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REACTION WAVES AND NON-CONSTANT DIFFUSIVITIES
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Abstract

A reaction-diffusion equation with non-constant diffusivity,

u, = (D(x, t)ux)x + F(u),

is studied for D(x, t) a continuous function. The conditions under which the equation can
be reduced to an equivalent constant diffusion equation are derived. Some exact forms for
D(x, t) are given. For D(x, t) a stochastic function, an explicit finite difference method is
used to numerically determine the effect of randomness in D(x, t) upon the speed of the
reaction wave solution to Fisher's equation. The extension to two spatial dimensions is
considered.

1. Introduction

The patterns and waves that arise in a study of reaction-diffusion equations are be-
coming quite well-known; for example, through the monograph by Grindrod [2].
Applications are occurring in many areas, one of particular interest being the spread
of wildfires [9]. One of the basic problems in the application of reaction-diffusion
equations is to predict the features of any propagating wave that may occur, especially
in two or more spatial dimensions. While the basic results were established in 1978 by
Aronson and Weinberger [1], interest in complex patterns has continued, for example
Tyson and Keener [8].

Diffusivities which vary with time, and possibly space, have not been considered by
any of these workers. A primary reason for this is that the laboratory experiments under
consideration have reasonably constant conditions. However, when the "laboratory"
becomes a wildfire in a forest (or similar), and the diffusion process is due to turbulent
eddies of varying scales [5], variability of the diffusivity becomes of interest.
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The present paper will focus on simple waves in one and two spatial dimensions.
The effect of variable diffusivity on the speed of such waves will be considered
by analytical methods and by numerical methods. In particular, the functional de-
pendencies for diffusivity for which analytical progress is possible, will be derived.
Time-dependent diffusivity will be treated numerically, as the analytical methods we
develop do not work in this case.

2. Background

Grishin [3] was the first to attempt to describe a wildfire with a system of reaction-
diffusion-advection equations. The possibilities and limitations of using a single such
equation as a modelling tool have since been discussed [9]. In either case, the basic
idea is to begin from the conservation of energy (and mass) in order to write an equation
for the temperature of the combusting materials. While it is an oversimplification to
reduce this to a single equation of the form

u, + WjdiU = diDijdjU + F(u), (1)

many realistic features are retained. In this equation, u represents a (scaled) temper-
ature, Wj is the /'* component of the wind vector, D,; is the ij-th component of the
diffusivity tensor, and F(u) is the reaction function. As the strength of any wind is
known to vary with time (both the mean speed and direction, and fluctuations about
these), we anticipate that iu, and D,y will be functions of time. This is what we shall
consider in the next section.

To illustrate the type of behaviour described by (1), we now summarise some of the
findings when to, and Du are assumed constant [1, 9]. If to, is constant a translation
in Xj will remove the advection term from (1). (Any io,(/) can be removed by a
translation. In the rest of this paper it will be assumed that such a translation has been
carried out, and advection will not be considered further.) Rescaling of xt will remove
Da , providing it is constant and diagonal. Then (1) is simplified to

u, = V2u + F(u). (2)

For suitable F(u), (2) admits travelling wave solutions, or "fronts". Necessary re-
strictions on F(u) are that F(0) = F(l) = 0, F'(0) > Oand F(u) > OforO < u < 1.
An example would be

F(u) = «(1 - u), (3)

much studied by others. The fronts can be planar, circular, or obey more general rules
[2, 8].
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Planar fronts are found by assuming

u = u(z) with z = \ n — ct, (4)

where the unit vector n = (cos 6, sin 6), 6 is a parameter and c is a constant to be
found. Substituting this into (2) yields

u" + cu' + F(u) = 0, (5)

where ' = d/dz, the solution of which determines c, provided appropriate boundary
conditions are used.

For example, for the Fisher-Kolmogorov equation (where (3) is used in (5)), an
exact solution is

u(x, t) = j , (6)

[l + exp (x/V6 - 5r/6)]

with a speed c = 5/V6 = 2.04. In fact for this particular problem, any c > 2
is a solution of the eigenvalue problem (5), but not all of them yield an explicit
representation for u(x, t).

