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Introduction

In nonlinear sigma models (see Appendix B.2 in [CK] on physical theories) there are
two twisted theories, the A-model and the B-model. Mirror symmetry is an iso-
morphism between the A-model and the B-model for a pair of two distinct
Calabi—Yau threefolds V" and V° with Kéhler structures. One consequence of mirror
symmetry is an isomorphism between the quantum cohomology on @p’  HV) and
the chiral ring of the B-model EBP, p HP(V°, AT y»), which implies the equality of the
corresponding correlation functions (Yukawa couplings). These correlation func-
tions describe interactions between strings. From a mathematical point of view,
knowledge about the B-model Yukawa coupling and the equality with the A-model
Yukawa coupling of the mirror manifold produces enumerative information on this
mirror manifold. One important construction widely used in physics and mathe-
matics is the Batyrev mirror construction in toric varieties (see [B2]).

In this paper we study the chiral ring @p HP(X, NPT x) (this is actually a subring of
the whole chiral ring) for quasismooth hypersurfaces X in complete simplicial toric
varieties. In particular, we completely describe the chiral ring EBP HP(X, NPT x)in the
case of three-dimensional Calabi—Yau hypersurfaces. This applies to the mirror sym-
metric hypersurfaces in Batyrev’s construction.

The following is an outline of the paper. We begin in Section 1 with a review of
notation and general facts from toric geometry. For complete toric varieties, the
notions of semiample, nef (numerically effective) and generated by global sections
are equivalent for invertible sheaves (divisors). Geometry and intersection theory
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associated with big (the self-intersection number is positive) and nef divisors was
studied in [M]. Here, we generalize those results to all semiample divisors. Such divi-
sors on complete toric varieties naturally produce a surjective morphism of the ambi-
ent space onto another complete toric variety. Moreover, this construction is unique
with certain conditions relating semiample divisors to ample divisors on the new
toric variety. We also show that a proper birational morphism of toric varieties indu-
ces a natural graded homomorphism of the coordinate rings. For a semiample divi-
sor, this gives an isomorphism of rings in the degree of the divisor.

Section 2 uses the results of Section 1 to describe the geometry of semiample non-
degenerate (transversal to orbits) hypersurfaces in complete toric varieties. We get a
stratification of such hypersurfaces in terms of nondegenerate affine hypersurfaces
cohomology of which has been studied in [B1]. We also review some facts about
hypersurfaces in complete simplicial toric varieties. In particular, we recall from
[M] the relationship between the Jacobian ring R(f) (resp., Ri(f)) and the middle
cohomology H*!(X) of a quasismooth (resp., big and nef nondegenerate) hypersur-
face X in a d-dimensional complete simplicial toric variety. The ring R;(f) has been
used in [M] to describe the middle cohomology of a three-dimensional big and nef
nondegenerate hypersurface completely.

In Section 3, we introduce the (Zariski) pth exterior power NPT x of the tangent
sheaf for an arbitrary orbifold X, which is defined similarly to the sheaf Qf of
Zariski p-forms (see [CK, A.3]). Then we show that for a quasismooth hypersur-
face X of degree f§ there is a ring homomorphism R(f),; — H*(X, A*T x) (the lat-
ter is our notation for @p HP(X, A\PT x)). Also, with respect to this homomorphism
the map between R(f) and the middle cohomology of a quasismooth hypersurface
is a morphism of modules. In the Calabi-Yau case the situation is especially nice
because we get an injective ring homomorphism R;(f),; — H*(X,A*T x) (we call
Ri(f),p the polynomial part of the chiral ring because its graded piece in
H'(X, T y) should correspond to polynomial infinitesimal deformations for a mini-
mal Calabi-Yau X (see [CK])).

According to the above terminology, in Section 4, we study the nonpolynomial
part of the chiral ring complementary to the polynomial part. We construct new ele-
ments in H*(X, A*7 y) for a big and nef quasismooth hypersurface X, and in the case
of a minimal Calabi-Yau these elements in H'(X, 7 x) should correspond to non-
polynomial deformations. The new elements are represented by a map from some
quotient R?(f) of the Jacobian ring to H*(X,A*7 x), and this map is actually a
morphism of modules with respect to the ring homomorphism R(f).; —
H*(X, A*T ). We also calculate some vanishing cup products of the new elements.
The new part of H*(X, A*T x) has its analogue in the middle cohomology H*'(X) of
the hypersurface. This is also given by a map from certain graded pieces of R’(f) to
H'(X). We show that this map is morphism of modules with respect to
R(f)uy — H*(X, AT ).

In Section 5, we describe the toric part of cohomology of a semiample nondegene-
rate hypersurface. This part is the image of cohomology of the ambient space, while
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its complement, called the residue part, comes from the residues of rational differen-
tial forms with poles along the hypersurface. We show that the cohomology of a
semiample nondegenerate hypersurface is a direct sum of its toric and residue parts.

Section 6 studies the middle cohomology of a big and nef nondegenerate hypersur-
face. We provide a better and more general description of the middle cohomology
than the one given for three-dimensional hypersurfaces in [M]. Here, we use a new
ring R{(f), analogous to the ring R;(f). An algebraic description of the middle
cohomology can be used in the Calabi—Yau case to compute the product structure
on the chiral ring.

In Section 7, we consider semiample anticanonical nondegenerate hypersurfaces.
Such hypersurfaces are Calabi—Yau, implying that their chiral ring is isomorphic
to the middle cohomology. Using the description of Section 6, we have a partial
description of the space H*(X, A*T x) in terms of R;(f) and R{(f). We show that
this part is a subring of the chiral ring. This subring is the whole H*(X, A*7 x) in
the case of Calabi—-Yau threefolds. The product structure of the polynomial part
Ri(f) is in Section 3, while the product of two different elements from R;(f)
and R{(f) is in Section 4. We describe the nontrivial product structure on the spaces
R{(f) in terms of triple products. Since H*(X, A*7T x) and the described subring have
a nondegenerate pairing, induced by the cup product on the middle cohomology, one
can recover the chiral ring structure completely on these spaces.

1. Semiampleness

In this section we first review some basic facts and notation, and then generalize the
geometric construction of [M] associated with semiample divisors on complete toric
varieties. We show that a semiample divisor naturally produces a surjective mor-
phism of the ambient space onto another complete toric variety. This construction
is unique with certain conditions which relate the semiample divisor to an ample
divisor on the new toric variety. At the end of this section we show that a proper
birational morphism of toric varieties gives a natural graded homomorphism of
the homogeneous coordinate rings of the varieties. We apply this to the maps asso-
ciated with semiample divisors.

Let M be a lattice of rank d, then N = Hom(M, 7) is the dual lattice; My (resp.
Nr) denotes the R-scalar extension of M (resp. of N). The symbol Py stands for a
d-dimensional toric variety associated with a finite rational fan X in Ng. A toric vari-
ety Ps is a disjoint union of its orbits by the action of the torus T = N ® C* that sits
naturally inside Py. Each orbit T, is a torus corresponding to a cone ¢ € Z. The clo-
sure of each orbit T, is again a toric variety denoted V(o).

We use X(k) for the set of all k-dimensional cones in X; in particular,
(1) =A{py,- .-, p,} 1s the set of one-dimensional cones in £ with the minimal integral
generators ey, ...,e,, respectively. Each one-dimensional cone p; corresponds to a
torus invariant divisor D; in Ps.
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A torus invariant Weil divisor D = Y| a;D; determines a convex polyhedron
Ap ={me Mg : (m,e;) > — a; for all i} C Mg.

Each Weil divisor D gives a reflexive sheaf Op. (D), whose sections over U C Py
are the rational functions / such that div(f)+ D >0 on U. When D =37, a;D;
is Cartier, there is a support function y,: Ng — R that is linear on each cone
o € Z and determined by some m, € M:

Vple) = (mg,e)) = —a; forall e €ao.

When Py is complete, the polyhedron Ap of a torus invariant Weil divisor is boun-
ded and called polytope. Also, the line bundle Op, (D), corresponding to a Cartier
divisor D, is generated by global sections if and only if ¥/ is convex.

We call a Cartier divisor D on a complete toric variety Ps semiample if Opy(D) is
generated by global sections.

Remark 1.1. This definition is consistent with the one in [EV, Section 5] used in a
non-toric context for projective varieties, because an invertible sheaf £ on a complete
toric variety is generated by global sections iff some positive power £* is generated
by global sections.

Theorem 1.6 in [M] Shows:#Op, (D) is generated by global sections is equivalent to
the condition that the divisor D is nef (numerically effective). Therefore, the notions
of semiample and nef are equivalent for divisors on complete toric varieties.

Following [EV, Section 5], a semiample divisor D on Py also has the litaka
dimension:

k(D) := 1(Op, (D)) = dim ¢ ,(Py),
where ¢p: Ps — P(H’(Py, Op,(D))) is the map defined by the sections of the line
bundle Op, (D). The possible values for this characteristic are k(D) =0, ...,dim Ps.
Moreover, the Exercise on page 73 in [F1, Section 3.4] shows that x(D) for a torus
invariant D is exactly the dimension of the associated polytope Ap. It will be con-
venient for us to introduce the following notion.

DEFINITION 1.2. A semiample divisor D on a complete toric variety Py is called
i-semiample if the litaka dimension x(D) = i.

Remark 1.3. In [M] we called a Cartier divisor D semiample if Op, (D) is generated
by global sections and the intersection number (D¢) > 0. In fact, such divisors have
the maximal Iitaka dimension k(D)= dim Py. In the common terminology, they
correspond to big (DY) > 0) and nef, and, according to the above definition, we
should call them d-semiample with d = dim Py.

All ample divisors on Py are semiample and have the Iitaka dimension equal to
dim Px. Our goal is to show that semiample divisors give rise to a natural geometric
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construction connected with ample divisors. Let D = >";_, ax Dy be an i-semiample
divisor on Py with the convex support function . For each d-dimensional cone
o € X there is a unique m, € M such that y,(v) = (m,,v) for all v € . Glue together
the maximal dimensional cones in X with the same value m,. The glued set 7(m,) is a
convex rational polyhedral cone. Indeed, let v be in the convex hull of ©(m,), then
Y p(v) < (m,,v), by the convexity of the support function. On the other hand, v is
lying in some d-dimensional cone, where the value of ¥, is determined by m' € M.
Hence, Y p(ex) = (mg,er) < (n7,ex) for all generators e, from the set t(m,). Since v
is a positive linear combination of some generators lying in t(m,), we get
(mg,v) < (m',v) = Yp(v). Therefore, the glued set t(m,) coincides with its convex
hull. The new cones t(m,) are not necessarily strongly convex, but they all contain
the same linear subspace

©(mg) N (=2(mg)) = {v € Nr 1 yp(—v) = =Y p(v)} (D

To see the equality note that (m,, w) = p(w) for any w, by the convexity of the sup-
port function. Therefore, for v in the right-hand side of (1), we have (m,, —v) >
Vp(—v) = =Yp(v) = — (mg,v) implying that v € t(m;) N (—1(m,;)). The other way
is obvious. From here we get that the linear space in (1) consists of v € Ny such that
(mg,v) 1s the same for all ¢. Since Op, (D) is generated by global sections, the poly-
tope Ap is the convex hull of m,. Therefore, the dimension of (1) is exactly d — i. If
Ap contains the origin, this linear space can be obtained as the orthogonal comple-
ment of the polytope.

