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SELECTING THE LAST CONSECUTIVE
RECORD IN A RECORD PROCESS

SHOOU-REN HSIAU,∗ National Changhua University of Education

Abstract

Suppose that I1, I2, . . . is a sequence of independent Bernoulli random variables with
E(In) = λ/(λ + n − 1), n = 1, 2, . . . . If λ is a positive integer k, {In}n≥1 can be
interpreted as a k-record process of a sequence of independent and identically distributed
random variables with a common continuous distribution. When In−1In = 1, we say that
a consecutive k-record occurs at time n. It is known that the total number of consecutive
k-records is Poisson distributed with mean k. In fact, for general λ > 0,

∑∞
n=2 In−1In is

Poisson distributed with mean λ. In this paper, we want to find an optimal stopping time
τλ which maximizes the probability of stopping at the last n such that In−1In = 1. We
prove that τλ is of threshold type, i.e. there exists a tλ ∈ N such that τλ = min{n | n ≥
tλ, In−1In = 1}. We show that tλ is increasing in λ and derive an explicit expression
for tλ. We also compute the maximum probability Qλ of stopping at the last consecutive
record and study the asymptotic behavior of Qλ as λ → ∞.
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1. Introduction

Let X1, X2, . . . be a sequence of independent and identically distributed (i.i.d.) random
variables with common continuous distribution function F . Observing X1, X2, . . . sequen-
tially, we say that a record occurs at time n if Xn > max1≤i≤n−1 Xi . Set I1 = 1 and
In = 1{Xn>max1≤i≤n−1Xi } for n > 1. Then In = 1 if a record occurs at time n, and In = 0
otherwise. We call {In}n≥1 the record process of {Xn}n≥1. For the sequence I1, I2, . . . ,

it is well known that they are independent Bernoulli random variables with E(In) = 1/n.
Moreover, since

∑∞
n=1 P(In = 1) = ∑∞

n=1(1/n) = ∞, we have, by the Borel–Cantelli lemma,
P(In = 1 infinitely often) = 1 and, therefore,

∑∞
n=1 In = ∞ almost surely (a.s.). This means

that, with probability 1, there are infinitely many records in the sequence I1, I2, . . . . However,
the number of consecutive records in I1, I2, . . . can be shown to be finite and Poisson distributed
with mean 1. More precisely, we say that a consecutive record occurs at time n if In−1In = 1.
Since

∑∞
n=1 E(InIn+1) = ∑∞

n=1 1/[n(n + 1)] = 1,
∑∞

n=1 InIn+1 < ∞ a.s. In fact, Hahlin
(1995) first proved that

∑∞
n=1 InIn+1 is Poisson distributed with mean 1. Around 1996, Persi

Diaconis also gave an unpublished proof, and later a number of generalizations have been
studied in the literature; see Csörgö and Wu (2000), Chern et al. (2000), Joffe et al. (2004),
Mori (2001), Sethuraman and Sethuraman (2004), and Holst (2007).
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Besides the generalizations mentioned above, Arratia et al. (1992) applied the Ewens sam-
pling formula to the permutations of {1, 2, . . . , n} to obtain some Poisson process approx-
imation theorems, which imply the following interesting result. If I1, I2, . . . is a sequence
of independent Bernoulli random variables with E(In) = λ/(λ + n − 1), n = 1, 2, . . .

(λ > 0), then
∑∞

n=1 InIn+1 is Poisson distributed with mean λ. For λ = 1, this result
reduces to the previous result. Here we note that when λ is a positive integer k, {In}n≥1
can be interpreted as the k-record process of {Xn}n≥1 mentioned previously. In fact, if we let
An denote the event that at most k − 1 of X1, X2, . . . , Xn−1 are greater than Xn, i.e. Xn is a
k-record in X1, X2, . . . , Xn, then IAk

, IAk+1 , . . . form an independent Bernoulli sequence with
E(IAk+n−1) = k/(k + n − 1), n ≥ 1, and so {In}n≥1 has the same distribution as {IAk+n−1}n≥1.

Inspired by the above result, in this paper we study the following problem. Find an optimal
strategy to maximize the probability of selecting the last consecutive record in I1, I2, . . . , i.e. the
last n with In−1In = 1. Essentially, this is a kind of optimal stopping problem that we can state
formally as follows. For a fixed λ > 0, let I1, I2, . . . be a sequence of independent Bernoulli
random variables with E(In) = λ/(λ + n − 1), n ≥ 1. Let Sn = I1I2 + I2I3 + · · · + In−1In

and S = S∞ = ∑∞
i=1 IiIi+1. For each n = 1, 2, . . . , let Fn = σ(I1, I2, . . . , In) be the σ -field

generated by I1, I2, . . . , In, let F∞ = σ(I1, I2, . . .), and let C be the class of all stopping times
adapted to {Fn}n=∞

n=1 . We want to find an optimal stopping time τλ ∈ C such that

P(Iτλ−1Iτλ = 1 and Sτλ = S) = sup
τ∈C

P(Iτ−1Iτ = 1 and Sτ = S).

Note that, since P(S = 0) = λ > 0, a stopping time τ with P(τ = ∞) > 0 is allowed. But,
we define I∞ = 0 so that P(Iτ−1Iτ = 1 and Sτ = S | τ = ∞) = 0 for τ ∈ C.

Problems of selecting the last event in a stochastic process have been studied by many
authors; see, for example, Bruss (2000), Bruss and Paindaveine (2000), Hsiau andYang (2002),
Bruss and Louchard (2003), and Hsiau (2007). While infinite-horizon problems are typically
much more involved than finite-horizon problems, fortunately the infinite-horizon problem
addressed in this paper can be explicitly solved using the optimal stopping theory developed in
Chow et al. (1971). In particular, the notion of the monotone case due to Chow and Robbins
(1961) is very useful for solving our problem. In fact, by adopting a technique used in Dynkin
(1963) to treat the secretary problem, we reformulated the problem in such a way that it is in
the monotone case and so the optimal stopping time is of threshold type (see Section 2). We
now present our main result.

Theorem 1. The optimal stopping time τλ is of threshold type, that is, there exists a tλ ∈ N

such that
τλ = min{n | n ≥ tλ, In−1In = 1}.

Moreover, the threshold tλ can be described as follows:

(i) if λ ≤ 1 then tλ = 2;

(ii) if λ > 1 then tλ = λ2 − λ + 2 when λ2 − λ ∈ N, and tλ ∈ {�λ2 − λ� + 2, �λ2 − λ� + 3}
when λ2 − λ 	∈ N, where �x� denotes the greatest integer not exceeding x.

