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Abstract. We propose and use Bayesian techniques for the determination of physical parameters
in solar prominence plasmas, combining observational and theoretical properties of waves and
oscillations. The Bayesian approach also enables to perform model comparison to assess how
plausible alternative physical models/mechanisms are in view of data.
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Prominence seismology aims to determine physical parameters in prominence plasmas
by a combination of observed and theoretical properties of waves and oscillations (Joarder
et al. 1997). The technique has been successful in the determination of a number of pa-
rameters using prominence fine structure oscillations (Arregui et al. 2012). Yet, solving
the inversion problem is not an easy task, because observational information is always
incomplete and uncertain. As a consequence, extracting information from model param-
eters by comparison of their predictions with observed data has to be carried out in a
probabilistic framework. The Bayesian formalism is the only fully correct way we have to
obtain information about physical parameters from observations (inference) and to com-
pare the performance of alternative models to explain observed data (model comparison)
(see e.g., Gregory 2005; von Toussaint 2011).

Two Bayesian data analysis tools are here used:

e the marginal posterior, p(6;|d) = [ p(0|d)db; ...d0;_1d0; .1 ...dOy, provides us with
the most probable values of a given parameter, 6;, compatible with observed data d, in
the form of a conditional probability distribution, p(6;|d).

e the marginal likelihood, p(d|M) = [ p(d,0|M)d6 = [ p(d|6, M)p(6|M)df, provides
us with the probability of the observed data d, given that the model M is true. It tells
us how well the observed data are predicted by model M, with parameter set 6.

Determination of field strength and transverse inhomogeneity. We used ob-
servations of period (P) and damping time (74) of transverse thread oscillations to obtain
information on magnetic field strength (By) and transverse density inhomogeneity length
scale (I/R). Figure 1 shows the marginal posteriors for these two parameters for given ob-
served oscillation data. The posteriors provide a well constrained fully consistent solution
to the inverse problem, with correct propagation of uncertainty.

Discrimination of damping mechanisms. We used our Bayesian model comparison
tool to quantify the ability of different mechanisms to explain the damping of transverse
thread oscillations in prominences. We considered three proposed mechanisms and com-
puted their evidence in view of data (the damping ratio 7;/P). The mechanisms were:
(1) Alfvénic resonance; (2) slow resonance; and (3) Cowling’s diffusion (see Soler 2010).
The computation of the marginal likelihood for each model — the probability of the data
given that the model is true — enables us to assess how well each one reproduces the
observed damping ratio (Figure 2). Alfvénic resonance (model M1) is able to properly
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Figure 1. Posterior probability distributions for field strength (Bo) and transverse density
length-scale (I/R, in units of the thread radius) for a thread oscillation with P = 3 min, 74 = 9
min, and phase speed v,;, = 16 km s'. Uncertainty of 10% in data has been considered.
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Figure 2. Graphical representation of the validity of each considered damping mechanism
as a function of the observable damping ratio, in the form of marginal likelihoods in natural
logarithm.

explain low damping ratios, such as the observed ones. Cowling’s diffusion (M2) has the
ability to reproduce damping ratios of the order of 10°. Model M3 (slow resonance) can
only account for damping rations above 10%, even for plasma-3 values near unity.

These and additional examples (omitted for brevity) show that Bayesian analysis tech-
niques exhibit great promise for prominence seismology.
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