Denote by N' = {v € N : yp(—v) = —yp(v)} a sublattice of N, we also get the quo-
tient lattice Np := N/N'. Then the i-dimensional linear space N, is a support of a
complete fan X’ filled up by the cones of the fan X contained in N;. The quotient
sets ©(my)/ Ny in (Np)g are strongly convex polyhedral cones and form another com-
plete fan Xp. Thus, we get the following picture: there is a natural exact sequence of
lattices 0 - N — N — Np — 0 compatible with the fans X', ¥ and Xp, giving rise
to toric morphisms Py = Ps > Ps, . Let us note that linearly equivalent semiample
divisors D produce the same construction. The complete toric variety Py’ is mapped
into an open toric subvariety Ps, C Py given by the subfan ¥ C = of all cones that
lie in N’;. Section 2.1 in [F1] shows that the above sequence of toric morphisms indu-
ces a trivial fibration over the maximal dimensional torus Ty, := Np ® C* of
Py, : Py 5 P; 5 Ts,. We next show that the above construction is unique in a cer-
tain sense. Using a standard description of a toric morphism, we can see that the
toric subvarieties V(y) C Py of dimension i, such that y € £(d —i) and y C N},
map birationally onto Ps,. As in [F1, Section], let us restrict the semiample divisor
D =% _, axDi to V(p). Using the linear equivalence, we can assume that the origin
is one of the vertices of the polytope Ap. In this case, Equation (1) implies that
ar = 0 for p;, C Ny (equivalently, , = 0 on N};), whence V(y) is not contained in
the support of D. Therefore, we get a Weil divisor D - V(y) in the Chow group
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Ai-1(V(y)) representing the Cartier divisor D|y,. Its support function .y, 1s
represented by /;, which descends to the quotient space (Np)r = Nr/N;. The lattice
Mp := Nt N M is the dual of Np, and the polytope Ap contained in (Mp)y is exactly
the polytope of the Weil divisor D - V(y). By construction, the function ¥ p.p(, 18
strictly convex with respect to the fan Xp. Now the arguments of [M, Section 1] show
that Zp is the normal fan of Ap, and the pushforward =.(D - ¥(y)) is an ample divi-
sor. We also get a commutative diagram (see F[2]):

Aia(V(y) I Ai—1(Pg,)

T T

Pic(Psx) «——  Pic(Py)),

where the right vertical arrow is injective and the left is the composition
Pic(Py) — Pic(V(y)) = A4,_1(V(y)) of the restriction map and the inclusion. Since
the support function of 7m.(D - V(y)) is induced by v, we have the equality
' [D - V(y)] = [D] in the Chow group A, ;(Py).

Now we prove that the conditions on the divisor D deduced in the previous para-
graph uniquely determine the constructed morphism. Let p: Ps — Ps, be a surjec-
tive morphism of complete toric varieties arising from a surjective homomorphism
of lattices p: N — N; which maps the fan X into X,. The kernel of p is a sublattice
N, C N. It is not difficult to see that a cone of X is either lying in the space (V) or
its relative interior has no intersection with this space. Hence, the space (N2)y is a
support of a complete fan X, filled up by those cones of X lying in (N;). The toric
subvarieties V(y) corresponding to y € X(d — k) (k := dim Py,), contained in (N2)g,
are the only ones mapping birationally onto Py,. Suppose now that we have an
i-semiample (torus invariant) divisor D on Py such that p,[D - V(y)] is ample and
P p«[D - V(y)] = [D] for some V(y), y € Z(d — k), which maps birationally onto Ps,.
Then the polytope of the divisor p.(D - V(y)) has dimension equal to dim Py,. On
the other hand, the support function of D is induced by the support function of
p«(D - V(y)), implying that the polytopes of these divisors is the same set in
MnN NZL. Therefore, the dimension of Py, is i, and the fan X; coincides with X, con-
structed before. Thus, we proved the following.

THEOREM 1.4. Let [D] € Ay_1(Ps) be an i-semiample divisor class on a complete
toric variety Ps of dimension d. Then, there exists a unique complete toric variety Py,
with a surjective morphism n: Psx — Py, corresponding to a map of X into Xp, such
that ©,[D - V(y)] is ample and w*n,[D - V(y)] = [D] for some closed toric subvariety
V(y) C Ps, v € Z, which maps birationally onto Ps,. Moreover, dim Ps, = i, and the
fan Zp is the normal fan of Ap for a torus invariant D.

Remark 1.5. The fan X is canonical with respect to the equivalence relation on

the divisors. Therefore, it will sometimes be convenient for us to use the notation
Xp = Xp for a semiample divisor class f = [D] € A4_1(Py).
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While a restriction of a semiample divisor D on Py to a closed toric subvariety is
again a semiample divisor, the Iitaka dimension of the restricted divisor may change.
Let us investigate this problem. If D is an i-semiample divisor on Py, then, by the
above theorem, we have a unique toric morphism n: Py — Py, , arising from a
homomorphism 7: Ng — (Np)r mapping X into Xp. This morphism encodes infor-
mation about the structure of the variety Py. The litaka dimension of the semiample
divisor D - V(o) on V(0g), 6 € Z, can be determined in the following way. The com-
plete toric variety V(o) is mapped onto a closed subvariety V(gy) C Py, such that
the cone gy € Xp is the smallest that contains 7(c). We claim that this induced
map 7n: V(o) — V(ay) is exactly the one associated with the semiample divisor
D - V(o). To prove this we will verify the conditions which uniquely determine such
a morphism. As in the theorem above, let V(y) be such that n,[D - V(y)] is ample and
. [D - V(y)] = [D], and let V(y") C V(o) be a closed toric subvariety mapping bira-
tionally onto V(ap). By the projection formula (see [F2]), we get

D - V()] = (@ m D - VD - V(]
=m[D - V()] - n V()] = m[D - V()] - V(o)
in the Chow group of the toric variety V(ay). Since 7,[D - V(y)] is ample, the divisor

class m,[D - V(y')] is ample as well. The other condition for the semiample divisor
D - V(o) also follows:

m'm D - V()] = n*[m[D - V(y)l - V(eo)] = " m[D - V(p)] - V(o) = [D - V(o]

where we used the commutative diagram

Pic(Py,) ",  Pic(Py)

Pic(V(oo)) — "5 Pic(V(0)).

Thus, by the uniqueness part of Theorem 1.4, we get the next result.

PROPOSITION 1.6. Let [D] € A4—1(Px) be an i-semiample divisor class on Ps with
the associated morphism n: Py — Py, arising from a map of the fan X into Zp. Then,
for a € Z, the restriction [D-V(o)] is a k-semiample divisor class on V(a) with
k = i—dim(og) = dim V(ay), where oy € Xp is the smallest cone that contains the
image of 6. Moreover, the induced map . V(o) — V(oy) is the one associated with the
semiample divisor class [D - V(o)].

This proposition says that the maps associated with the semiample divisors are
compatible with the restrictions.

Any toric variety Py has a homogeneous coordinate ring S(X) = C[xy,. .., x,] with
variables xi,...,x, corresponding to the irreducible torus invariant divisors
Di,...,D,. This ring is graded by the Chow group A,_1(Py), assigning [>_"_, ;D]
to deg([]r, x{). For a Weil divisor D on Py, there is an isomorphism
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H'(Pg,Op, (D)) = S(X),, where o =[D] € A;_1(Ps). If D is torus invariant, the
monomials in S(X), correspond to the lattice points of the associated polyhedron Ap.

Now consider a proper birational morphism n: Py, — Py, of toric varieties, asso-
ciated with a subdivision X; of X,. In this situation, the one-dimensional cones of the
two fans are related by Z,(1) C (1), and there is a natural relation of the coordi-
nate rings S(Z1) = Clxx: p, € Z1(1)] and S(Z2) = Clyi: pi € Z2(1)] of the toric vari-
eties. For o = [Op, (D)] € 44-1(Px,) we have a commutative diagram:

S(zl)zx = HO(PEHOPZI(D))

l

S(EZ) = HO(PZN OPZZ (ﬂ*D)),

Tso

where the left vertical arrow sends a monomial Hpkezl(l)x2‘+<m‘e"> in S(=), to

I, e yEFH) “and the right vertical arrow is induced by the natural morphism
of sheaves m,Op, (D) — Op, (n.D). This gives a graded ring homomorphism
7. S(X1) — S(Z,) which sends x; to yi, if p, € Z»(1), and sends x; to 1, otherwise.

We now apply the above to semiample divisors. Let D be a semiample (torus
invariant) divisor on a complete toric variety Py in degree § € A;_1(Pg). on a com-
plete toric variety Py, By Theorem 1.4, we get the associated toric morphism
n: Py — Py, such that n[D - V(y)] is ample and n*n,[D - V(y)] = [D] for some closed
toric subvariety V(y) C Px, y € Z, which maps birationally onto Px,. In this situa-
tion, there is the following natural diagram:

Sy — SOy — D)y,

l |

H'(Pg,0p,(pD)) 5 H°(V()),0p)(D;)) —s H°(Pg,,Op, (pm.D,)),

where f = [D,], D, := D - V(y), in the Chow group of V(y), and the vertical arrows
are isomorphisms. Since the monomials in S(X),; and S(ZD)IM*B correspond to the
lattice points of the same polytope pAp, we get the isomorphisms

S@)pp = SV = SZD))r 3

2. Toric Hypersurfaces

Here, we apply the results of the previous section to semiample hypersurfaces in a
complete toric variety Py, which have only transversal intersections with the
torus-orbits. We also review some results about hypersurfaces in complete simplicial
toric varieties. As a reference we use [M] and [BC].

A hypersurface X C Py is called X-regular (or simply nondegenerate) if X N Ty is
empty or a smooth subvariety of codimension 1 in each torus 7, for ¢ € X.

By [D, Proposition 6.8], a generic hypersurface X C Py of a given semiample
degree is X-regular.
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LEMMA 2.1. Let X be an i-semiample hypersurface in a complete toric variety Py
with i > 1. Then X is connected, and X is irreducible if X is Z-regular.
Proof. The arguments are the same as for Lemma 2.3 in [M]. O

Remark 2.2. Let us note that a 0-semiample hypersurface is always empty because
its divisor class is trivial.

PROPOSITION 2.3. Let X be a X-regular semiample hypersurface in a complete toric
variety Ps, and let m: Py — Px, be the associated morphism for [X] € A4—1(Ps), then
Y = n(X) is a Zy-regular ample hypersurface, and X = n='(Y).

Proof. Start with the case of an i-semiample hypersurface with i > 1. From
Theorem 1.4 we have a closed toric subvariety V(y) C Py, for y € X, which maps
birationally onto Ps_such that n.[X - V(y)] is ample and n*n.[X - V()] = [X]. Since
X is transversal to the orbits of Py, the divisor class of the hypersurface X' N V(y) in
V(y) is exactly [X - V(y)]. Proposition 1.6 implies that [X - V(y)] is an i-semiample
divisor class in A;_1(¥V(y)). The value i is the maximum for the possible Iitaka
dimensions of semiample divisors on the toric variety V(y). Applying Remark 1.3 of
the previous section and Proposition 2.4 in [M], we get that z(X N V(y)) is a Zx-
regular ample hypersurface. On the other hand, by Lemma 2.1, the hypersurface X is
irreducible. Therefore, its image Y = n(X) is also irreducible. Since dim n(X) < i and
(X' N V() C n(X), the hypersurface n(X) coincides with (X N ¥(y)). The hyper-
surface Y is ample nondegenerate and does not intersect the zero-dimensional orbits.
Together with the facts that X and n(X) are irreducible this implies the property
X=n4(Y).

The case of a 1-semiample hypersurface is special because such a hypersurface is
not necessarily connected. In this situation, we have a closed toric subvariety
V(y) Cc Py, for ye X, which maps isomorphically onto Py, = P! such that
X - V(y)] 1s ample and n*m[X - V(y)]=[X]. It follows from Proposition 1.6
and Remark 2.2 that the image Y = n(X) is contained in the one dimensional
torus of Py, = P!, The preimage n~'(Y) of this finite set can be easily seen from
the description of the toric morphism 7z in Section 1. This morphism is a trivial
fibration over the one-dimensional torus of Py,, and each point of n(X) gives
exactly one irreducible component of n~!(Y) which is actually a complete toric
variety.

