µ0) ρ′
ε(µ0 + η)

0.18 1.77 0.01 0.53 49.81 1.17

0.12 1.974956 10−6 0.2308 144.6 0.1979

Table 2: Spectral concentration points for Example4.1

ε

0.36 1.48(1.29)

0.18 1.77(1.81)

0.16 1.84(1.87) 2.51 (2.66)

0.13 1.94(1.96) 2.79 (2.93)

0.12 1.98(1.99) 2.92 (3.02) 3.40(3.57)

0.10 2.04 (2.05) 3.14(3.20) 3.69(3.89)

0.09 2.07 (2.08) 3.24(3.29) 3.92(4.06) 4.28 (4.58)

0.08 2.10 (2.11) 3.34(3.38) 4.13 (4.22) 4.58 (4.82) 4.98 (5.25)

0.05 2.19 (2.19) 3.63(3.64) 4.68 (4.71) 5.50(5.56) 6.16(6.26)

0.03 2.25 (2.25) 3.82(3.82) 5.03(5.03) 6.03(6.05) 6.91(6.93)

In [2] and [3], we noted that spectral concentration is also associated with a certain tran-
sitional behaviour of the functionθ(x, µ)which appears in equation (5). Without repeating
the details here, we have found thatθε(x, µ) exhibits a similar behaviour, thus once again
providing indirect evidence of spectral concentration. This evidence is particularly useful
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whenε becomes small because thenq (= qε) in equation (5) becomes more likexa over a
longx-interval(0, X), and numerical integration in equation (5) becomes computationally
less reliable.

In Tables2,3and4, we return to Examples2.3,2.4and2.5respectively (now re-labelled
as Examples4.1,4.2and4.3), and we present our computational findings on the location of
spectral concentration points. The figures in brackets are the approximations (26) or (27),
as the case may be. The chosenµ-range covers the first five unperturbed eigenvaluesλn,
but there is no difficulty in taking a longer range.

Example 4.1. q(x) = x exp(−εx); see Example2.3and Tables1 and2.

The first five unperturbed eigenvalues are

2.34, 4.09, 5.52, 6.78, 7.94. (28)

We note that the numberN(ε) of spectral concentration points increases asε decreases
and, adding to what is shown in the table, we have found thatN(ε) is 6, 7, 8, 9 or 10
whenε is respectively 0.065, 0.06, 0.055, 0.0513 or 0.051.

Example 4.2. q(x) = x2 exp(−ε2x2); see Example2.4and Table3.

As noted in Section1, the first five unperturbed eigenvalues are 3,7, 11, 15 and 19.
The left-hand column in Table3 recognises that the parameter in this example isε2 rather
thanε.

Table 3: Spectral concentration points for Example4.2

ε2

0.2 2.11 (2.25)

0.1 2.56 (2.62) 4.91 (5.13)

0.09 2.61 (2.66) 4.91 (5.31)

0.05 2.80 (2.81) 5.90(6.06) 7.96(8.71)

0.04 2.84 (2.85) 6.16(6.25) 8.70(9.17) 10.65 (11.61)

0.035 2.86 (2.86) 6.28(6.34) 9.10(9.40) 11.03(12.03)

0.031 2.88 (2.88) 6.37(6.42) 9.37(9.58) 11.63(12.37) 13.56(14.79)

0.03 2.88 (2.89) 6.39(6.44) 9.43(9.62) 11.79(12.46) 13.65(14.93)

0.02 2.92 (2.93) 6.61(6.63) 10.01 (10.09) 13.10(13.31) 15.80(16.29)

0.01 2.96 (2.95) 6.81(6.81) 10.53 (10.54) 14.11 (14.15) 17.55(17.64)

0.005 2.98 (2.98) 6.91(6.91) 10.77 (10.77) 14.57 (14.58) 18.30(18.32)

The values of the first spectral concentration point in Table3 can be compared not only
with approximation (27), but also with the complex resonances given in [1, Table 6,λ1
column]. Thus, for example, whenε2 = 0.2, the complex resonance is at 2.03 − 0.25i
compared with our real point 2.11; asε decreases, the difference between the complex
resonance and our real point decreases.
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We also comment on the remark made at the end of [1, Section 5.1] that, for small values
of ε, there are several resonances very close to the positive real axis but, at a certain point,
they turn sharply away into the lower half-plane. This situation manifests itself in Table3
(and similarly in Tables2 and4) in the fact that there are only a finite number of spectral
concentration points for a givenε because resonances sufficiently far from the real axis are
not producing spectral concentration.

Example 4.3. q(x) = x/(1 + ε4x4); see Example2.5and Table4.

The first five unperturbed eigenvalues are again those given in (28). Here we give a
shortened table which exhibits the same general features as the other two. The parameter
values are now expressed in terms ofε4.

Table 4: Spectral concentration points for Example4.3

ε4

10−2 2.10 (2.31)

5 × 10−3 2.13 (2.33)

10−3 2.29 (2.34) 3.68(4.08)

10−4 2.33 (2.34) 4.04 (4.09) 5.29(5.52) 6.13(6.79)

The location of spectral concentration points given in Tables2,3 and4 can be compared
to the estimates forM(ε) given in Examples 2.3–2.5 by making choices forε. Thus, when
ε = 0.1 in Example2.3, the approximate value ofM(ε) is 2.826× 104, but the greatest
spectral concentration point from Table2 is only 3.69. Similarly, whenε = 0.2 in Example
2.4, the corresponding values are 9297 and 10.65 and, whenε = 10−3/4 in Example2.5, the
values are 1760 and 3.68. These figures clearly indicate that the power ofε in approximation
(18) is not the best possible and, following our remarks concerning inequality (19), it remains
an open question whether some other method would provide a better value ofM(ε) than
equation (11) as ε→ 0.

We conclude by returning to the question aboutN(ε) raised at the end of Section1.
In [2] (see also [4]), we considered potentials which, although having a different nature
from (7), share the property that an unperturbed discrete spectrum becomes a continuous
spectrum with spectral concentration. Examples in [2] and [4] areq(x) = x − εx2 and
q(x) = −(1 + x)−1 − εx. Both in these examples and in Section4 of this paper, we
find that, asε decreases, spectral concentration occurs first in connection with the lowest
unperturbed eigenvalueλ0, and then with the higher eigenvalues in turn. ThusN(ε) is non-
decreasing asε decreases to zero, and it would be interesting to know if this is a general
property ofN(ε), not confined to such examples.
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