Prediction of the speed at which the front moves is the primary objective. If the
speed is c in dimensionless coordinates, then it will be c\fD in the original variables.
This suggests that any variability in the diffusivity will manifest itself directly in the
speed at which the front moves. In particular, a stochastic diffusivity will result in
stochastic motion of the front. In the following sections we shall examine the extent
to which this is true.

3. Diffusivity as a function of x and t

In this section, let us consider a one-dimensional reaction-diffusion equation of the
form

u, = {D{x,t)ux)x + F(u). (7)

If we are going to make use of the existing results for a one-dimensional version of
(2), it will be necessary to find a mapping

T : {x, t) - • (X, T), (8)

such that (7) is transformed into (2). The mapping

X = f(x, t), (9)

T = t, (10)
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yields two relations involving / (x , t) and D(x, t), namely

Dfx=\, (11)

/, - (Dfx)x = 0. (12)

From these equations, we can see there are two approaches. The first approach is to
investigate the equations

/ = j D"i dx + g(t), (13)

The second approach is to investigate the equations

D = I//,2, (15)

/,2/, + / , , = 0. (16)

3.1. The first approach

3.1.1. D(t) We can see that if D is a function of time only then from (14), D, = 0,
and thus D is a constant. Therefore there is no suitable transformation of the form (9)
which allows us to solve the equation analytically when D = D(t). This case will be
considered numerically in Section 4.

3.1.2. D(x) Let D be a function of x only. From (14), this gives

= 0, (17)

which is an ordinary differential equation for D(x).
The general solution to this is

D = c2(x + c2)
2, (18)

where cx and c2 are constants of integration.
By substituting this into (13) and satisfying (12), we find the transformation func-

tion, / , is
f = (l/c1)log(x+c2) + cit + c3, (19)

where c3 is a constant of integration.
By substituting this into (93) from Appendix A, we find that the asymptotic wave

speed is
c d(d - 2)<rc'C3e-Cl(c'-2)'. (20)

Note here that if C\ = 2, then the wave should stop. For cx > 2, the wave should
actually rum around, then slow down exponentially to zero.
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3.1.3. D(x, t) For D a function of x and?, finding solutions for (14) is more difficult.
A straightforward solution can be found by assuming a travelling wave solution

exists. Thus (14) becomes

k&in) - \D'(r,)2 + Z?(IJ)D"(I?) = 0, (21)

where rj = x + kt and k is an arbitrary constant.
The general solution to this is

, t) = — [co ( - - exp ( >- j j + lj ,

where C\ and c2 are constants and a)(x) is Lambert's aj-function, defined to be the
solution of <a(ac)e<u(jr) = x which is analytic at x = 0. Substituting this into (13) and
satisfying (12), we find

fix, 0 = - - In [co \ - - exp { (23)

By substituting this into (93) from Appendix A, we find that the asymptotic wave
speed is

Ak Ak

c~*± + J±- _ k. (24)
C\ C\ e'Cl

As the general solution is rather complex, a linear function solution can be found
to be

kt) + c1. (25)
Substituting this into (13) and satisfying (12), we find

fix, t) = (\/k)(2k(x + kt) + c,)i + c2, (26)

where C\ and c2 are constants.
By substituting this into (93) from Appendix A, we find that the asymptotic wave

speed is
c~Akt- 2kc2 - k. (27)

We have solved (7) numerically for D as in (25). The wave speed as a function of
time is shown in Figure 1. Note that there is an arbitrary shift in the wave speed, (27).
Therefore Akt and the numerically computed speed need only be parallel, as is the
case in Figure 1.