On the other hand, each point of n(X) came from an irreducible component of
X c n'(Y). Hence, X = n~!(Y). This gives an isomorphism 7 X N V(y) = n(X).
Thus, n(X) is a Zy-regular ample hypersurface. O

Remark 2.4. 1f, in addition, we assume in this proposition that X is an
anticanonical hypersurface in Py, then X is big and Py is a Fano toric variety
associated to a reflexive polytope, and this corresponds to the construction in
[B2].
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Let Y be an ample nondegenerate hypersurface in a complete toric variety Py. A
hypersurface in the torus T C Py isomorphic to the affine hypersurface YN T in T is
called nondegenerate. Cohomology of such hypersurfaces has been studied in [DK]
and [B2].

LEMMA 2.5 ([DK]). Let Z be a nondegenerate affine hypersurface in the torus T,
then the natural map H(T) — H(Z), induced by the inclusion, is an isomorphism of
Hodge structures for i < dimT — 1 and an injection for i = dimT — 1.

Using the standard description of a toric morphism, from Proposition 2.3 we get a
stratification of an i-semiample nondegenerate hypersurface X C Py in terms of
nondegenerate affine hypersurfaces:

XNT, 2 (n(X)NT,) x (CFY, )

where m: Py — Py _is the associated morphism, / = d — i + dim oy — dim g, d = dim
Py, and gy € Ly is the smallest cone containing the image of ¢ € X.

From here on, we assume that P := Py denotes a complete simplicial toric variety.
In this case, [BC] shows that homogeneous polynomials in S := S(X) determine
hypersurfaces in P. In terms of the coordinate ring S, a nondegenerate hypersurface
in P defined by a homogeneous polynomial /'€ Sp is characterized by the condition
that x(9f/0x1), . .., x,(9f/0x,) do not vanish simultaneously on P (see [C2, Propo-
sition 5.3]). A more general class of hypersurfaces in P called quasismooth is defined
by a similar condition that df/9x,,...,df/0x, do not vanish simultaneously on P
(see [BC)).

We also like to mention the following fact.

PROPOSITION 2.6. An anticanonical quasismooth hypersurface X in a Gorenstein
complete simplicial toric variety P is Calabi—Yau.

Proof. A quasismooth hypersurface is an orbifold (see [BC]), and for a (d — 1)-
dimensional orbifold X Calabi—Yau means that Q‘)l(’l ~ Oy and H'(X,0yx) =0 for
i=1,...,d—2 (see [CK, A.2]). The arguments of the proof that anticanonical
implies Calabi-Yau are the same as in [C3]: use the adjunction formula
Q‘)l(’l ~ Q‘li(X) ® Oy, the isomorphism Op(—X) ~ Qg and the exact sequence
0— Op(—X)—> Op —> Ox — 0. O

DEFINITION 2.7 ([BC]). Fix an integer basis my,...,my for the lattice M. Then

given subset [={ij,...,is} C{l,...,n}, denote det(e;) = det((mj,e; )i <;r<a)s
dx;=dx; A---Adx, and X = Hi¢1x,;. Define the d-form Q by the formula
Q=) ;—sdet(e)Xdx;, where the sum is over all d element subsets 7 C {1,...,n}.

Let X C P be a quasismooth (not necessarily Cartier) hypersurface defined by
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f€Sp. For A € Siay1)p—p, (here, fy = >"7 | deg(x;)), consider a rational d-form

g 1= AQ/f e H'(P,Qb((a + DX)).
This form gives a class in HY(P\ X), and by the residue map Res: HYP\ X) —
H*1(X) we get Res(wy) € H(X).

Remark 2.8. The residue map and the residues of rational differential forms with
poles along a nondegenerate hypersurface are well defined even if the toric variety is
not simplicial (see the proof of Theorem 3.7 in [DK] and Remark 6.4 in [B2]).

DEFINITION 2.9 ([BC]). Given fe Sg, we have the Jacobian ideal J(f) in S
generated by the partial derivatives 9f/0xy, ..., df/0x,, the ideal

Jo(f) = (x1(0f/0x1), ..., x4 (Of/ Oxn))
and the ideal quotient (see [CLO, p. 193]) Ji(f) = Jo(f) : x1 - - - x,. These give the
Jacobian ring R(f) = S/J(f). Ro(f) = S/Jo(f) and Ri(f) = S/Ji(/) graded by the
Chow group A4,-1(P).
In [M] we have shown that the induced maps

Res(w )™ 7 0 R(f)grrypp, — HIX, Q')

(sending A to the Hodge component Res(w,)?!7%9) for a quasismooth hypersurface
X C P and, respectively,

Res(@ )™ Ri(grrpp, — HIX,QF'™)

for a big and nef nondegenerate hypersurface are well defined. There we also studied
the relationship between the multiplicative structure on R(f) (resp., R;(f)) and the
cup product on the middle cohomology of a quasismooth (resp., big and nef nonde-
generate) hypersurface in P. From Theorem 4.4 [M] we have the following descrip-
tion of the middle cohomology of big and nef nondegenerate hypersurfaces X C Py:

Hzlflfq,q(X) =~ R, (f)(qul),[ffI?o@ <Z ¢i!Hd*2*q*q’l(X a) D[))’ (3)
i=1

where @, are the Gysin maps for ¢;: X N D; — X. In the case, when the dimension of
the ambient space is 4 we have (see [M, Theorem 5.2]):

THEOREM 2.10. Let X C Ps, dim Ps =4, be a big and nef nondegenerate hyper-
surface defined by f € Sg. Then there is a natural isomorphism

H™49(X) = Ry( f)(q+])ﬁ_,,o@< P R fo)q/f{,_ﬁﬁ)n(a))

0e21(2)
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where n(c) is the number of cones p; such that p; C o and p; ¢ Zx(1), and where f; is
the polynomial of degree [°, defining the ample hypersurface n(X)N V(o) C V(o)
(here, m: Py — Py is the associated morphism), and [f is the degree of the anticano-
nical divisor on the two-dimensional toric variety V(o).

3. Polynomial Part of the Chiral Ring

Here we show that for a quasismooth hypersurface X of degree f there is a homo-
morphism between R(f),; and the chiral ring H*(X, A*T x ). We will also show that
Ri(f)p 1s a subring of the chiral ring for a semiample anticanonical nondegenerate
hypersurface X C P (which is Calabi—Yau). This subring may be called ‘polynomial’
because its graded piece in H'(X, 7 x) should correspond to polynomial infinitesimal
deformations of X performed in the toric variety P (see [CK]).

Let QF be the sheaf of Zariski p-forms on an orbifold X (see Appendix A.3 in
[CK]). We can also define APT y := (@} )* = Homg, (@4, Ox) for an orbifold X.
We call this the (Zariski) pth exterior power of the tangent sheaf of X. For p = 1 this
sheaf is isomorphic to the usual tangent sheaf ®y, by Proposition A.4.1 in [CK].
When X is smooth, AT y coincides with the standard exterior power sheaf. More-
over, if j: X, C X is the inclusion of the smooth locus of X, then the argument in
the proof of Proposition 3.10 in [Od] shows that j.(A” @x,) = A’T x. One can use
the same argument to prove Q. ~ (A?7 y)* and that QY is isomorphic to the dual
(A" Oy )" of the usual pth exterior power of @y, whence A?T y =~ (A Oy )™. In par-
ticular, we also have the natural maps of sheaves AP7T y ® AYT y — APTIT y and
NTxy @ Q4 — Q7.

Let X C P be a quasismooth hypersurface defined by f e Sg, which is an orbifold
as we know from [BC]. By definition of quasismooth, we get an open cover
U ={U;}_, of P, where U; = {x € P: fi(x) # 0} and f; denotes the partial derivative
af/ 0x;.

DEFINITION 3.1. Denote 0,..;, = 0/0xj, A --- A0/0x;, for an ordered subset
{io,...,ip} in {1,...,n}. Then given 4 € Sy, set

o [C A, 9
A 1...1p ﬁn . 'f[p [0 [ bl
ey
where (, ) denotes the contraction (the extra factor of (—l)”z/2 which is +/—1 for odd
p is added to make convenient commutative diagrams later).

This defines a Cech cocycle, giving its class in Igl‘v(l/llx7 N'T x). Indeed, (yA),-Om,-p is
homogeneous of degree 0 and is a cochain in C?(U|y, A’T x) by the exact sequence

y
0 ATy — i* NV To, S ATy ® Oy (X)
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(where iz X C P is the inclusion, P, is the smooth locus of P such that X, =P, N X
(see [Hi, Section 4, p. 55])), and because of ((9;,...;,, df), df) = 0 since df A df = 0. On
the other hand, it is straightforward to verify that

I PAGS |
o=~ -1/fi0 ~
(VA)OU.,” {fiq"'fip _/Zo:( )f’ SRR PN

vanishes under the Cech coboundary map C?(U|y, N’T x) — CPT'(U|y, A’T ). One
can actually show that (yA),-OU_l»p is a coboundary in CP(ULX, * AP Tp).

For 4 € S, let T4 € HP(X, NPT y) be the image of the Cech cocycle (yA),‘OW,-p under
the natural map HP(U|y, N’T x) — HP(X,A\PT x). And we get a well defined map

7:R(f).p = H*(X, A"T x ) because of the following statement.

LEMMA 3.2. If A € J(f),p, then the cocycle (y,)
C"U|y, N'T x).

Proof. 1If 4 € J(f),p, then we can assume that 4 is a multiple of one of the partial
derivatives f; = 9f/0x;. We have

o o is a Cech coboundary in
0---Ip

0 ;.d P S0~ » (O, df)0. ~
PRSALS U ST hidi Sr
fi- oSy = fooifi i = fiooofi-- S,
o anfo - ) (0,7, )

where the second sum after the second equality is identically zero. Hence, it follows
that (y4);,.;, is in the image of the Cech coboundary map C YUy, NT y) —
C"U|x, N'T x). O

We now study the compatibility of the multiplication in the Jacobian ring R(f)
and the cohomology ring H*(X, A*7T x ). The cocycle (VA),'O..J‘F (up to an extra factor)
and the calculations in the next two theorems are essentially due to D. Cox and D.
Morrison.

THEOREM 3.3. Let X C P be a quasismooth hypersurface defined by f e Sg. The
map R(f),p — H*(X, \*T x), assigning v 4 to a polynomial A, is a ring homomorphism.

Proof. We need to show that y,Uyz =17, for 4 € S,p and B € Syp. Similar to
[CaG, page 63], the cup product y, Uy, is represented by the Cech cocycle

(17"

(1724, i, df) A(=DT2B@, ., df)
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Note that
P ' g )
iy Af) A Dy iy ) = 3 (=10, ~ A Y (D0 ~
o i A A
ptq )
=Ly D0, ~ =iy A1), @)
s gy
where we used 0;, A 0;, = 0. Hence, the result follows. O

The middle cohomology of a quasismooth hypersurface X C P is a module over
H*(X, A*T x) with respect to the natural cup product

H(X,N'Ty) @ HI(X, Q470 Y mrrax, Q=771

From the previous section we know that there is a natural map
d—1— - d—1—
Res(0) ™ 1 R()yy1yp-p, — HIX,Qy 7).

We normalize this map as [w4] = (—1)"*¢!Res(w,4)* 7% (where we assume
(=1)? = (/=1)) to show that this gives a morphism of modules R(f) st 1)p-p,
— H(X, Q¢ '7).