It seems quite surprising that the optimal threshold tλ takes such a simple form. In Section 3
we first present several key lemmas and then use them to prove Theorem 1. The key lemmas
are proved in Section 4. In Section 5 we prove that the threshold tλ is increasing in λ. Finally,
in Section 6 we compute the probability Qλ of selecting the last consecutive record using the
optimal stopping rule τλ. Moreover, as λ → ∞, the asymptotic behavior of Qλ is described
analytically and numerically.
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2. Monotone stopping rules

Because our goal is to select the last consecutive record, it is natural to focus our attention
on the times at which consecutive records occur. Let T1 denote the time at which the first
consecutive record occurs, that is,

T1 = min{n | n > 1, In−1In = 1}.

Here we use the convention that min ∅ = ∞, which means that T1 = ∞ if no consecutive
record occurs. Similarly, we can define T2, T3, . . . sequentially by

Tk = min{n | n > Tk−1, In−1In = 1}.

Note that Tk = ∞ if Tk−1 = ∞ or no consecutive record occurs after time Tk−1. Moreover,
let T denote the time at which the last consecutive record occurs, that is,

T = max{Tk | Tk < ∞},

with the convention that max ∅ = 0, which means that T = 0 if T1 = ∞ or, equivalently, no
consecutive record occurs.

Since I1, I2, . . . are independent, it is not difficult to see that T1, T2, . . . form a Markov
chain with state space {2, 3, . . . ,∞}. Hence, if we observed T1, T2, . . . , Tn−1, Tn = t then the
conditional probability that T = t is

P(T = t | Tn = t) =

⎧⎪⎨⎪⎩P

( ∞∑
n=t

InIn+1 = 0

∣∣∣∣ It = 1

)
if t < ∞,

0 if t = ∞.

(1)

Let Yn = P(T = Tn | Tn) for n = 1, 2, . . . . Then our original optimal stopping problem is
reduced to that for the process {Yn, FTn}n≥1. More precisely, letting C′ denote the class of all
finite stopping times adapted to {FTn}n≥1, we want to find an optimal stopping time σλ ∈ C′
such that

E(Yσλ) = sup
σ∈C′

E(Yσ ).

The idea of the above new version for our original problem comes from a technique used in
Dynkin (1963) to reformulate the classical secretary problem so that it is monotone. In fact, an
optimal stopping problem for {Xn, Fn}n≥1 is said to be monotone if the events An = {Xn ≥
E(Xn+1 | Fn)}, n = 1, 2, . . . , satisfy the following conditions:

A1 ⊆ A2 ⊆ . . . , P

( ∞⋃
n=1

An

)
= 1.

If the optimal stopping problem for {Xn, Fn}n≥1 is monotone then the stopping rule

σ̃ = min{n | Xn ≥ E(Xn+1 | Fn)} (2)

is important owing to the following result.
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Theorem 2. (Chow and Robbins (1961).) Suppose that the optimal stopping problem for
{Xn, Fn}n≥1 is monotone. If the stopping rule σ̃ defined as in (2) satisfies

lim inf
n

∫
{̃σ>n}

X+
n dP = 0

then E(Xσ̃ ) ≥ E(Xσ ) holds for all finite stopping times σ for which

lim inf
n

∫
{σ>n}

X−
n dP = 0.

For the new version of our original problem, i.e. the optimal stopping problem for
{Yn, FTn}n≥1, we will show that it is monotone. To this end, we first introduce the following
notation:

nP0 = P

( ∞∑
k=n

IkIk+1 = 0

∣∣∣∣ In = 1

)
and

nP1 = P

( ∞∑
k=n

IkIk+1 = 1

∣∣∣∣ In = 1

)
.

For nP0 and nP1, the following important property holds, which will be proved in Section 3.

Lemma 1. (i) nP0 → 1 and nP1 → 0 as n → ∞; hence, nP1/nP0 → 0 as n → ∞.

(ii) nP1/nP0 is decreasing in n.

(iii) There exists a positive integer t̃λ such that

t̃λ = min

{
n

∣∣∣∣ nP1

nP0
≤ 1

}
.

Consequently, nP0 ≥ nP1 if and only if n ≥ t̃λ.

Now recall that Yn = P(T = Tn | Tn), determined as in (1). Hence, E(Yn+1 | FTn) =
E(Yn+1 | Tn) = P(T = Tn+1 | Tn). Moreover,

P(T = Tn+1 | Tn = t) =

⎧⎪⎨⎪⎩P

( ∞∑
k=t

IkIk+1 = 1

∣∣∣∣ It = 1

)
if t < ∞,

0 if t = ∞.

(3)

In view of (1), (3), and the definitions of nP0 and nP1, we see that, on {Tn = t},

Yn =
{

tP0 if t < ∞,

0 if t = ∞,
(4)

and

E(Yn+1 | FTn) =
{

tP1 if t < ∞,

0 if t = ∞.
(5)
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On the other hand, by the definition of t̃λ, tP0 ≥ tP1 if and only if t ≥ t̃λ. Hence, if Tn = t and
Yn ≥ E(Yn+1 | FTn), then ∞ > t ≥ t̃λ or t = ∞, and so Tn+1 = t ′ > t̃λ or Tn+1 = ∞, either
of which implies that Yn+1 ≥ E(Yn+2 | FTn+1). It turns out that

{Yn ≥ E(Yn+1 | FTn)} ⊆ {Yn+1 ≥ E(Yn+2 | FTn+1)}. (6)

Moreover, since
∑∞

n=1 InIn+1 < ∞ with probability 1, we have P(Tn < ∞ for all n) = 0
and, hence, P(Tn = ∞ for some n) = 1. This implies that P(Yn = E(Yn+1 | FTn) = 0
for some n) = 1 and so

P

( ∞⋃
n=1

{Yn ≥ E(Yn+1 | FTn)}
)

= 1. (7)

By combining (6) and (7), it follows that the optimal stopping problem for {Yn, FTn}n≥1 is
monotone. Hence, the following stopping rule is a candidate of the optimal stopping rules:

σλ = min{n | Yn ≥ E(Yn+1 | FTn)}. (8)

Note that 0 ≤ Yn ≤ 1 and Yn → 0 a.s., since P(Tn = ∞ for some n) = 1. By the bounded
convergence theorem we have

lim
n→∞

∫
|Yn| dP = 0.

This implies that

lim inf
n

∫
{σλ>n}

Y+
n dP = 0.

Moreover, since 0 ≤ Yn ≤ 1, it is true that Y−
n = 0 and, hence,

lim inf
n

∫
{σ>n}

Y−
n dP = 0

holds for all finite stopping times σ . Now we can apply Theorem 2 to {Yn, FTn}n≥1 to conclude
that E(Yσλ) ≥ E(Yσ ) holds for all finite stopping times σ , i.e.

E(Yσλ) = sup
σ∈C′

E(Yσ ).

Note that, in view of (4), (5), (8), and Lemma 1, our original optimal stopping problem has the
optimal stopping rule

τλ = min{n | n ≥ tλ, In−1In = 1},
where tλ = max(t̃λ, 2). We call tλ the threshold of τλ. So far, we have proved the first half of
Theorem 1, that is, the optimal stopping rule τλ is of threshold type. In Section 3 we investigate
nP0 and nP1, and then express tλ in terms of λ explicitly.