Separation of variables is also possible, as is a similarity solution of the form

D = ra<i>(x/tp), (28)
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FIGURE 1. A comparison of the analytically and numerically obtained wave speeds for the diffusivity
D(x, t) = 2(x + 0, where the analytical wave speed is the solid line ( ) and the numerical wave
speed is the dotted line ( ).

where O must satisfy

' - a<D = 0, (29)

a is a constant and /? = ±(1 - a), and t] = x/tfi. Note that (29) with /S = 0 is
the same equation one encounters in separation of variables. The case a = ft = \
is required for a source solution. Unfortunately, these methods do not lead to any
explicit solutions and are hence of little value here.

If we look for Lie symmetries of (7), we find that the transformations t], % and £
satisfy

£ = 0,
£ = f

S** = 0,
n =
n, = n*.

From this we see that the similarity variable is

(30)

(31)

(32)

(33)

(34)

s = {x (35)
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As (14) is time and space invariant, the similarity variable s is equivalent to

s' = x/Vt, (36)

which is a special case of (28).
Thus the Lie group analysis confirms that we have exhausted the symmetries of

(14).
Transformation techniques should also be considered. Let D = ID2. Then w(x, t)

satisfies
w, + w2wxx = 0. (37)

Hill [4] considers this equation for normal diffusion. There one finds that the implicit
transformation

w(x,t) = —(s,t) (38)
OS

results in the linear heat equation, but with negative diffusivity,

x,+xss = 0. (39)

This merely revisits all solutions already found. Hence, we need not consider this
equation further.

3.2. The second approach

3.2.1. From (16), we can see that if / is a function of t only, then / can be an arbitrary
function of t. However, from (15) this means that the diffusivity is undefined. The
reason for this is that as / is the transformation, if there is no x dependence then the
space dimension has been taken away from the problem.

3.2.2. Let / be a function of x only. Thus (16) simplifies to

/ , * = 0. (40)

The solution of this is
/ = cxx + c2. (41)

Substituting this into (15) gives D as a constant.

3.2.3. Suppose f = f(x, t). We could assume transformations of the form

/ = cx log(;c + c2) + c3t + c4 (42)

and
f = h(x + kt). (43)

These would give us (18) and (25) respectively. So let us try two other methods.
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Our first method is to assume that there exists a similarity solution of the form

/ = fhin), (44)

where rj = xtb.

By substituting this into (16), we find a = 1/2 and h satisfies

\hah + br)h'3 + h" = 0. (45)

For b = -1 /2 , we find that
/ = Clt

1/2r, = Clx. (46)
The corresponding diffusivity is a constant. This case has already been considered.

For b = 1/2, we find that (45) can be integrated once to get

hh'r) - 1 = kh', (47)

where it is a constant.
This gives us that

/ = 2^t\Og(kXy/t). (48)

On substituting this into (15), we find that

x2

D = —log(kxVt). (49)

By substituting / into (93) from Appendix A, we find that the wave speed is

c~e'(2t-l\ (50)
2itf3/2

Note that as it increases, the diffusivity also increases, but the wave speed decreases.
Our second method is to try a Lie group analysis. We find that the transformations

rj, £ and f satisfy

(51)

(52)

(53)

(54)

(55)

(56)

I
iff

= >7(0,
= 0,

= 0,

=2*r
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We can solve these equations to find that

n = at2+pt, (57)

$ = jf2x+€-fx-^tx + 8x, (58)

Z=atf + ̂ f + €t, (59)

where a, p, 8 and e are constants.
Substituting these equations into (99), we should be able to find the relevant

similarity variables. In trying to solve (99), we find that the similarity variable
explicitly depends on the solution of (99).

However, we did find another similarity solution, by making the assumptions that
a = 0, /? = 2, 8 = 0 and € = 1, of the form

f = h(s), (60)

where s = xe~'/4. This similarity solution does not, in fact, come from the classical
Lie analysis described previously.