THEOREM 3.4. Let X C P be a quasismooth hypersurface defined by f € Sp. Then
the diagram

R(f)pp ® R )gi1)p—p, —  RODprgr1p-p,

7_®lo_] [w_]
HY (X, AT ) @ HI(X,QF 79 2 Hrra(x, Q7))

commutes, where the top arrow is induced by the multiplication. When X C P is a
d-semiample nondegenerate hypersurface the same diagram commutes with
Ri(iwsnyp—p, i place of R(f)iiyp—p,-

Proof. From Theorem 3.3 in [M] we know that [wg] = (—1)"?¢!Res(wg)’' =99,
for B € S(y41)p-p,» 18 represented by the Cech cocycle

BK; ~--K,»OQ}

q

fio o 'fl},

where K; is the contraction operator (9/0x;), . Therefore, for 4 € S,4 the cup pro-
duct y, U [wp] is represented by the Cech cocycle

(ay | € il ),

gl

Ipt+q

fio o 'fi,; fip o 'fip+q

{(—UPZ”A(&-O.‘.,-,,, df), (=) eI, ~K,-,,Q}
i0.--iptg
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But note that

10 ,p,df)J LK Q Z( 1) f’ 10.4.1/...1,7 K

lp+q Ip
_( l)fl fo-fp-1 g

iptq

LK Q

Iptq b

- K;, Q.

’p+q : Ip

K, Q= (=1 K,

Since (—1)"72. (=112 [ (_1yptPd — (—)PTOCTD2 e obtain p, U[ws] =
[w 48], whence the diagram commutes. O

For an anticanonical quasismooth hypersurface X in a Gorenstein toric variety P
(by Proposition 2.6, X is Calabi—Yau) the situation is especially nice. In this case the
natural product A?7 y ® Q4" — Q?(_l_‘” induced by the contraction is an isomor-
phism since Q‘)l(’l ~ Oy and Qf(_l_” ~ HomOX(Q’)’(,Q‘ffl) (see [CK, A.3]), so that
the cup product with [w;] corresponding to 1 € Sy (f = f, because of anticanonical)
gives

Ulwi] : HP(X, N'T y) = H(X, Q%' 7). (5)

For nondegenerate hypersurfaces this implies:

THEOREM 3.5. Let X C P be a semiample anticanonical nondegenerate hypersur-
face defined by f € Sp. Then the map y: Ri(f),p — H*(X,N*T x) is an injective ring

homomorphism.
Proof. The map is a well defined ring homomorphism by Theorems 3.3, 3.4 and
(5), while the injectivity follows from Theorem 4.4 in [M]. O

4. Nonpolynomial Part of the Chiral Ring

This section studies the non-polynomial part of the chiral ring which is complemen-
tary to the polynomial part. We will construct new cocycles representing elements in
H*(X, A*T ) for a big and nef quasismooth hypersurface X C Px. In Section 7 we
will see that these elements with Ri(f)s span H'(X,Ty) for a semiample anticano-
nical nondegenerate hypersurface X C Py (dim Py # 1, 3). This means that we have
found all cocycles corresponding to nonpolynomial infinitesimal deformations for a
minimal Calabi-Yau X (see [CK]).

Let X be a d-semiample quasismooth hypersurface, defined by f'e S, in a com-
plete simplicial toric variety Py of dimension d. Then, from Proposition 2.3 we get
the associated toric morphism n: Py — Pyx,. Take a two-dimensional cone ¢ € Xy
with at least one one-dimensional cone p; C ¢ such that p; ¢ Zy(1). Using such a
cone o we can form a new cover of the toric variety Py by the open sets

Uy =1xePs: 1_[ Xp #0

prCo\d’

for all two-dimensional cones ¢’ € X that lie in ¢. Let us fix one order for this open
cover corresponding to as the cones lie inside a:
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(6)

p/n (@
'D/n (o) +1

where n(0) is the number of cones p; such that p;, C o and p,;¢ Zx(1).

Now we take a refinement U;,, = U; N U, of this open cover and the open cover
U = {U;}'_, from the previous section. Denote the refined cover ¢/?, considering the
order on this cover as the lexicographic order for the pairs of indices (i, j).

DEFINITION 4.1. Given p; C g € Zx(2) such that p;¢ Xx(1), then, as in (6), i =
for some k, and we set

i Xl alk—]

; Xp, O, - )
—m, ('“)}(H:—M, and 3/’_0 fOI']#k,k"‘L

mult(oy1)

where mult denotes multiplicity of a cone as in [F1, page 48]. For 4 € Sg; (here,
1= 2, codeg(xk)), define

( i ) _ A a /\8][17df (81(] ]O’df
e () A Ji Ji o)

LEMMA 4.2. In the definition, ('), in..in) 5 @ Cech cocycle in CY U |y, T x).

Proof. By the arguments after Definition 3.1, (y A)(,O o 18 @ cocycle class in
Hl(Z/{‘7| v, 7 x). The only thing that we need to check in addition is that it is well
defined on the given cover, which follows easily from the following two observations.
Let X be equivalent to a torus invariant divisor D =, _, ax Dy with the associated
polytope Ap and the support function ¥/ ,. Since Y, is linear on ¢ and determines ax,
a monomial [T;_, x}* Hme (ip x;,fi,) with m € Ap is divisible by x; implies that
ai + (m,ex) > 0 for all P C o such that p, & Zx(1). In particular, such a monomial
is divisible by x;. On the other hand, we have an identity on Py:

Xl 81/<71 Xlir 8[k+] mult(ak + O'kJrl)

mult(cy) | mult(orry)  mult(e)mult(og) % )

where gy and o4 are the two cones contained in ¢ and containing p; (the identity
corresponds to an Euler vector field (see [BC, Remark 3.10]) coming from the rela-
tion of the cone generators mult(c41)e;, , + mult(oy)e,,, = mult(o; + o411)e;, (see
[D, Section 8.2])). O
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Remark 4.3. Finding the above cocycle is far from obvious, but Propositions 6.3, 6.4,
6.6 with Theorem 4.11 and Equation (5) show how this comes up in the case of
Calabi—Yau threefolds from the description of the middle cohomology in Theorem 2.10.

Next we generalize the cocycles from Definition 4.1.

DEFINITION 4.4. Let p; C 0 € Zx(2) be such that p;¢ Zx(1). Given 4 € S(,_1)p147,
B = Zﬂkcg deg(xx), and an index set I = {(iy, jo), ..., (ip, j,)}, define

(_1)(1771)2/2/1 (3;0”_;]771 A Ol df)

Gl == (—1)f 2
Moo ;:Z TR

I\{Gie i) fp-1 !

where the sum is over the ordered sets

i: {(2‘07]70)7 cee 7(1.;717];771)} = {(i07 j0)7 cee 7(1./(/77/»’)7 o 7(ip7 ]p)}

As in the proof of Lemma 4.2, (), also determines a Cech cocycle class in
HP(U°|x, A’T x). Denoting its image in H?(X, AT x) by 7,, we get a map

7 Spovpep = H(X, AT y),

when p;\{0} lies in the relative interior of a two-dimensional cone ¢ € Xy.

LEMMA 4.5. If A € (J(f), Xi)(p-1)p1p; and p > 1 or 4 € (xi)p, then 7', = 0.

Proof. If A is divisible by x;, then (7)), is clearly a Cech coboundary, by Defi-
nition 4.4. Assume p > 1 and 4 € J(f)(p—l)/)’+/f‘{ is a multiple of one of the partial
derivatives f;. Similar to the proof of Lemma 3.2, we have

MOy A O df) g <8_ ~ A a;;pl,df>

= Z(—l)l .S‘l'(].“l/..,l'p,] _
(I—[[)/(CO' xk)ﬁo e lz})—] =0 (]_[pkca x/&)f;}) o .f;"[ o .f;ﬂ7|
= = A ol ,df
_ Z (_ 1 )[ S1g...lp—2 jp72
L~ (I, coxk)fs - f
=R\ ) oo -fy
(the sum is over the ordered sets I = {(iy, jo), - - -, (i1, 1), - - -, (in—la]Tp—l)}) modulo well
defined expressions on the open set U; N ---N U;p o - because (0L ,df) is divi-

sible by x; and because of Equation (7)’.700n the other ]ﬁz]md, there is an identity

9= = Ad ,df>
0

ok B l< xfo...i,,,z Jp2 _
Y=t Y (=D T :

=D\ {(i i)} =NGL)
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since the square of a coboundary map is zero. This shows that (y,); is a Cech
coboundary for 4 € J(f). ]

DEFINITION 4.6. Given fe Sp, let J'(f) be the ideal in S generated by the
Jacobian ideal J(f) and x;. Then we get the quotient ring R'(f) = S/J'(f) graded by
the Chow group 4, 1(Pyx).

Lemma 4.5 shows that there are well defined maps 7y’ : Ri(f)(p,l)ﬁ+ﬁln
— HP(X,ANT x), for p > 1,and y' : (S/(x,-))ﬁr{ — H'(X,Ty). Note, however, that
a monomial [], ., x/ IT-, x?”_l)a’ﬂm‘e’) in (X)) (-nypep; (With py C o) corresponds
to m e M satisfying the inequalities (p — 1)a;+ (m,e)) = — 1 for p, C g, [ #k,
and (p — Dax + (m,e;) = 0. Since the support function, corresponding to
B=[>_"_, aDj], is linear on ¢ and determines a;, it follows from a relation of the
cone generators that (p — 1)a; 4+ (m, ¢;) = 0 and, consequently, the above monomial
is divisible by x;, for all p; C o such that p,;¢ Zx(1). Therefore, for all such p, the ideal
Ji(f) is the same as

S7(f) =), xk = py C o)

in the degree (p — 1)f + f{. Hence, we define R7(f) = S/J°(f).
The cocycle (y',); in Definition 4.4 came from the proof of the following theorem.

THEOREM 4.7. Let X C Py be a d-semiample quasismooth hypersurface defined by
f€ Sp. Then, for q > 1, the diagram

R()pp ® RS )g-1ypp —  RIDpig-npep;

7_®y- 7

H(X,NTx)® HI(X,NT x) - HPH(X, APHIT y)

commutes, where ] = piCo deg(xy) and the top arrow is induced by the multiplica-
tion. For ¢ = 1 the diagram commutes with (S/(xi))m in place of R"(f)ﬁf.

Proof. For simplicity, we just show that if 4 €S, and Be€ Sy, then
y4 Uy =75 (the general case is similar though more complicated to write out). For
such 4 and B the cup product y, Uy} is represented by the Cech cocycle

1y (=1 4B (0,,..;,,df) R (D A O, df) ~ (@, A0, df)
H/’A»C“ Xk fio o .ﬁl’ fi17+1 fip 1’

where [ = {(i07 jO)a SRR} (ierlv jp+l)}~ Compute

(Oig..ips AF) A (s A D))

0---1p> Ip+1 Tp+1 b

P
=Y D0 ~ A @, AT AN+
k=0 0 "

celfeendp
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+(—1)P<a - 7df> Ao A3

10 lenulp

— 1)?2( Vifo, =, nohar)

->~lk~-ll +1

where the sum of the second terms in the first equality is identically equal to zero. On
the other hand, similar to (4),

(Oig.ciys AF) A D, A O, L dS) = 3, (Dsy.iy A O, L)

Hence, the result follows easily. O
We next show when the cup product of two cocycles (), and (ﬂ/é) ; vanishes.

LEMMA 4.8. The cup product 7', U y’B =0, for A€ S,_1)psp; and B € S_1ypipr,
if p;, p; C 0 € Zx(2) with i # j do not span a two-dimensional cone of the fan X.
Proof. For 51mp1101ty, we assume that 7, and ) 0’; are from H'(X,Ty).
The cup product y', U y’B is represented by the Cech cocycle

(_1) AB u;]7jl . u;ojo A uizjz . uil]l
(HPI\CJ X]()2 ff] f[o sz fil ;
where uj, denotes (0, A 8}1,(1;') for s € {i, j}, and I = {(iy, jo), (i1, j1), (i2, j»)}. Note

that uj, ; /\ ufl i = 0 because either 9 or 6’ vanishes (see Definition 4.1) since the
corresponding cone ¢;, C ¢ can not contaln both p; and p;, by the given condition.