3. The threshold tλ: proof of Theorem 1

In this section we first prove Lemma 1 and then describe the threshold tλ in terms of λ. To
this end, we need the exact expressions for nP0 and nP1.
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Lemma 2. For each n = 1, 2, . . . , we have

nP0 =
∞∑

j=0

(−1)j
λj (λ + 1)[j ]
j ! (λ + n)[j ]

(9)

and

nP1 =
∞∑

j=0

(−1)j
λj+1(λ + 1)[j+1]
j ! (λ + n)[j+1]

, (10)

where x[0] = 1 and x[j ] = x(x + 1) · · · (x + j − 1) for j = 1, 2, . . . .

Using the above expressions for nP0 and nP1, we can establish recurrence relations for nP0
and nP1, as well as for rn = nP1/nP0.

Lemma 3. For each n = 1, 2, . . . , we have

(λ + n)nP0 = (λ + n)n+1P0 − n+1P1, (11)

(λ + n)nP1 = λ(λ + 1)n+1P0 − λn+1P1. (12)

Moreover, if we set rn = nP1/nP0 then, for n = 2, 3, . . . , we have rn 	= λ and

rn+1 = λ + n + λ(n − 1)

rn − λ
. (13)

Here we have to note that, from (9) and (10), 1P0 = e−λ and 1P1 = λe−λ, and so r1 = λ,
which explains why relation (13) does not hold for n = 1. The proofs of Lemmas 2 and 3 need
tedious computations, and so are deferred to Section 4. In the following, we use recurrence
relation (13) to prove that rn is decreasing in n and converges to 0. This work is much involved
and we need to investigate the following sequence of functions:

fn(x) = λ + n + λ(n − 1)

x − λ
, x 	= λ,

for n = 2, 3, . . . . Note that the sequence r2, r3, . . . satisfies the relation rn+1 = fn(rn).

Lemma 4. For each n = 2, 3, . . . , fn(x) satisfies the following properties.

(i) x ≤ 0 implies that fn(x) > λ and x > λ implies that fn(x) > λ + n.

(ii) x < y < λ implies that fn(x) > fn(y).

(iii) fn(x) = x < λ if and only if x = 1
2 (2λ + n − √

n2 + 4(n − 1)λ).

(iv) Let xn = 1
2 (2λ + n − √

n2 + 4(n − 1)λ). Then fn(xn) = xn, xn ↘ 0, xn − xn+1 >

xn+1 − xn+2, and fn+1(xn) < xn+2 for n ≥ 1.

(v) 0 < x < λ and 0 < y < λ imply that |fn(x) − fn(y)| ≥ (n − 1)|x − y|/λ.

Proof. If x ≤ 0 then λ/(x − λ) ≥ −1 and so

λ + n + λ(n − 1)

x − λ
≥ λ + n − (n − 1) > λ,
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which implies that fn(x) > λ. Moreover, if x > λ then x − λ > 0 and so

λ + n + λ(n − 1)

x − λ
> λ + n,

which implies that fn(x) > λ + n. Hence, (i) follows.
If x < y < λ then x − λ < y − λ < 0 and so

λ + n + λ(n − 1)

x − λ
> λ + n + λ(n − 1)

y − λ
.

Hence, (ii) follows.
If fn(x) = x then

λ + n + λ(n − 1)

x − λ
= x,

which yields the quadratic equation

x2 − (2λ + n)x + λ(λ + 1) = 0.

It is easy to verify that this equation has just one root less than λ, that is,

x = 1
2 (2λ + n −

√
n2 + 4(n − 1)λ).

Conversely, if x = (2λ + n − √
n2 + 4(n − 1)λ)/2 then fn(x) = x < λ. Hence, (iii) follows.

Now let xn = (2λ + n − √
n2 + 4(n − 1)λ)/2, n = 2, 3, . . . . By (iii), fn(xn) = xn.

Observe that

1

2
(2λ + n −

√
n2 + 4(n − 1)λ) = 2λ(λ + 1)

2λ + n + √
n2 + 4(n − 1)λ

.

It is clear that, as n → ∞,

2λ(λ + 1)

2λ + n + √
n2 + 4(n − 1)λ

↘ 0,

which implies that xn ↘ 0.
Consider the function

g(t) = 1
2 (2λ + t −

√
t2 + 4(t − 1)λ), t ≥ 1.

It is not difficult to verify that

g′′(t) = 2λ(λ + 1)

[t2 + 4(t − 1)λ]3/2 , t ≥ 1.

It is clear that g′′(t) > 0 for all t ≥ 1, and so g(t) is a convex function in t ≥ 1. Therefore,

g(t + 2) − g(t + 1)

(t + 2) − (t + 1)
>

g(t + 1) − g(t)

(t + 1) − t

holds for all t ≥ 1. This implies that, for n = 1, 2, . . . , g(n)−g(n+1) > g(n+1)−g(n+2),
and so xn − xn+1 > xn+1 − xn+2.
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To verify that fn+1(xn) < xn+2, observe that

fn+1(xn) = λ + n + 1 + nλ

xn − λ

= λ + n + 1 + nλ

xn+1 − λ
+

(
nλ

xn − λ
− nλ

xn+1 − λ

)
= fn+1(xn+1) + nλ(xn+1 − xn)

(xn − λ)(xn+1 − λ)

= xn+1 − nλ

(xn − λ)(xn+1 − λ)
(xn − xn+1).

From this we see that

fn+1(xn) − xn+2 = (xn+1 − xn+2) − nλ

(xn − λ)(xn+1 − λ)
(xn − xn+1).

Since xn − xn+1 > xn+1 − xn+2 > 0, it is clear that nλ/(xn − λ)(xn+1 − λ) > 1 implies that
fn+1(xn) − xn+2 < 0. In the following, we prove that nλ/(xn − λ)(xn+1 − λ) > 1. In fact, it
is not difficult to show that 0 < λ − xn <

√
(n − 1)λ and 0 < λ − xn+1 <

√
nλ, which imply

that
nλ

(xn − λ)(xn+1 − λ)
> 1.

Hence, the above assertion is proved, and (iv) follows.
Finally, observe that

fn(x) − fn(y) = λ(n − 1)(y − x)

(x − λ)(y − λ)
,

and so

|fn(x) − fn(y)| = λ(n − 1)

(x − λ)(y − λ)
|x − y|.

If 0 < x < λ and 0 < y < λ, then

λ(n − 1)

|(x − λ)(y − λ)| >
λ(n − 1)

λ2 = n − 1

λ
,

from which (v) follows.

We are now in a position to prove Lemma 1.