We find that h satisfies

h" - 4h'3s = 0. (61)

The solution to this is

h = ±2arcsin ( — ) + c2. (62)

Thus

/ = ±2arcsin (-?-)+c2, (63)

where C\ and c2 are constants.
By substituting this into (15), we find

D = \c\e'IA - \x2. (64)
4 4

Substituting / into (93) from Appendix A, we find that the wave speed is

c ~ -C\e''* \A COS (t - y j + sin (t - y J1. (65)

Note that this says that the wave will move backwards half of the time and forwards
the other half.
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4. D(x, t) a random function

The success of the Euler method in rapidly obtaining accurate solutions to the pure
initial-value problem for reaction-diffusion equations with compact initial data [6]
entices one to consider applying the method to random diffusivities.

Specifically, we shall solve (7) with the explicit finite difference scheme

*+1 +

where wf denotes the computed value u(iS, kh), S is the grid spacing and h the time
step. For any D(t), (66) provides a rapid numerical algorithm. The extension to
D(x, t) is straightforward.

To get stability conditions for this scheme, we linearise the equation about an
unstable equilibrium, u0. This gives bounds on both the space and time steps

S2 < 2£±, (67)
S2

h < — . , _ , , , • (68 )

Of primary interest is the effect of non-constant diffusivity upon the speed of the
reaction wave. Notice that for the Fisher equation (with constant diffusivity)

u, = Duxx + u(l-u), (69)

the minimal wave speed is
c = 2-jD. (70)

Thus one is tempted to infer that any time dependence of the diffusivity will im-
mediately affect the speed of the reaction wave. However, as we are dealing with
a nonlinear system, and diffusion will act to smooth any variation (over some time
scale), we should not hastily infer anything.

In Figure 2 we present the results of numerical calculation of the speed of the
reaction wave, as it develops with time, for three cases, namely

D = \, (71)

D = 1+0.1 sin?, (72)

D = 1 + RNG. (73)

Here RNG denotes a random number generator with mean zero, amplitude ±0.1,
and following a rectangular probability distribution. Note that all diffusivities are
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FIGURE 2. Speed of the reaction wave as a function of time, using an explicit finite difference scheme
and tracking the average position of the front, where D = 1 is the circles (•), D = 1+ RNG is the dashed
line ( -) and D = 1 + 0.1 sin/ is the dotted line ( ). Diffusivities D = 1 and D = 1+RNG,
where RNG denotes a random noise generated number between ±0.1, are indistinguishable. The speed
from D = 1 + 0.1 sin / exhibits small amplitude oscillations about the D = 1 result. Note that all
diffusivities are perfectly correlated in space.

perfectly correlated in space. It is quite clear that the constant case (71) and the
randomly varying case (73) are very similar. The difference in speeds is shown in
Figure 3, and it is much less than one might naively infer from (70). The smoothly
varying case (72) does exhibit a smooth variation in speed with the same period, but
with a smaller amplitude than one might naively infer from (70). It would appear
that the diffusion process results in an insensitivity to changes in diffusivity below
some time scale. A theoretical analysis of the appropriate time scales would be of
considerable interest, but is beyond the scope of the present paper. Note that the
general analysis of stochastic reaction diffusion equations is proving to be a difficult
task; for example, witness the effort required to determine the changes in equilibria
by Tuckwell [7].

5. Dt(x, y, t) and D2(x, y, t) continuous functions

Consider the equation in two spatial dimensions

u, = (£>,«,), + (D2uy)y + f (11). (74)
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FIGURE 3. Difference between the speed versus time results for D = 1 and D = 1+ RNG. This
highlights just how close the results remain.

We seek a mapping

= f(x,y,t),

= g(x,y,t),

= t,

(75)

(76)

(77)

(78)

This requires us to solve a system of five simultaneous partial differential equations:

under which (74) is transformed into

Dig] + D2g
2

y = 1,

(D2gy)y -g,=0.

(79)

(80)

(81)

(82)

(83)

For D](x, t) and D2(y, t), (79)-(83) uncouple and the analytical results of Section
3 apply to each of Dx(x, t) and D2{y, t) separately. In the general case, we have
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not been able to find any nontrivial solutions. The numerical method of Section 4
could easily be extended to the present case, and the results are likely to mimic the
one-spatial-dimension results already reported.