The above cocycle vanishes in the cohomology, being the image of

(—l){ ABuloJO u{‘uil }
(T cox0) it (o, jo).(in. 1)

under the Cech coboundary map C!U°|y, A>T x) — CHU°|y, A>T x). The latter
cocycle is well defined since

AB(O;, A OLdf) A (0, Aajl,df

Jo’?
(Hpkcg xk) fio 'fil
has no poles on the open set U;, N U, , NU,NU, , which follows from the condition

o
of the lemma. O

We created the cocycles (y,);, now we define the corresponding elements in the
middle cohomology H*'(X) of a d-semiample quasismooth hypersurface X.

DEFINITION 4.9. Let p; C ¢ € Zx(2) be such that p;¢ Zx(1). Given 4 € Syp_p 440
(where f, = >")_, deg(xx), ] = > pcodeg(xr)) and an index set I={(io, jo),
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., (ip, jp)}, define
SV I P S L i
HpAvCO' Xk ﬁo o f; 7

I=I\{(ig.jo)} p-1 I

(wil)l =

where the sum is over the ordered sets

~: {(;07]70)7 cee 7(1.;717]7]771)} = {(i07 j0)7 cee 7(1./:77/»’)7 o 7(ip7 ]p)}

This determines a Cech cocycle class in I-VI"(Z/{”| X,le;l*p ), whose image in
HP(X, Q4" is denoted by o,.

LEMMA 4.10. If A € J'(f),5_ popos then o’y = 0.

Proof. If A is divisible by x;, then, by Definition 4.9, (w')), is a Cech coboundary.
Assume that 4 € J(f) is a multiple of one of the partial derivatives f;.

First, consider the case p = 1. If p, C ¢ and s # i, then, by the argument after
Definition 4.1, f; is divisible by x;, implying ('), is a Cech coboundary. The case
fs = fi is impossible, because of Sp_p, 457 =0 (f; := deg(x;)), following from the
completeness of the fan X. The same is true if p, ¢ ¢ and dim Py > 2. Notice

SR @09 KK DL (A AQ) (3, dNKKQ K(a’ } Q)
(l_[pkca Xk)ff() - (Hp,(Ca xk)ff() (1_[[1/ Co xk)flo (HPA co X

Also, note that if dim Py = 2 and p, ¢ o, then KS(8}OJ Q) is a multiple of x;, by the
definition of the form Q. Since df' A Q = 0 modulo multiples of f, by Equation (3) in
[M], and since (8}‘;07 df) is divisible by x;, it follows that ('), is a Cech coboundary in
this case. ‘

The case left is p > 1. We have

Kf,l : ( L Q)
fv i Jo
; (l_[[)kCO' k)fi() f;Tp—I
K,K: - K: ai
= (-1 _ WD),
(I—[p/ Cco k)fl() flp 1
sy T KK, i K G @

1y -
(IT,,co XM, - f,ﬁ] ,Z(; (l_[pACo Xy fy

=t Y KKy, K019
- (Hp,\ca‘ k)fzo ff,,,z

SINGI)]
(the sum is over the ordered sets I= {(fo,fo), o Gy (171,,1,];,1)}) modulo well
defined expressions on the open set U; , N ---N U; o-  NX, because df A Q=0
o Jp—1
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modulo multiples of f, (8}_] ,df) is divisible by x; and because of equation (7). And,
we also have an identity ’

k /KvKi}fz"'Kfo(al’lJ Q)
D D D e A

=N\{(iji)} I=I\{(ir)} i ip—2

since the square of a coboundary map is zero. (y,); is a Cech coboundary if

A # J(). O

The last lemma shows that there is a well defined map
@' R pppyapy = H'(X, Qy .

Since pf is d-semiample, multiplying a monomial in (xk),g_p 4 (for p, C o) by
11 pito Xl and applying the argument in the proof of Lemma 4.2, we get a monomial
divisible by all x; corresponding to p; C o such that p,¢ Z x(1).Therefore, for all such
p; the ideal J'(f) is the same as J°(f) in the degree pf — B, + f].

The cocycle (w',); came from the proof of the following result.

THEOREM 4.11. Let X C Py be a d-semiample quasismooth hypersurface defined by
f€ Sg. Then, for p > 1, the diagram
R Dp-vpspg @ R ganprpy, —— R Dprgp-pors

7 @w-] !

HY(X, AT x) @ HI(X,QF '™ Y Hrvax, Q' r)
commutes, where the top arrow is the multiplication (for p = 1 the diagram commutes
with (S/(x,))m in place of R"(f),;'ly). ' '
Proof. For simplicity, we only show that y) U[wp] = o)y for 4 € Sp and
B € S+1)p—p, (as in the proof of Theorem 4.7, the general case is similar, but more
complicated to write out). Similar to the proof of Theorem 3.4, the cup product
7', U [wg] is represented by the Cech cocycle

{(_l)d_1+(q(q+2)/2)AB <(6,<1 N, df) (04 A 0}, df) ) K., "'KiIQ}
I

l_[kao Xk fil fio f/l : .ﬁq+[
where [ is the index set {(io, jo), ..., (ig+1, jy+1)}, corresponding to the cover U7|y.
Compute
< (0, A, df) (D A DL, f))J Ky K@
fil ﬁo fil o 'fl},+1
— (_1)q+1 fgpr Kil (all'lJ Q) _ (_1)q+l lg1 7 K’I( J(]J Q)
f;'l o .fq+l f;'] o '.fl}ﬁ]

)qul 107 df ig41 " KloQ

1
+= Fo ot
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Also, notice

Ky 0 (df A Q)

0

K;

q+1

= (8}07 df>Kl

g+l

Ky Q — fi Ko, - K (9]0 Q)+

g+l
+ Z(_l)k_]ﬁkKqu e Kl'k e KflKiO(a]l‘oJ Q)
k=1

Since df A Q = 0 modulo multiples of f; as in Lemma 4.10, we can see that y, U [w3]
is actually represented by the Cech cocycle

(_1)d+(qz/2)AB ( . K;q . -K;O(aj%]J Q))
—_— -1
{ > D A :

. ) :
HkaG k I=I\{(ir, i)} " !

where the sum is over the ordered sets

i: {(;07]70)7 s 7(;(17]7(])} = {(i07 j0)7 L) (l]\/,\]k), .. 7(iq+1>jq+1)}- O

The next result (a proof of which is similar to the above) shows that the map
o' R"(f)*ﬁ,ﬁﬁm — H*(X, Q‘)’fl**) is a morphism of modules with respect to the

ring homomorphism R(f),; = H*(X, A\*T x).

THEOREM 4.12. Let X C Py be a d-semiample quasismooth hypersurface defined by
f € Sp. Then the diagram
R Dpp @ RX(Dgp—pyprpr - —— R p—qppy psr
7-®wl] l w,l
HP(X,N'T y) @ HI(X, Q‘;/*I*‘I) _U_) HPH(X, Qz)l(*lfpfq)

commutes, where the top arrow is induced by the multiplication.

Similar to Lemma 4.8, we also get when the cup product of two cocycles ('), and
wy); vanishes.
B

LEMMA 4.13. The cup product ;U oy =0, for A € Sy_1pipr and B € Sq—nypipe.
if pi,p; C 0 € Zx(2) with I # j do not span a 2-dimensional cone of the fan X.

5. Toric and Residue Parts of Cohomology

In this section we describe the toric part of cohomology of a semiample nondegene-
rate hypersurface in a complete simplicial toric variety Py. This part is the image of
cohomology of the ambient space induced by the inclusion of the hypersurface. In
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this case, we also show that cohomology has a natural decomposition into a direct
sum of the toric part and the residue part which comes from the residues of rational
differential forms with poles along the hypersurface.

Since Py is simplicial, we know from [F1] that the cohomology ring H*(Py) (with
complex coefficients) is isomorphic to

C[Dy,...,D,]/(P(Z) + SR(Y)),

where the generators correspond to the torus invariant divisors of Py, and where

PX) = <Z(m,el~)D,~ ime M>,

i=1

SR(E) =<Di1 -~~Di,\ . {eil,...,eik} ¢ cforallo € 2)

(SR(X) is the Stanley—Reisner ideal of X) The toric part Hf ; (X) of cohomology of
a hypersurface X in Py is defined as the image of the restriction map *: H*
(Pz) - H*(X) induced by the inclusion i: X C Py.

THEOREM 5.1. Let X be a semiample nondegenerate hypersurface in a complete
simplicial toric variety Py. Then

H . (X)= H*(Py)/Ann(X]) = C[D,,...,D,]/1,
where Ann([X]) is the annihilator of the class [X]e H*(Pg), and where
I=(PZ)+ SR(EZ) : [X] is the ideal quotient.

Proof. We need to show that ker(i*: H*(Px) — H*(X)) coincides with ker(U[X] :
H*(Py) — H**?(Py)). Since U[X ] = i;i* (where i is the Gysin map), this is equivalent
to ker() Nim(7*) = 0 in H?(X') for all p. Using an induction on the dimension of the
hypersurface, we will show a stronger statement:

HP(X) = im(i*) @ ker(i) for all p. (8)

Jf dim X =0, then Py = P'. In this case, the composition HO(HDI)I—*>HO(X)
—> H2(P") is clearly an isomorphism, and (8) follows.

Let dmX=d—1>0. For all odd p, H’(X) = ker(}) and Equation (8) holds
because H°Y(Py) vanishes. So we can assume that p is even.

We show first that H?(X') = im(i*) 4 ker(i). The Gysin spectral sequence (see [M,
Section 4]) gives an exact sequence

D HE (XN D) - H'(X) — GtV H(XN'T) - 0.
k=1

Also, by the Gysin exact sequence (see [DK, Theorem 3.7]), we get

0= H\(Ps\ X) 28 HP(X) S HP(Py) 9)
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for even p. Hence, Res(H?T!(Ps \ X)) = ker(i)). We claim that the composition
HH (Pg\ X) <5 H(X) > GrVH/(XN'T) (10)

is a surjective map for p > 0. If [X] is an i-semiample divisor class, then we get the
associated morphism n: Py — Py, and the ample nondegenerate hypersurface
Y = n(X) in Py, by Proposition 2.3. The statement is trivial for p # i — 1 because,
in this case,

Gr)/H'(XNT) 2= Gr)H'(YNTx,) x (C) =0 (11)

(where Ty, is the maximal torus of Ps ), by Equation (2) and the Kiinneth isomor
phism theorem with Lemma 2.5. For p =i — 1, consider the following commutative
diagram:

HPz\X) B mg-'(x)__, H-'(XNT)

T T T

H((Psx\Y) 2, H-(Y)___, H-(YNTs,),

where the vertical arrows are induced by the morphism 7. The right vertical arrow
descends to an isomorphism

o Gr!” H™' (YN Ty,) = Gr”, H-'(XN'T) (12)

which follows from Equation (2), the Kiinneth isomorphism and Lemma 2.5. On the
other hand, the proof of Theorem 4.4 in [M] and Remark 2.8 show that the weight
space W;_1 H~!(Y N Ty,) lies in the image of the composition of maps on the bottom
of the diagram. Thus, we have shown that the composition (10) is surjective for all
p > 0. Hence, ker(i) in H”(X') maps onto Gr;VHP(Xﬂ T). Since Gr[fVHP(T) =0 for
p > 0, we get the commutative diagram:

LH(DY . HP(Py) 0

[i [i

i HPAXND) ., H(X) ., GrJH(XNT) ___, 0

e I

D HP=2(Dy) . H(Py) 0,

where the rows are exact sequences arising from the Gysin spectral sequence. Chas-
ing this diagram and using the induction assumption (8) for the semiample nonde-
generate hypersurfaces X N D, C Dy, we can see that HP(X) is spanned by ker(i)
and im(i*) for all p > 0. Let us show this in the case p = 0. If X is connected, then
i*: H'(Py) — H°(X) is an isomorphism of one-dimensional spaces, whence
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H°(X) = im(#*). By Lemma 2.1, we are left to consider the case when X is a 1-semi-
ample hypersurface. We use another commutative diagram:

H'®Py) ", H'(X) ", H*Py)

L

H'(Psx) —_, H(Y) Hz(PEX)~

The property X = n~!(Y) from Proposition 2.3 gives an isomorphism n* : H°(Y) —
H°(X). Using the diagram and the fact Ps_2 P!, we deduce H*(X) = im(i*) + ker(i).