Proof of Lemma 1. Because (iii) is an easy consequence of (i) and (ii), we just prove (i)
and (ii). We first prove that nP1/nP0 converges to 0 as n → ∞. By the definitions of nP0
and nP1, it is clear that 0 ≤ nP0 + nP1 ≤ 1, from which we see that nP0 → 1 implies that
nP1 → 0. Therefore, it suffices to prove that nP0 → 1. Since I1, I2, . . . are independent with
E(Ik) = λ/(λ + k − 1), we have

P

( ∞∑
k=n

IkIk+1 = 0

∣∣∣∣ In = 1

)
= 1 − P

( ∞∑
k=n

IkIk+1 ≥ 1

∣∣∣∣ In = 1

)

= 1 − P

(
In+1 +

∞∑
k=n+1

IkIk+1 ≥ 1

)

≥ 1 − E

(
In+1 +

∞∑
k=n+1

IkIk+1

)
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= 1 − λ

λ + n
−

∞∑
k=n+1

λ

λ + k − 1

λ

λ + k

= 1 − λ(λ + 1)

λ + n
.

Since λ(λ + 1)/(λ + n) → 0 as n → ∞, we see that nP0 → 1 as n → ∞. Hence, (i) follows.
Next, we want to prove that nP1/nP0 is decreasing in n. In fact, we have a more delicate

result (see Lemma 5 below): xn < nP1/nP0 < xn−1. Since, by Lemma 4(iv), {xn}n≥2 is a
decreasing sequence, we see that nP1/nP0 is a decreasing sequence in n.

As before, we write rn = nP1/nP0 for n = 1, 2, . . . . We know, from (9) and (10), that
r1 = λ. The following lemma describes the location of rn for n ≥ 2.

Lemma 5. For each n = 2, 3, . . . , we have xn < rn < xn−1.

Proof. Recall that fn(xn) = xn and rn+1 = fn(rn) for n ≥ 2. We first claim that 0 < rn < λ

for all n ≥ 2. If not, there exists some rk such that rk > λ (note that rk 	= λ by Lemma 3). Then,
by Lemma 4(i) we have rk+1 = fk(rk) > λ+k, and in turn rk+2 = fk+1(rk+1) > λ+k+1, . . . .

This yields the fact that rn → ∞, which contradicts the fact that rn → 0 (see Lemma 1(i)).
Hence, 0 < rn < λ for all n ≥ 2.

Next, we prove that xn < rn < xn−1 for all n ≥ 2. Suppose that, for some rk , rk ≤ xk < λ.
Then, by Lemma 4(ii), rk+1 = fk(rk) ≥ fk(xk) = xk . This states that if there is some rn not
satisfying xn < rn < xn−1 then rn ≥ xn−1 or rn+1 ≥ xn. We now proceed to prove the claim
by contradiction. Suppose that λ > rk ≥ xk−1 for some k ≥ 2. By Lemma 4(iv), rk+1 =
fk(rk) ≤ fk(xk−1) < xk+1, and so rk+2 = fk+1(rk+1) > fk+1(xk+1) = xk+1. Furthermore,
rk+3 = fk+2(rk+2) < fk+2(xk+1) < xk+3, and so rk+4 = fk+3(rk+3) > fk+3(fk+2(xk+1)) >

fk+3(xk+3) = xk+3. In general, if we set s1 = xk+1, s2 = fk+2(s1), s3 = fk+3(s2), etc., then
applying Lemma 4(iv) successively yields rk+2 > s1, rk+3 < s2 < xk+3, rk+4 > s3 > xk+3,
rk+5 < s4 < xk+5, rk+6 > s5 > xk+5, etc. Because 0 < rn < λ and 0 < xn < λ for all n ≥ 2,
the above inequalities imply that 0 < sn < λ for all n ≥ 1. Now applying Lemma 4(v) to the
case x = rk+2 and y = s1 yields

|rk+3 − s2| = |fk+2(rk+2) − fk+2(s1)| ≥ k + 1

λ
|rk+2 − s1|.

Similarly, in general, we obtain

|rk+�+1 − s�| = |fk+�(rk+�) − fk+�(s�−1)| ≥ k + � − 1

λ
|rk+� − s�−1|.

Combining these inequalities, it is not difficult to see that

|rk+�+1 − s�| ≥ (k + 1)(k + 2) · · · (k + � − 1)

λ�−1 |rk+2 − s1|.

Since rk+2 − s1 > 0 and (k + 1)(k + 2) · · · (k + � − 1)/λ�−1 → ∞ as � → ∞, we have
|rk+�+1 − s�| → ∞ as � → ∞, in contradiction to the facts that 0 < rn < λ and 0 < sn < λ.
Hence, xn < rn < xn−1 for all n ≥ 2.

Now we can use Lemma 5 to derive the threshold tλ of the optimal stopping rule τλ. Recall
that t̃λ = min{n | rn ≤ 1} and tλ = max{t̃λ, 2}. If 0 < λ ≤ 1 then r1 = λ ≤ 1, and so t̃λ = 1

https://doi.org/10.1239/aap/1282924061 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1282924061


748 S.-R. HSIAU

and tλ = 2. If λ > 1 then r1 = λ > 1, and so t̃λ ≥ 2 and tλ = t̃λ. In this case if, for some
k ≥ 2, xk−1 = 1, then, by Lemma 5, rk < xk−1 = 1 < rk−1 and so tλ = k. If xk < 1 < xk−1
then rk+1 < xk < rk ≤ 1 < xk−1 < rk−1 or rk+1 < xk < 1 < rk < xk−1, and so tλ = k or
k + 1. By the definition of xn, the statement xk−1 = 1 is just

1
2 (2λ + k − 1 −

√
(k − 1)2 + 4(k − 2)λ) = 1,

which can be simplified to the form k = λ2 − λ + 2. Similarly, the statement xk < 1 < xk−1
is just

1
2 (2λ + k −

√
k2 + 4(k − 1)λ) < 1 < 1

2 (2λ + k − 1 −
√

(k − 1)2 + 4(k − 2)λ),

which can be simplified to the form k < λ2 − λ + 2 < k + 1. To summarize,

(i) if λ ≤ 1 then tλ = 2;

(ii) if λ > 1 then tλ = λ2 − λ + 2 when λ2 − λ ∈ N, and tλ ∈ {�λ2 − λ� + 2, �λ2 − λ� + 3}
when λ2 − λ 	∈ N.

This completes the proof of Theorem 1.

4. Proofs of Lemmas 2 and 3

In this section we compute nP0 and nP1 and then derive the recurrence relations (11) and (12).
We first need a generalized version of the inclusion–exclusion formula.