6. Conclusions

Four special forms for D(x, t) have been found. With these forms it is possible
to reduce the reaction-diffusion equation with D(x, t) to an equivalent constant dif-
fusivity equation, for arbitrary F(u). Although the special forms for D(x, t) for
which reduction was possible do not seem to be of intrinsic physical interest, they do
provide valuable examples for testing other analytical techniques and computational
algorithms. The same will hold in two spatial dimensions for D\(x, t) and D2(y, t).
However, when Dx and D2 are both functions of x, y and t, nontrivial solutions of the
five coupled partial differential equations have eluded us.

Stochastic diffusivity was treated numerically. It appears that the mean value of
the speed of the reaction wave is unchanged by variations in diffusivity about its mean
value. The variability of the speed about the mean is much less that the variability of
the diffusivity about its mean.

Appendix A: Calculation of the wave speed

If our original system is of the form (7) and we can reduce it to an equivalent
equation

«r = uxx + F{u), (84)

then it is possible to find an asymptotic approximation to the minimal speed of the
wave front, which for the class of functions given in Section 2, the waves move from
the unstable equilibrium u = 0 to the stable u = 1.

Assume there exists an unstable equilibrium point, u, of (7). Thus we require

F{u) = 0, (85)

F'(u) > 0. (86)

Now, let us expand (84) about u, using a Taylor Series for F(u) about u

F(u) % F(u) + F'(u)u*, (87)

where u* = u —~u.
Thus

< = «;, + F'(u)u*. (88)
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For the class of functions mentioned, H = 0.
Thus

«; = u*xx + F'(0)u*. (89)

The fundamental solution of this equation is related to the source solution. Thus

u* = -Le-
x2/4leF'm'. (90)

As we are assuming that there exists a travelling wave front, which is well behaved,
we want u* to also be well behaved. To do this, there must be a balance between the
two exponentials (diffusion and reaction). Thus we require

| - ~ F'(0)t, (91)

or
X ~ 2F'(0)t. (92)

What we want to do now is to substitute in X = f(x, t) for X and obtain the speed in
the original variables; namely, ^ . We then get an asymptotic estimate of the speed:

c ~ ^ ~ (X-')'(O- (93)
at

Appendix B: Lie group analysis

Suppose we want to solve a general partial differential equation (PDE) of the form

N(x,t,c,c,,cx,cxx) = 0, (94)

using a Lie group analysis. We suppose a general transform of variables as one-
parameter groups of the form

c = D + €^(x,t,c) + O(€2), (95)

J = x + e^(x,t,c) + O(e2), (96)

l = t + er)(x,t,c) + O(.€2). (97)

The new PDE becomes
N(x,l,c,cT,cx-,cJx) = 0, (98)

and we want this PDE to be the same as the original one.
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Once we have found the functions £(x, t, c), £Qc, t, c) and r){x, t, c), the similarity
variable and functional form of the solution are obtained from the first order PDE; this
is called the "invariant surface condition":

$cx + r)c, = f. (99)

Without going into any of the messy details (see for example Hill [4]), the derivatives
in the transformed variables are

cx=cx + e {£* + (£c - £,)c, - r)xc, - %Dc\ - r\cctcx}, (100)

ĴFJ = Cxx i £ \hxx ~r~ \^xc Sxx/Cx ^Ixx^t

+(f c c - 2%xc)c
2

x - 2r]xcc,cx - i-cccl - r\ccc,c\

+ [(£c — 2%x) — 3%ccx — r]cct] cxx — 2{r]x + r)ccx)cx,}, (101)

cr = c, + e {$, + (fc - r),)c, - %tcx - r)cc] - t-ccxc,}. (102)

Substituting (100)-(102) into (98), and reverting (94) in terms of cxx and replacing
this for cxx in (98), we get a multinomial in terms of c, c,, cx and cxt, to first order in
e. By equating the various coefficients to zero, we get a set of equations involving r],
% and £. These must then be satisfied to find rj, i- and £ which are subsequently used
in the invariant surface condition, (99), to determine the transformation under which
the PDE, (94), is invariant.
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