To prove (8) it suffices now to show that im(#*) and ker(i;) have complementary
dimensions in H?(X). From Equation (9) we get dimker(i) = #’*!'(Ps \ X). The
exact sequence of cohomology with compact supports

H(Py) 5> HP(X) — H'F\(Ps\ X) — 0
also gives dimim(i*) = #"(X) — h2*!(Py\ X) for even p. Since HP(X) = im(i*)
~+ker(7), the inequalities

W (Ps\ X) <A Py \ X) (13)
hold for all even p. By Poincaré duality, we have the equalities

WY P\ X) = PP P\ X)W (P \ X) = T (P2 \ X).
Applying them to (13), we get

PP P\ X) < 2P (Ps \ X)

for all even p. Hence, all these inequalities are equalities, and Equation (8) follows.
The proof by induction is finished. O

Remark 5.2. We should note that the above nontrivial result or its equivalent has
been used without a proof for smooth Calabi-Yau hypersurfaces (complete inter-
sections) in many papers (e.g., [B3, Proposition 8.1], [HLY, Section 3.4], [St, Section
9]; cup product induces a nondegenerate pairing on the toric part [CK, Lemma
8.6.11], [Gi, Introduction]). In the case of ample quasismooth hypersurfaces, this
follows directly from the Hard—Lefschetz theorem. It is an open question whether
Theorem 5.1 holds in general for smooth or quasismooth semiample hypersurfaces.

Remark 5.3. An interesting equality follows from the proof of Theorem 5.1:
WPz \ X)=h(Psz\ X) foroddp.

If X is ample, these Hodge numbers vanish for p away from the middle dimension d.
But in the semiample case they are nontrivial in general.
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As a consequence of the above proof, we have a direct sum decomposition
HP(X) = im(i*) @ ker(iy) for a semiample nondegenerate hypersurface. By the Gysin
exact sequence, the kernel of the Gysin map is exactly the image of the residue map.
Therefore, it is natural to introduce the following.

DEFINITION 5.4. The residue part H}.(X) of cohomology of a quasismooth
hypersurface X in a complete simplicial toric variety Py is defined as the image of the
residue map Res : H*t!(Ps \ X) — H*(X).

Remark 5.5. The residue part H},(X) is isomorphic to the primitive cohomology
PH*(X) defined in [BC] by the exact sequence

H*(Py) > H'(X) —> PH*(X) — 0.

By the definitions of the toric and residue parts of cohomology introduced earlier,
we get the next result.

THEOREM 5.6. For a semiample nondegenerate hypersurface X in a complete sim-
plicial toric variety Py, there is a natural decomposition:

H'(X) = H?oric(X) @ H;kes(X)'
Theorem 5.1 described the toric part. Note that

H?oric(X) U H:CS(X) C H;kcs(X)v

since i(*a U b) = a U iib = 0 for b € ker(i)), by the projection formula. Therefore, the
residue part is a submodule of H*(X) over the ring H{ ; (X).

Finally, we suggest an algorithmic approach to computing the residue part of
cohomology. As in the proof of Theorem 5.1, the Gysin spectral sequence gives
the commutative diagram:

Pio HAXNDy) — HL(X) —» Gr)PH(XNT) - 0

(14)
@i 2XNDy) -  H(X) -  Gr/H(XNT) -0

iy HP2(Dy) — H'(Py) —» Gr)/H/(T) — 0,

where the columns and the rows are exact, and where PH?(X NT) is defined, as in
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[B1, Definition 3.13], by the exact sequence
H(T) > H*(XNT) - PH'(XNT) — 0.

The hypersurfaces X N Dy in Dj are semiample nondegenerate of lower dimension,
and the space Gr;V PHP(XN'T) can be described in terms of cohomology of a non-
degenerate affine hypersurface, again, using the proof of Theorem 5.1. Therefore,
this provides a way to calculate H2_(X).

6. Cohomology of Semiample Nondegenerate Hypersurfaces

In this section we continue the study of the cohomology of semiample nondegenerate
hypersurfaces which was initiated in [M, Section 4]. Applying the algorithmic
approach of the previous section, we will compute the residue part of the middle
cohomology of a big and nef nondegenerate hypersurface X. In particular, we will
generalize the description in Equation (3) and Theorem 2.10. An algebraic descrip-
tion of the middle cohomology is important because, in the Calabi—Yau case, this is
isomorphic to the chiral ring H*(X, A*7 x ), by Equation (5). In terms of this descrip-
tion, one should be able to compute the product structure of the chiral ring. Here, we
also compute the nontrivial cup products 7, U w’l; of elements constructed in
Section 4.

Let X be a d-semiample nondegenerate hypersurface, defined by f € S, in a com-
plete simplicial toric variety Px. Our goal is to relate o';, defined in Section 4, to the
description of the middle cohomology of X given in Equation (3). First, we define
new Cech cocycles, representing elements in H*3(X N D;).

DEFINITION 6.1. Given ¢ € Xx(2) with the ordered integral generators e;, and

€l a8 1N (6), introduce a (d — 2)-form

K,

Xiy X, (o) +1

G =

(o) +1 KIOQ

mult(e) [ ], o, ¥

Then, for 4 € S,41)p-p,+4; and p; C g such that p;¢ Zx(1), define

. 2 [AK; -+ - K Qy
e e e B
Al fi oS .
where [ is the index set {ip,...,i,}, representing the intersection of open sets

U,'“ﬁ'”ﬂU[meﬁD,‘inXﬁD,‘.

Consider a rational (d — 2)-form
(AQ, /1) € H'(D;, Q5 ((p + DX),

where X;:= XN D; (we will use both notations). By the residue map we get
Res(AQ, /f7T1) € H-3(X N D;). The next statement shows that up to a constant,
(@'y); is a Cech cocycle which represents this residue.
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PROPOSITION 6.2. Let X C Py be a d-semiample nondegenerate hypersurface
defined by f e Sg. Given p; C 0 € Zx(2) such that p;¢Zx(1), and A € Spi1)p—py+p7
then, under the natural map

H Ul yp, Qi) — HY(X 0 Dy, Q0 7) & H7PP(X 0 D),

the Hodge component Res(AQy/fP) =37 is represented by the Cech cocycle

(_1)d73+(p(p+1)/2) AK; - Ky Q
p! { Ji -ty

Proof. The proof of this is similar to the proof of Theorem 3.3 in [M] (see also
[CaG]). We only need to show that

df' A Q, = 0 modulo multiples of fand x;. (15)

} e C"Ulxnp,, Lirn)-
1

Note
K,

n(o)+

df/\ Q — df/\ xlox]n(nHl KIOQ o xlox]n(rr)+] Kll)(a)+lK10 (df/\ Q) _
- = =
mult(o) ]_[kaU Xy mult(o) ]_[pkca X
_ Xl f/[) Xlyioy41 Kln(a)+1 Q Xl xln(a)+lﬁn(a)+l KlOQ

mult(a) Hpkcﬂ— Xk mult(a) l_[ka(T X

The first summand is divisible by f, because df A Q = 0 modulo multiples of £, as in
Lemma 4.10, and because f is not divisible by any variable xj, corresponding to
p; C g, since X is nondegenerate. The sum of the other two terms is a multiple of
X;, because, by the argument after Definition 4.1, x; f; are divisible by all variables
Xk, corresponding to the cones p, C ¢ not contained in Xy(1), and because of an
Euler identity similar to (7). Hence, Equation (15) follows

We also verify that (@')), is a Cech cocycle. The Cech coboundary of (@), is

. LYK K K Q
(_l)p—/z A J U T p41 k 0 .
kZ=(; fio t 'ﬁpﬂ !
On the other hand,
P+l Pe
Z( 1)/& i l/,+1 ° l/( et KquU' = Ki/;+1 : (df A Q ) - ( 1)17+2df/\ KI,,H e KiOQG'

Applying Equation (15) and df = 0 on X, we can see that the image of (@',), under
the Cech coboundary map is zero. O

Denote by @', the image of the cocycle (@',); in HP(X N D,',Q’;(}Ep ). In the next
step we show a relation between @', and ;.

PROPOSITION 6.3. Let X C Py be a d-semiample nondegenerate hypersurface
defined by f € Sp. Then ¢,0'y = o'y, where ¢, is the Gysin map for ¢;: X N D; — X.
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Proof. Tt suffices to show that ¢,@',, for 4 € Spp—po+p;- 18 represented by the Cech
cocycle ('),
The Gysin map ¢; we can compute, using the following commutative diagram

0 —> CP(V7, Q517 — (V7 0 P log X)) S Cr(Ve, QS 7y

T T T

0— 1V, Q') oty ! 7 (log X)) S5 Ve, Q8 ),

where the vertical arrows are the Cech coboundary maps, V° denotes the open cover
U°|y, and the cover V7 is the restriction V’|y,, X; = X N D;. By the residue map, the
cocycle (@) is lifted to the cochain

vi= (—1)@—1)2/2{147](; ! 7 Z(mm ) dx/\}
J i ip—1

in CP~1(V7, Q‘H*"(logX)) where 1 is the index set {(ﬂ),fo),...,(i;, 1,f,, 1)}, corre-
sponding to the cover V’, and where m; € Mg, for o; D p; generated by e; and
es, satisfies (m; ,ei) =1, (mj , e5) =0, and m; =0 in all other cases. Appropriately,
this can be obtamed, using some affine open cover on X, where X N D; is given by
[Ti; x™ = 0 up to some multiplicity (we omit the details).

The image of 17 under the Cech coboundary map should represent ¢;@",. Using
the diagram, we can see that changing of y; by a cochain in cr-loe, Qi_l_” ) does
not affect the image. Notice that 5 is equivalent to

2, | AK; - K
(VR (0, A Y iy e
ffo . f[p ] Z Jo i

modulo some cochain in C?~1(V7, Q‘;flfp ). Assume for a moment that

ar
( AZ ;e ) A S (16)

PkCo

is well defined on U%. Then ;5 is actually equivalent to

(=102 AK; K (9 g
f f l—lp/\ngk ~

lp| I

modulo some cochain in C”‘I(V”,Q‘){;“” ). The image of this under the Cech
coboundary map is clearly (o), We are left to show that (16) is well defined on
U/ The case o; 2 p; is trivial because m; =0 and 8’ = 0. The cases left are
Jo=k,k+1 for z = [, as in (6); we only check the case ]0 = k (then (m; e, ) =0,
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0. = x;,_,0,_, /(mult(ay)), the other case is similar. It is enough to verify that multi-
ples of (dx;)/x; cancel each other in the difference (16). We defined
Q= ZI li=d det(e;)x,dxy; note that the multiples of (dx;)/x; in (16) are

Z (det(e{/o,l,,(a>+|}u1) L ddet(c’{zkl}wu{i})) Xsdxy ) dx;
— T (—1) N,
( ) mult(o) mult(ay) [1,,cok X
where the sum is over all (d — 2)-element subsets J C {1,...,n}. Interchanging i = I,
with the ordered set {/,_;} U J in det(ey, ,jusuq) and using the relations of the cone
generators (see [D, Section 8.2])

e . l’Ilult(()'()’k)e[,\,_1 B e,
mult(ox) mult(op)mult(oor—_;) mult(oos_1)’

mult(o)e;kfl _ €lyoye1 + €l
mult(O'o,kfl)mu]t(O'kf1,n(zr)+1) mult(akfl-,n(U)Jrl) mult(aokal) ’

where o, denotes the cone generated by e, and e;,, we get that the multiples of
(dx;)/x; in (16) cancel each other. The proposition is proved. O

The last proposition shows the relation of ', to the description of the middle
cohomology of X given in Equation (3). But we also need to understand the relation
of o', to the description of the cohomology in Theorem 2.10. For this, we will have
to consider some toric subvarieties of codimension 2 in Py, and to study the relation
of some quotients of the homogeneous coordinate rings of these toric subvarieties
and Ps. This work will culminate in Theorem 6.7, which generalizes Theorem 2.10.