Theorem 3. (Generalized inclusion–exclusion formula.) Let A1, A2, . . . be a sequence of
events. For each positive integer k, set Sk = ∑

i1<i2<···<ik
P(Ai1Ai2 · · · Aik ). Let � be a fixed

positive integer, and let q� denote the probability that exactly � of A1, A2, . . . occur. Then

q� =
∞∑

k=�

(−1)k−�Ck
�Sk

provided that
∑∞

k=� Ck
�Sk is finite. Here Ck

� = k!/[�! (k − �)!].
Similarly, let q̃� denote the probability that at least � of A1, A2, . . . occur. Then

q̃� =
∞∑
i=�

(−1)i−�Ci−1
�−1Si

provided that
∑∞

i=� Ci−1
�−1Si is finite.

Proof. For any positive integers n and k, set nSk = ∑
i1<i2<···<ik≤n P(Ai1Ai2 · · · Aik ). Let

nq� denote the probability that exactly � of A1, A2, . . . , An occur. Then, by the inclusive–
exclusive formula we have

nq� =
n∑

k=�

(−1)k−�Ck
� nSk.

If
∑∞

k=� Ck
�Sk is finite then each Sk is finite. This implies that nSk → Sk as n → ∞ for each k

and so
∑n

k=�(−1)k−�Ck
� nSk → ∑∞

k=�(−1)k−�Ck
�Sk as n → ∞, by the dominated convergence

theorem. On the other hand, it is clear that nq� → q� as n → ∞, by the definitions of nq�

and q�. Hence, q� = ∑∞
k=�(−1)k−�Ck

�Sk .
The proof of the second part of the theorem is similar and is thus omitted.

https://doi.org/10.1239/aap/1282924061 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1282924061


Selecting the last consecutive record 749

We can now prove Lemma 2.

Proof of Lemma 2. We first compute nP1. By definition,

nP1 = P

( ∞∑
k=n

IkIk+1 = 1

∣∣∣∣ In = 1

)
= P

(
In+1 +

∞∑
k=n+1

IkIk+1 = 1

)
.

Define A1 = {In+1 = 1} and Aj = {In+j−1In+j = 1} for j ≥ 2. Then

P

(
In+1 +

∞∑
k=n+1

IkIk+1 = 1

)
= P(exactly one of A1, A2, . . . occurs).

For each positive integer k, set

Sk =
∑

i1<i2<···<ik

P(Ai1Ai2 · · · Aik ).

We claim that Sk = λk(λ + 1)[k]/(k! (λ + n)[k]). Then

∞∑
k=1

Ck
1Sk =

∞∑
k=1

k
λk(λ + 1)[k]
k! (λ + n)[k]

=
∞∑

k=1

λk(λ + 1)[k]
(k − 1)! (λ + n)[k]

≤
∞∑

k=1

λ
λk−1

(k − 1)!
= λeλ

< ∞.

Therefore, by Theorem 3 we have

P(exactly one of A1, A2, . . . occurs) =
∞∑

k=1

(−1)k−1Ck
1Sk

=
∞∑

k=1

(−1)k−1k
λk(λ + 1)[k]
k! (λ + n)[k]

=
∞∑

j=0

(−1)j
λj+1(λ + 1)[j+1]
j ! (λ + n)[j+1]

,

as required.
As for the computation of nP0, we observe that

nP0 = P

( ∞∑
k=n

IkIk+1 = 0

∣∣∣∣ In = 1

)

= P

(
In+1 +

∞∑
k=n+1

IkIk+1 = 0

)
= P(none of A1, A2, . . . occur)
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= 1 − P(at least one of A1, A2, . . . occurs)

= 1 −
∞∑

k=1

(−1)k−1Sk

= 1 −
∞∑

k=1

(−1)k−1 λk(λ + 1)[k]
k! (λ + n)[k]

=
∞∑

j=0

(−1)j
λj (λ + 1)[j ]
j ! (λ + n)[j ]

,

as required. Here we have used the fact that
∑∞

k=1 Sk is finite, which follows from

∞∑
k=1

Ck
1Sk < ∞.

It remains to prove that Sk = λk(λ + 1)[k]/(k! (λ + n)[k]). This result can be proved by
mathematical induction on both n and k. We write it down as the following lemma. Note that
the Sk here is just the S

(n)
k in the following lemma.

Lemma 6. Let Bi = {IiIi+1 = 1} and B̃i = {Ii+1 = 1} for i ≥ 1. Set, for any positive integers
n and k,

S
(n)
k =

∑
n<i2<i3<···<ik

P(B̃nBi2Bi3 · · · Bik ) +
∑

n<i1<i2<···<ik

P(Bi1Bi2 · · · Bik ).

Then S
(n)
k = λk(λ + 1)[k]/(k! (λ + n)[k]).

Proof. For k = 1 and each n,

S
(n)
1 = P(B̃n) +

∑
i>n

P(Bi) = λ

λ + n
+

∑
i>n

λ

λ + i − 1

λ

λ + i
= λ(λ + 1)[1]

1! (λ + n)[1]
.

Suppose that the assertion is true for k ≤ m and each n. Then, for k = m + 1 and each n,

S
(n)
m+1 =

∑
n<i2<i3<···<im+1

P(B̃nBi2Bi3 · · · Bim+1) +
∑

n<i1<i2<···<im+1

P(Bi1Bi2 · · · Bim+1)

= P(B̃n)
∑

n<i2<i3<···<im+1

P(Bi2Bi3 · · · Bim+1 | B̃n)

+
∑
j>n

P(Bj )
∑

j<i2<i3<···<im+1

P(Bi2Bi3 · · · Bim+1 | Bj ).

It is not difficult to verify that∑
n<i2<i3<···<im+1

P(Bi2Bi3 · · · Bim+1 | B̃n) = S(n+1)
m

and ∑
j<i2<i3<···<im+1

P(Bi2Bi3 · · · Bim+1 | Bj ) = S
(j+1)
m .
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By induction we have

S
(n)
m+1 = P(B̃n)S

(n+1)
m +

∑
j>n

P(Bj )S
(j+1)
m

= λ

λ + n

λm(λ + 1)[m]
m! (λ + n + 1)[m]

+
∑
j>n

λ2

(λ + j − 1)(λ + j)

λm(λ + 1)[m]
m! (λ + j + 1)[m]

= λm+1(λ + 1)[m]
m! (λ + n)[m+1]

+
∑
j>n

λm+2(λ + 1)[m]
m! (λ + j − 1)[m+2]

= λm+1(λ + 1)[m]
m! (λ + n)[m+1]

+ λm+2(λ + 1)[m]
m!

1

m + 1

∑
j>n

(
1

(λ + j − 1)[m+1]
− 1

(λ + j)[m+1]

)

= λm+1(λ + 1)[m]
m! (λ + n)[m+1]

+ λm+2(λ + 1)[m]
m!

1

(m + 1)(λ + n)[m+1]

= λm+1(λ + 1)[m+1]
(m + 1)! (λ + n)[m+1]

.

Hence, the assertion is true for k = m + 1 and each n. By the induction principle, the assertion
is true for all k and n.

Finally, we prove Lemma 3.