As in [M, Section 5], we consider a two-dimensional cone ¢’ € £ contained in
g € 2x(2) and containing p, (in the notation of (6), we have i = /; and ¢’ = o} or
ok+1), and let S(V(¢')) = C[x, : 6’ C 7 € Z(3)] be the coordinate ring of the
(d — 2)-dimensional complete simplicial toric variety V(¢’) C Pz. From Lemma 1.4
in [M], it follows that X, := X N V(¢’) (we will use both notations) has a positive
self-intersection number inside V(¢’), implying X, is a big and nef hypersurface.
We have a natural commutative diagram:

S*/)r = HO(PX,OPE(*X))

w;l o l

SV(@),pr = H'(V(0), Oy (Xy)),

where 8° € A4_3(V(d")) is the restriction of f8, and the vertical arrows are the restric-
tion maps induced by the inclusion ¢, : V(o7) C Px. To describe the vertical arrow
on the left one first has to restrict a Cartier divisor D = Y, _, ax Dy (as in [F1, Section
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5.1], assuming that g, = 0 for p, C ¢’) in degree f to V(d'):

mult(a
D|yion = V'
ey = Z UG Tty ("),
where the sum is over all y € X(3) spanned by ¢’ and a generator ex(,). Then a mono-
mial [];_, x,‘f,”"“m“’“ in S,; with m € ¢’ is sent by the restriction map ¢% to

I, X} 7Hme)  Where ay = agymult(e’)/mult(y’) and e, = exymult(e’)/mult(y); if
m¢ o', the monomial is sent to 0. Hence, we can see that the restriction map
Sip—sS( V(a’))*ﬁnr is surjective, and its kernel is the ideal in S, generated by all vari-
ables x; such that p, C o, by the argument in the proof of Lemma 4.2. Therefore, we

have an isomorphism:
@i (S (XK p Ca))yp = S( V(a’))*ﬁgf. (17)

If X is defined by f € Sp, then the restriction of f, denoted by f,, determines exactly
the hypersurface X, C V(o).
We also have a natural map

St 15—y —> H(Di, 97)72((1’ + DXy), (18)

sending A4 to the rational (d — 2)-form (A4Q,/f?*!) considered after Definition 6.1.
Let us determine the restriction of this form with respect to the map

HD, 952+ 1Xp) —2 % ), Q2 (p+ DX,)),

induced by the inclusion ¢; . V(¢") C D,. The form Q in Definition 2.7 is determined
up to £1, depending on the choice of the basis for the lattice M. We have fixed one
basis my,...,my, but it is always possible to find another basis mfg,...,mj, for
o € Zx(2), so that the corresponding Q is the same as before and mf, ..., mj_, form
a basis for the lattice M N ¢*. With the new choice of the basis, the proof of Propo-
sition 9.5 in [BC] shows that

n n . dxk n - dxk
Q= ﬂxk(2<m1,ek>—> ASEERA (Z<md,ek>— :
k=1 \k=1 Xk =1 Xk
Using this, we compute

. Xl Xlgy41 Kl1(a)+l Klo Q

77 mult(o) ]_[pkcg Xi

HPk§ZU Xk d—1,d - a dxy Z pu dxy
—me Z(mn@k)g ARRRRA Z(md—zaek)x—k )

k=1 k=1

where e/~ denotes ((m7_,, e, )(m7, ey,,,..) — (M3, e,)(m5_,, ey,,,..))- By the proper-
ties of mult(c) in [D, Section 8], we can see that e*~"“/mult(c) is &1. There were
two (reverse to each other) possibilities of labeling the generators of ¢ when we chose
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the order in (6). In further calculati(()nas m;e assume such a choice of p; and Plyors: that
e~d/mult(c) = 1. Set 17 = [[}_, x, "', then £, ..., 1_, are the coordinates on the
torus T, . In terms of the homo%epe())us coordinates x,, on V(¢’), the affine coordi-
nates #7 are identified with [, x.),},n‘ “

/77" Hence,
* AQU IS A l_[kaZJ Xk dllﬁ TN df272
Pig )= Pio e “

to’
d-2
0o (AT, ¢0xK) dx, dx,
= e (S ey S n o ()
.fa’ Y Y Y4 Y
= —(P:/ “ l_[pk@ ) V(a")
= ™ o)
(T, x)f7%

where, as in Definition 2.7, Q) is the (d — 2)-form on the toric variety V(¢’), cor-
responding to the basis m{,...,mj_,. A monomial in S, 1p_pg 4 With
B =[>r_ aDy] corresponds to a lattice point m, satisfying the inequalities
(p+ Dax + (m,er) =0, for p, C g, and (p+ V)ax + (m,ex) = 1, for p, ¢ 0. Then,
by the earlier explicit description of ¢, we can see that the restriction
oi(A4 Hpk@ Xxx) is a polynomial in S(V(o—’))(p T divisible by [[, x,. Therefore,
we get the following commutative diagram

Sp+1)8-po+7 — H(D:, Q5 ((p + X))

(o l wjf_a/l

SNy —gr —  H@).Q50((0 + DX,

where Bg’ = deg(Hy, xy) € Aq—3(V(0")) is the anticanonical degree, and the horizon-
tal arrows are given by (18) and a similar one sending a polynomial 4 to the form
(AQy )/ f{:,“). Recall from Section 2 that for the hypersurface X, C V(¢’) we have
the residue map

/ d—3—,
Res: S(V(o ))(pH)/),ar_ﬁg/ — HP(X, Q1)

sending a polynomial B to the Hodge component Res(wp)‘ 7. As in Section 3,

denote [wg] = (—1Y/*p!Res(wp)* 7P, By the naturality of the residue map and
Proposition 6.2, we obtain the following result.

PROPOSITION 6.4. Let X C Py be a d-semiample nondegenerate hypersurface
defined by f € Sp. Given p; C 6 € Zx(2) such that p;¢ Xx(1), and given ¢’ € X(2) such
that p; C ¢’ C o, then we have a commutative diagram:

o

(0]

d—3—
S(p+1p—Bo+57 — HP(X N D, Qyep,”)

w;l wjo,l

—1 d—3—p =3
VT prox n Vo), Q4T ).

SN ety g5

https://doi.org/10.1023/A:1027367922964 Published online by Cambridge University Press


https://doi.org/10.1023/A:1027367922964

ON THE CHIRAL RING OF CALABI-YAU HYPERSURFACES 321
From Section 2 we know that the map

Res: R (f, = H(X N V(o). QL)

’)(,,+1)/3"L/;g XNV (o’

is well defined. The map @' should also be well defined on some quotient of the coor-
dinate ring S. In Definition 2.9 we had the rings Ro(f) = S/Jo(f) and Ri(f) =
S/J1(f). Now introduce the following similar rings.

DEFINITION 6.5. Given f € Sy of d-semiample degree f € 4,_1(Px) and ¢ € Xg(2)
(see Remark 1.5), let J§(f) be the ideal in S generated by the ideal Jo(f) and all x
such that p, C g, and let J{(f) be the ideal quotient J§(f) : (Hpk@ xx). Then we get
the quotient rings R§(f) = S/JG(f) and R{(f) = S/J7(f) graded by the Chow group
Aq-1(Pg).

We have the toric morphism n: Py — Py _, associated with a d-semiample hyper-
surface X C Px. By the previous discussion, for ¢/ C 6 € £x(2), Xo = XN V(d') is a
big and nef hypersurface, defined by f., in the toric variety V(¢’). It follows from
Proposition 1.6 that the restriction of 7 is the toric morphism 7, : V(¢') — V(0),
associated with the semiample divisor X,. In particular, we have a ring homomor-
phism 7., : S(V(¢’)) — S(V(5)) between the coordinate rings of the toric varieties.
The image of fi is a polynomial f; € S(V(0))g-, which determines the ample hyper-
surface Y, := ny(Xy) in V(o).

PROPOSITION 6.6. Let € Aq_1(Ps) be d-semiample and let /38/ = deg([[, x;)
€ A4-3(V(0"), By = deg([], »,) € Aa—3(V(0)) be the anticanonical degrees. Then, there
are natural isomorphisms:

(1) RG()ap = Ro(fo), 5 = Ro(f5)upe
(1) RY( )p—pyspr = Rl(fo/)*/;a’_ﬁg’ = Ri(fo)upr—ps-

Proof. (i) To show the first isomorphism, induced by ¢Z,, it suffices, because of
equation (17), to check that the ideal Jy(f) in S is mapped onto the ideal Jy(f;) in
S(V(d¢')). By Proposition 5.3 in [C2], the ideal Jy(f) is generated by f and
Xy, 0f/0xi,, ..., x;,0f/0x;, for linearly independent e¢;,...,e¢;,. We can assume that
ei,...,e;, are generators of some simplicial cone 7, containing ¢’, and e;, ,,e;, are
generators of ¢’. By the explicit description of the restriction map ¢, fis sent to fy,
while x;, ,0f/0x;, , and x;,0f/0x;, are sent to 0. To understand the image of the other
polynomials, as in [BC], we write /=3, anys@n 1 1f—; x0T where A is the
polytope associated with a torus invariant divisor > ;_,bxDi (assuming
b;,, = b;, = 0) in degree . Then

Ig—1

of = bi+(m,ex)
Xi (9)(?,’ - Z am(bl} + (m, @ib\.)) kaA o

d meANM k=1
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Applying the restriction map ¢, to this, we get, for s #d —1,d,

by+(me,)  mult(y of
Y anlbi+me) ]y Homey) _ MUltRy) - Of

- N Vs ’
meANMNet mult(a’) " Oxy

where the cone y, is spanned by ¢’ and the generator e;, and where b, =
biyymult(a’)/mult(y’), e, = exrymult(c’)/mult(y’) correspond to the cone y" spanned
by ¢ and a generator ey). Therefore, we get the first isomorphism
(P; : Rg(f)*ﬂgRO(fo")*/{f“

For the second isomorphism, induced by 7y, : S( V(O"))*ﬁa = S(V(0)),p (see Sec-
tion 1), it is enough to show that Jy(f, ) is mapped onto the ideal Jy(f;) in S(V(0)).
This can be easily achieved by the argument in the previous paragraph.