Proof of Lemma 3. To verify (11), we use (9) and (10) to deduce that

(λ + n)n+1P0 − n+1P1

= (λ + n)

∞∑
j=0

(−1)j
λj (λ + 1)[j ]

j ! (λ + n + 1)[j ]
−

∞∑
j=0

(−1)j
λj+1(λ + 1)[j+1]

j ! (λ + n + 1)[j+1]

= (λ + n)

{
1 +

∞∑
j=0

(−1)j+1 λj+1(λ + 1)[j+1]
(j + 1)! (λ + n + 1)[j+1]

}

−
∞∑

j=0

(−1)j
λj+1(λ + 1)[j+1]

j ! (λ + n + 1)[j+1]

= (λ + n) +
∞∑

j=0

(−1)j+1 λj+1(λ + 1)[j+1]
(j + 1)! (λ + n + 1)[j+1]

(λ + n + j + 1)

= (λ + n) +
∞∑

j=0

(−1)j+1 λj+1(λ + 1)[j+1]
(j + 1)! (λ + n + 1)[j ]

= (λ + n)

∞∑
j=0

(−1)j
λj (λ + 1)[j ]
j ! (λ + n)[j ]

= (λ + n)nP0.
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For (12), using (9) and (10), we have

λ(λ + 1)n+1P0 − λn+1P1

= λ(λ + 1)

∞∑
j=0

(−1)j
λj (λ + 1)[j ]

j ! (λ + n + 1)[j ]
− λ

∞∑
j=0

(−1)j
λj+1(λ + 1)[j+1]

j ! (λ + n + 1)[j+1]

= λ(λ + 1)

{
1 +

∞∑
j=0

(−1)j+1 λj+1(λ + 1)[j+1]
(j + 1)! (λ + n + 1)[j+1]

}

− λ

∞∑
j=0

(−1)j
λj+1(λ + 1)[j+1]

j ! (λ + n + 1)[j+1]

= λ(λ + 1) +
∞∑

j=0

(−1)j+1 λj+2(λ + 1)[j+1]
(j + 1)! (λ + n + 1)[j+1]

(λ + j + 2)

= λ(λ + 1) +
∞∑

j=0

(−1)j+1 λj+2(λ + 1)[j+2]
(j + 1)! (λ + n + 1)[j+1]

=
∞∑

j=0

(−1)j
λj+1(λ + 1)[j+1]
j ! (λ + n + 1)[j ]

= (λ + n)

∞∑
j=0

(−1)j
λj+1(λ + 1)[j+1]
j ! (λ + n)[j+1]

= (λ + n)nP1.

It remains to verify (13). From (11) and (12), we have

rn = (λ + n) nP1

(λ + n) nP0
= λ(λ + 1) n+1P0 − λ n+1P1

(λ + n) n+1P0 −n+1P1
= λ(λ + 1) − λrn+1

λ + n − rn+1
,

form which (13) follows.

5. Monotonicity of tλ

We are also interested in the property of tλ. In fact, we can prove that tλ is increasing in λ.

Theorem 4. The threshold tλ is increasing in λ.

Intuitively, this result is quite natural. Because E(In) = λ/(λ + n − 1) is increasing in λ,
for larger λ, it is more likely that the last consecutive record occurs after time n. To prove
Theorem 4, we need to analyze rn, viewed as a function of λ. From now on, nP0(λ) = nP0,
nP1(λ) = nP1, and rn(λ) = nP1/nP0.

Lemma 7. For each positive integer n and each λ > 0, r ′
n(λ) exists and r ′

n(λ) → 0 as n → ∞.

Lemma 8. For each positive integer n, r ′
n(λ) > 0 for all λ > 0. Hence, rn(λ) is increasing

in λ. Moreover, for each n, rn(λ) → ∞ as λ → ∞.

We will prove Lemmas 7 and 8 later. Now we use Lemma 8 to prove Theorem 4.
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Proof of Theorem 4. First note that, by Theorem 1, tλ = 2 when 0 < λ ≤ 1. Therefore, it
suffices to argue only for λ > 1. Suppose that λ > 1. Then tλ = t̃λ and so

tλ = min{n | rn(λ) ≤ 1}.
Let λ1 > λ2 > 1. If rn(λ1) ≤ 1 for some n then rn(λ2) ≤ 1 since, by Lemma 8, rn(λ) is
increasing in λ. This argument implies that tλ1 ≥ tλ2 . Hence, tλ is increasing in λ.

Proof of Lemma 7. To prove that r ′
n(λ) exists, it suffices to prove that nP0 and nP1 are

differentiable with respect to λ. From (9), we have

nP0(λ) =
∞∑

j=0

(−1)jHj (λ), where Hj(λ) = λj (λ + 1)[j ]
j ! (λ + n)[j ]

.

For Hj(λ), we see that H ′
0(λ) = 0 and, for j ≥ 1,

H ′
j (λ) = Hj(λ)

{
j

λ
+

j−1∑
k=0

(
1

λ + 1 + k
− 1

λ + n + k

)}

= Hj(λ)

{
j

λ
+

j−1∑
k=0

n − 1

(λ + 1 + k)(λ + n + k)

}
.

This equation yields H ′
j (λ) > 0 and

H ′
j (λ) ≤ Hj(λ)

{
j

λ
+ (n − 1)j

nλ

}
≤ 2j

λ
Hj (λ)

= 2j

λ

λj (λ + 1)[j ]
j ! (λ + n)[j ]

≤ 2(λ + 1)

λ + n

λj−1

(j − 1)! .

It follows that

k∑
j=0

|(−1)jH ′
j (λ)| ≤

k∑
j=0

H ′
j (λ) ≤

k∑
j=1

2(λ + 1)

λ + n

λj−1

(j − 1)! ≤ 2(λ + 1)

λ + n
eλ. (14)

This just says that
∑∞

j=0(−1)jH ′
j (λ) converges uniformly on any bounded interval (0, a).

Therefore, we have

nP
′
0(λ) =

∞∑
j=0

(−1)jH ′
j (λ).

Furthermore, by (14),

|nP ′
0(λ)| ≤

∞∑
j=0

|(−1)jH ′
j (λ)| ≤ 2(λ + 1)

λ + n
eλ,

which implies that nP
′
0 → 0 as n → ∞.
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In a similar way, we can use (10) or (11) to prove that nP
′
1(λ) exists for all λ > 0. Hence,

r ′
n(λ) exists for each positive integer n and each λ > 0.

Next we want to prove that r ′
n(λ) → 0 as n → ∞. For this, we first note that

r ′
n(λ) = nP

′
1nP0 − nP

′
0nP1

nP
2
0

,

where we abbreviate the variable λ for brevity. In view of (11), nP1 and nP
′
1 can be expressed

in terms of nP0, nP
′
0, n−1P0, and n−1P

′
0:

nP1 = (λ + n − 1)(nP0 − n−1P0),

nP
′
1 = (nP0 −n−1P0) + (λ + n − 1)(nP

′
0 − n−1P

′
0).

Therefore, the above r ′
n(λ) can be expressed in terms of nP0, nP

′
0, n−1P0, and n−1P

′
0, that is,

r ′
n(λ) = {(nP0 − n−1P0) + (λ + n − 1)(nP

′
0 − n−1P

′
0)}nP0

nP
2
0

− nP
′
0(λ + n − 1)(nP0 − n−1P0)

nP
2
0

= (λ + n − 1)(nP
′
0n−1P0 − nP0n−1P

′
0)

nP
2
0

+ nP0 − n−1P0

nP0

= (λ + n − 1){nP ′
0(n−1P0 − 1) − n−1P

′
0(nP0 − 1) + (nP

′
0 − n−1P

′
0)}

nP
2
0

+ nP0 − n−1P0

nP0
.

Now it is very easy to verify that r ′
n(λ) → 0 as n → ∞, using the fact that nP0 → 1 as n → ∞

(Lemma 1(i)) and the following claims:

(i) (λ + n − 1)nP
′
0( n−1P0 − 1) → 0 as n → ∞;

(ii) (λ + n − 1)n−1P
′
0(nP0 − 1) → 0 as n → ∞;

(iii) (λ + n − 1)(nP
′
0 − n−1P

′
0) → 0 as n → ∞.

Since |nP ′
0| ≤ 2(λ + 1)eλ/(λ + n) and nP0 → 1 as n → ∞, (i) and (ii) follow. To prove

(iii), using (9) yields

nP0 − n−1P0 =
∞∑

j=0

(−1)j
λj (λ + 1)[j ]
j ! (λ + n)[j ]

−
∞∑

j=0

(−1)j
λj (λ + 1)[j ]

j ! (λ + n − 1)[j ]

=
∞∑

j=1

(−1)j+1 λj (λ + 1)[j ]
(j − 1)! (λ + n − 1)[j+1]

,

and so

nP
′
0 −n−1P

′
0 =

∞∑
j=1

(−1)j+1 λj (λ + 1)[j ]
(j − 1)! (λ + n − 1)[j+1]

{
j

λ
+

j∑
k=1

1

λ + k
−

j∑
k=0

1

λ + n − 1 + k

}
.
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Because it is clear that, for j ≥ 1,

0 <
j

λ
+

j∑
k=1

1

λ + k
−

j∑
k=0

1

λ + n − 1 + k
<

2j

λ
,

we have

|nP ′
0 − n−1P

′
0| ≤

∞∑
j=1

λj (λ + 1)[j ]
(j − 1)! (λ + n − 1)[j+1]

2j

λ

≤ λ + 1

(λ + n − 1)(λ + n)

∞∑
j=1

2jλj−1

(j − 1)!

= 2(λ + 1)2eλ

(λ + n − 1)(λ + n)
.

It follows that

|(λ + n − 1)(nP
′
0 − n−1P

′
0)| ≤ (λ + n − 1)

2(λ + 1)2eλ

(λ + n − 1)(λ + n)
= 2(λ + 1)2eλ

λ + n
.

Since 2(λ + 1)eλ/(λ + n) → 0 as n → ∞, we see that (λ + n − 1)(nP
′
0 − n−1P

′
0) → 0 as

n → ∞ and (iii) follows.

Finally, we proceed to prove Lemma 8.

Proof of Lemma 8. From Lemma 7 we know that r ′
n(λ) exists and r ′

n(λ) → 0 as n → ∞.
In view of (13), we have

r ′
n+1 = 1 + (n − 1)(rn − λr ′

n)

(rn − λ)2 ,

where r ′
n+1 = r ′

n+1(λ) and r ′
n = r ′

n(λ). For each fixed λ, consider the sequence of functions

Fn(x) = 1 + (n − 1)(rn − λx)

(rn − λ)2 , x ∈ R,

for n = 2, 3, . . . . Note that the sequence {r ′
n}n≥2 satisfies the relation r ′

n+1 = Fn(r
′
n).

Let x ≤ 0. Then we can prove that Fn(x) > 1 and Fn+1(Fn(x)) < 0. For this, we observe
that, since x ≤ 0, it follows that

Fn(x) = 1 + (n − 1)(rn − λx)

(rn − λ)2 ≥ 1 + (n − 1)rn

(rn − λ)2 ,

which implies that Fn(x) > 1. Furthermore, the above inequality implies that

Fn+1(Fn(x)) = 1 + n(rn+1 − λFn(x))

(rn+1 − λ)2

≤ 1 + n{rn+1 − λ(1 + (n − 1)rn/(rn − λ)2)}
(rn+1 − λ)2

= (rn+1 − λ)2(rn − λ)2 − nλ(rn − λ)2 + nrn+1(rn − λ)2 − n(n − 1)λrn

(rn+1 − λ)2(rn − λ)2

< 0,
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using the inequalities

(rn+1 − λ)2(rn − λ)2 − nλ(rn − λ)2 < 0

and

nrn+1(rn − λ)2 − n(n − 1)λrn < 0.

Note that the above two inequalities can be verified easily from the observation that, for n ≥ 2,
rn+1 < xn < rn < λ, by Lemma 5, and so

(rn − λ)2 < (xn − λ)2 =
(

2(n − 1)λ√
n2 + 4n(n − 1)λ + n

)2

< (n − 1)λ,

and similarly (rn+1 − λ)2 < nλ.
Now suppose that r ′

n ≤ 0 for some n. Then r ′
n+1 = Fn(r

′
n) > 1 and r ′

n+2 = Fn+1(r
′
n+1) =

Fn+1(Fn(r
′
n)) < 0. Arguing in the same way, we have r ′

n+3 > 1 and r ′
n+4 < 0, and, in general,

r ′
n+2k+1 > 1 and r ′

n+2k+2 < 0 for k ≥ 1. This contradicts the fact that r ′
n → 0 as n → ∞,

Thus, r ′
n > 0 for all n.

6. Probability of selecting the last consecutive record

We have proved that the optimal stopping rule is of threshold type, i.e.

τλ = min{n | n ≥ tλ, In−1In = 1}.

It is natural to ask about the probability of selecting the last consecutive record using the
optimal stopping rule τλ. Fortunately, this probability is not difficult to figure out and has the
following neat form.

Theorem 5. The probability of selecting the last consecutive record using the optimal stopping
rule τλ is

Qλ = λ2

tλ + λ − 2
tλ−1P0.

In particular, if λ2 − λ ∈ N then Qλ = tλ−1P0.

Proof. For each positive integer n, let pn denote the probability of selecting the last consec-
utive record using the stopping rule with threshold n: stop at the first k ≥ n with Ik−1Ik = 1.
It is not difficult to see that

pn = P

( ∞∑
k=n

Ik−1Ik = 1

)
.

In the following we want to prove that

pn = λ2

n + λ − 2
n−1P0,

from which the first assertion follows and then the last assertion follows from Theorem 1(ii).
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Recalling the definitions of nP0 and nP1, we have, for n ≥ 2,

n−1P1 = P

(
In +

∑
k≥n

IkIk+1 = 1

)

=
∑

s=0,1

P

(
In +

∑
k≥n

IkIk+1 = 1

∣∣∣∣ In = s

)
P(In = s)

= P

( ∑
k≥n+1

IkIk+1 = 1

)
P(In = 0) + P

(
In+1 +

∑
k≥n+1

IkIk+1 = 0

)
P(In = 1)

= pn+2
n − 1

λ + n − 1
+ nP0

λ

λ + n − 1
.

It follows that

pn+2
n − 1

λ + n − 1
= n−1P1 − nP0

λ

λ + n − 1
. (15)

On the other hand, for n ≥ 2,

pn = P

(∑
k≥n

Ik−1Ik = 1

)

=
∑

s=0,1

P

(∑
k≥n

Ik−1Ik = 1

∣∣∣∣ In−1 = s, In = 1

)
P(In−1 = s, In = 1)

+ P

(∑
k≥n

Ik−1Ik = 1

∣∣∣∣ In = 0

)
P(In = 0)

=
∑

s=0,1

P

(
In+1 +

∑
k≥n+2

Ik−1Ik = 1 − s

)
P(In−1 = s, In = 1)

+ P

( ∑
k≥n+2

Ik−1Ik = 1

)
P(In = 0)

= nP0
λ2

(λ + n − 2)(λ + n − 1)
+ nP1

(n − 2)λ

(λ + n − 2)(λ + n − 1)
+ pn+2

n − 1

λ + n − 1
.

Now substituting (15) into the above equation, we have a further expression for pn:

pn = λ2

(λ + n − 2)(λ + n − 1)
nP0 + (n − 2)λ

(λ + n − 2)(λ + n − 1)
nP1

+ n−1P1 − λ

λ + n − 1
nP0

= (n − 2)λ

(λ + n − 2)(λ + n − 1)
(nP1 − nP0) + n−1P1

= (n − 2)λ

(λ + n − 2)(λ + n − 1)
(nP1 − nP0) + 1

λ + n − 1
{λ(λ + 1)nP0 − λnP1}

= λ2

(λ + n − 2)(λ + n − 1)
{(λ + n − 1)nP0 − nP1}
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= λ2

(λ + n − 2)(λ + n − 1)
(λ + n − 1)n−1P0

= λ2

λ + n − 2
n−1P0,

where the third and fifth equations follow from (12) and (11), respectively. This completes the
proof.

Because the optimal stopping rule τλ is of threshold type, the probability Qλ can also be
expressed in terms of pn:

Qλ = max
n≥2

pn(λ),

where pn(λ) = pn = λ2
n−1P0/(λ + n − 2). Moreover, for each λ, we have, by Theorem 4,

max
n≥2

pn(λ) = ptλ(λ).

Since tλ is increasing in λ, by Theorem 5, it follows that, for any a > 0 and any λ ∈ (0, a),

Qλ = max
ta≥n≥2

pn(λ). (16)

Because pn(λ) is a continuous function of λ (we have proved, in Section 5, that nP
′
0(λ) exists),

(16) implies that Qλ is a continuous function of λ in (0, a). Let a → ∞. Then Qλ is continuous
at every positive value of λ.

Plots of p2(λ), p3(λ), . . . are shown in Figure 1. Applying (16) to the data of Figure 1 yields
the plot of Qλ given in Figure 2. Figure 2 suggests two conjectures for Qλ.

Conjecture 1. The probability Qλ attains a maximum at λ = 1.

Conjecture 2. The probability Qλ approaches some value c as λ goes to ∞.

While we are unable to prove Conjecture 1, it can be shown that Qλ has a local maximum at
λ = 1, as argued below. If 0 < λ ≤ 1 then, by Theorem 1, tλ = 2 and so Qλ = λ1P0 = λe−λ,
which states that Qλ is increasing in λ when λ ∈ (0, 1]. Furthermore, because r1(λ) = λ and

0 1 2 3 4
0.0

0.1

0.2

0.3

p2

p3

p4

p5

p6

p7

p8

p9

p10

λ

Figure 1.
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0 1 2 3 4 
0.0

0.1

0.2

0.3
Q

λ

λ

Figure 2.

rn(λ) is strictly decreasing in n and strictly increasing in λ, we see that r1(1) = 1, r2(1) < 1,
and then r2(a) = 1, r1(a) > 1 for some a > 1, by Lemma 8. Now it follows that tλ = 2 and
Qλ = λe−λ for λ ∈ [1, a], which implies that Qλ is decreasing in λ when λ ∈ [1, a]. Hence,
Qλ has a local maximum at λ = 1 and Q1 = e−1.

For Conjecture 2, we have an affirmative answer as follows.

Theorem 6. As λ → ∞, Qλ → e−1.

Proof. By Theorem 5,

Qλ = λ2

tλ + λ − 2
tλ−1P0,

where tλ = �λ2 − λ� + 2 or �λ2 − λ� + 3, by Theorem 1. Therefore,

λ2

�λ2 − λ� + λ + 1
≤ λ2

tλ + λ − 2
≤ λ2

�λ2 − λ� + λ
,

and so λ2/(tλ + λ − 2) → 1 as λ → ∞.
In the following, we prove that tλ−1P0 → e−1 as λ → ∞. By (9),

tλ−1P0 =
∞∑

j=0

(−1)j
λj (λ + 1)[j ]

j ! (λ + �λ2 − λ� + 1)[j ]

or

tλ−1P0 =
∞∑

j=0

(−1)j
λj (λ + 1)[j ]

j ! (λ + �λ2 − λ� + 2)[j ]
.

In the first case (the second case is similar), we have, for large λ and each j ≥ 0,∣∣∣∣(−1)j
λj (λ + 1)[j ]

j ! (λ + �λ2 − λ� + 1)[j ]

∣∣∣∣ ≤ λj (λ + 1)[j ]
j ! (λ2)[j ]

≤ 2j

j !
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and
λj (λ + 1)[j ]

j ! (λ + �λ2 − λ� + 1)[j ]
→ 1

j ! as λ → ∞.

But
∑∞

j=0 2j /j ! = e2; hence, we see that

∞∑
j=0

(−1)j
λj (λ + 1)[j ]

j ! (λ + �λ2 − λ� + 1)[j ]
→

∞∑
j=0

(−1)j
1

j ! = e−1 as λ → ∞.

Similarly, we can prove that

∞∑
j=0

(−1)j
λj (λ + 1)[j ]

j ! (λ + �λ2 − λ� + 2)[j ]
→ e−1 as λ → ∞.

Hence, Qλ → e−1 as λ → ∞.
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