(ii) By the construction of the maps ¢}, and n,,, we get the commutative diagram:

RE()sp =~ Rolfo),pr Ro(fy),pr
THp,\,gZaxk Tl_[, Y THM’V

R(lr(f)*ﬁ—/fo-r/f‘l’ — Rl(fa’)*/;tf’_[gg’ — Rl(fa)*ﬁ"—ﬁg7

where the vertical arrows are injections, induced by the multiplication. To show that
the bottom arrows are isomorphisms it suffices to check that the images of the spaces
from the bottom into the spaces on the top correspond to each other under the iso-
morphisms of part (i). Note that these images are the ideals generated by [] puito Xhs
H«/ x, and Hv »y, respectively. By the explicit description of the maps ¢}, and 7y,
one can see that these are mapped onto each other. O

Finally, we can put all of the above together and generalize equation (3), describ-
ing the middle cohomology of a big and nef nondegenerate hypersurface.

THEOREM 6.7. Let X C Py be a d-semiample nondegenerate hypersurface defined
by fe Sg, d=dimPs. Then there is a natural isomorphism, for p=d—1—gq:

HP(X) = Ri(f)g+1)p-p, @( @ (RT(.f)q/;_ﬁquﬁT)n(a)) EB HY (X)) @ C,

ceZy(2)

where C =3 50 9o HI 72 (X 0 V(1)) (the Gysin maps ¢, are induced by the inclu-
sions @, : XN V() C X), and the graded pieces of Ri(f) and Rj(f) are embedded by
the maps [w_] and o' for all p;¢ Zx contained in some o € Zx(2) (n(c) is the number of
such cones). Moreover, Rtly(f)qﬁ—ﬂoﬂf‘{ =0forq=0,d— 1, and the cup product of any
two elements from the distinct summands of the above decomposition vanishes.

Proof. Theorem 4.4 in [M] combined with the diagram (14) gives an isomorphism:

H0(X) 2 Ry (f) 415, @ Hyp oo H(X) @ Z PuHL ™7 (X N Dy,
pa
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where ¢;, are the Gysin maps induced by the inclusions. Applying (14) to the hyper-
surface XN D; in D;, we get an exact sequence

@ HE(X N V(1) - PH (XN D) — Gr)l ,PH(XNT,). (19)
p;CTeX(2)
The space Gr:fi3PH"’3(Xﬂ T,) vanishes, by Equation (11), unless XN D; is a
(d — 2)-semiample hypersurface in D;. By Proposition 1.6, the latter happens only
when p;¢ Xy lies in some ¢ € Zy(2). In this case, there is ¢’ € £(2) such that
p; C ¢ C g, and, by equation (12), we have isomorphisms

Gr/  H(XNT,) = Gt JH 3 (X)) N'T,) = Grl) s H (X N T,)

induced by the morphism n: Py — Px_. The hypersurface XN V(¢’) in V(d') is
(d — 2)-semiample (big and nef). So, we can apply Theorem 4.4 in [M] to deduce that
the composition

Rifo) g B8 H2-097) (x A V(o)) > HO0 (PHOS(X A T,))

res

is an isomorphism. Using Propositions 6.4 and 6.6, we get that another composition

R gppopy —> — HEZ 970N DY) - HI27097 (PHI(X N T,,)
is also an isomorphism. Hence, by Equation (19),

H ™ (XN D) = RiNgppor D D Mg ™" (X0 V(D)
p,CTeX(2)

for p,;¢ Ly contained in some ¢ € Lx(2), and

LHETH2(X N (D))

res T!7 " res

HEZ\(XnDy= > ¢
p;CTeX(2)

for all other p; (here, ¢’ : X N V(r) C X N D; is the inclusion). From (14) we have an
exact sequence
n

P HL (V) - P HE (XN D) — HE ' (X)

1€2(2) i=1
which shows that the kernel of the right arrow is included into the parts complemen-
tary to R7(f)yp—p,4+pc 0 HY3(X N D;). The direct sum decomposition of the middle
cohomology follows.

The fact R‘l’(f)_ﬁﬁm = 0 is obvious, while R‘l’(f)(d_l)ﬁ_ﬁﬁm = 0 is implied by the
isomorphism of Proposition 6.6 and by a dimension argument using the proof of
Theorem 11.5 in [BC] and Theorems 2.11, 4.8(v) with Corollary 3.14 in [B1]. From
Section 5 we know that H%,(X) U Hj, ..(X) C H:(X). But since H>~2(X) =0, the

toric part H? 1 (X) is orthogonal to all other summands in the middle cohomology.
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Theorem 4.4 in [M] shows that Ry (/)(,11)p-p, 18 orthogonal to all other summands as
well. The proof of Lemma 6.9 below shows that o, U = 0if p;, p;¢ Zy lie in two
distinct two-dimensional cones of £ y(2). Finally, the projection formula gives:

o'y U HE3(X N V(7)) = ¢, (0o, U HE3(X N V(7).

But it can be seen directly that the restriction ¢} of the Cech cocycle (w')), is a
coboundary. The theorem is proved. |

Remark 6.8. The direct summand C in the above theorem vanishes when
q=0,1,d—1,d—2. Therefore, we have a complete description of the middle
cohomology in the corresponding Hodge degrees.

Lemma 4.13 tells us that the cup product 7/, U w’é vanishes in certain cases. Now
we show that this is true in more cases.

LEMMA 6.9. Let X C Ps be a d-semiample nondegenerate hypersurface defined by
f € Sp. Then the cup product y'y U a); =0, for A € Sp-1)p+pe and B € Sy—npipe, if
pi> ;& Zx(1) lie in two distinct two-dimensional cones of Zx(2).

Proof. We use the description of the middle cohomology in Equation (3) and the
Poincaré nondegenerate pairing to show that 7/, U a)’é = 0 for p; and p; lying in two
distinct two-dimensional cones ¢! and 62 of Zy. Because of this, it is enough to check
that the cup product of yi, U w’é with all elements in (3) vanishes.

Take [wc] € HY'(X), corresponding to C € S(d—p—1)p—p,» in the Hodge component
complementary to the one of 7%, U @j,. Then

Y Ul Uloc] = 200 U oy = 0,0 U 0,0 = +¢,((p} Pa@' ) U @),

where we use Theorem 4.11, Proposition 6.3 and the projection formula for Gysin
homomorphisms. By Lemma 5.4 in [M], there is a commutative diagram:

Hd73 (X ) Di) Pit de 1 (X)

i i

HZ3(XnD;nD) ", H"'(XNDy,

where ¢ X'N DiND; — XND, is the inclusion map and « is some constant. On the
other hand, QDZ-(Z’IAC vanishes, because the cocycle representing @'y has a multiple of
dx; or x; in each term of the form Q. Therefore, 7%, U @ U [wc] = 0.

The rest of the elements, which span the middle cohomology, have the form ¢ (a)
for some ae€ H*3(XN D). The projection formula gives 7y, UawU op(a)
= @u(@r(y', U o ») Ua). Hence, it suffices to show that ¢j(y/, U wB) = 0. In further
calculations, for 51mp1101ty, we assume that 4 € S, and Be S 2. We will need
to use a refinement U of the cover U, by the open sets Uy = {x e Pz xkfk(x) # 0} for
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k=1,...,n Since X is nondegenerate, these sets cover the toric variety Py. In this
case, the cup product ', U 'y is represented by the Cech cocycle

(_l)dAB u;:hjl u;:o,jo d K[Z(alin Q) Kil (8;;1J Q)
(I—[I)/;CG‘ xk)(np,(cgz xk) fil fio fl'z fll ’

1

where the index set I = {(iy, jo, ko), (i1, j1, k1), (&2, j2, k2)} corresponds to the refine-
ment of U, U and U’ , and where uf[ i denotes (0;, A 8’ ,df). Note that

(0 AL, df) ) K0, Q) Ky (@), 9] Q , @, 4Nk Kiu@,' Q)
flo Ji Ji Jiufi
For p,, not lying in the cones ¢! and ¢?, the restriction @ of the above cocycle van-
ishes: if i is among {iy, i1, 2}, then U; N D; is empty; if i¢ {ip, i1, i}, each term of the
cocycle is multlple of x; or dx; coming from Q. We are left to consider p, C ¢' U g?

For p, C o', we will show that the restriction ¢} 7 of the cocycle is a Cech coboundary,
the other case is similar. Compute

ugl,jl ufo,jo 1 ( ka Q) Kil (a;;lJ Q)
f,:l fIO fiv f’l

HOL1 @ =01 Q) (D df)K; K (D) Q))

_ 1) ki Jo
- 2 ”( J: 7

I=1\{(s, Jis ks)}

Using this, we can see that the restriction (p}‘(*/iiUw’é) is represented by a
Cech coboundary because of the following observations. The polynomial (8/’;0 ,df)
is divisible by x;. If p, ¢ a , then the restricted open set U, | N D, is empty. If
0 and 0/ contain p,;, then K~ (6’ 8’) Q is either 0 or divisible by x; because of
Equdtlon (7). Thus, the restrlctlon (p,( YU cu’B) =0, and the result follows. O

At this point, let us summarize our calculations of the cup products H*(X, A*7 x)
with the middle cohomology H*(X,Q%'~*) for d-semiample nondegenerate hyper-
surfaces. We have the elements in H*(X, A*7 y) represented by y_, y* (with p; lying
in some o€ Xy(2) such that p,¢Xy), and the corresponding elements in
H* (X, Qg(_l_*) represented by w_, o’'. Theorem 3.4 provides 7y, U wp = w45, while
Theorems 4.11 and 4.12 have y, U w) = o', and Y, Uwp = o5 Lemmas 4.13
and 6.9 tell us that the cup product 7/, U w’l'; =0, for i #j, unless p; and p; span a
2-dimensional cone of X. Thus, for the constructed elements in H*(X, A*7 x) and
H*(X, Q‘}’(_l_* ), we are missing only the cup products y’, U w’é when p; and p; (i may
be equal to j) span a cone of £ contained in some 2-dimensional cone of Xy.

First, we consider the nontrivial cup products y’, U w% lying in H*"'(X, Oy ), which
is isomorphic to Ri(f)zp_p,, by Theorem 6.7. We note here that the inclusion
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n

T Rl(f)d/f—/}oMRO(f)d[f (20)

induced by the multiplication is an isomorphism because the dimensions of the
spaces is the same number (of the interior integral points of a polytope A corre-
sponding to ) by the isomorphism R;(f)z5_5, = H*'(H*'(X N T)) of [M, Theo-
rem 4.4], by [DK, Section 5.8], and by [BC, Theorem 11.5] with [B2, Corollary 3.14].
The cup product should be represented by a polynomial in the above spaces.

PROPOSITION 6.10. Let X C Ps be a d-semiample nondegenerate hypersurface
defined by f € Sp, and denote

XofsXift np/‘¢5 Xk

mult(o) [, , *k

G°(f) =

€ Sap+py—2p5

for [2S Zx(Z) spanned by Py and 0 Given A € S(p—l)ﬁ+ﬂf’ Be S(d_1_p)/;_/30+/5¢1f, then

() for p; = p, ¢ Zx, as in (6), contained in ¢ € Zx(2):

mult(ax + 04410, (4867 1))]

; Hd—l
mult(o;)mult(cy1) n (X, Oy),

ViU =
(ii) for p;, p;¢ Zx which span a two-dimensional cone ¢' € X contained in ¢ € Zy(2):

[@u-14867( )]

in H=' (X, 0y).
mulie) " HT (X 0x)

yi, V) w’é =—
Proof. To simplify the proof we assume that p = 1.
(i) After a simple modification it follows that the cup product 7, U w) is represented
by the cocycle

(—1)H@9/2 4 (0- /\a]éo,df)J K; - K; (a;‘I 10)

ko i
2 Z (=1 3 L fe ’
(nﬂkca Xk) i=1\{(ik,j/{)} 'f;o ‘f}l ‘f;’/’z

I
where I = {(iy, jo), ..., (41, Ju—1)} is the index set corresponding to the open sets U,-k
(defined in Lemma 6.9) and U, - Note that
AB (8Z1A8/!~0’df>J KZI—ZK;I(all']J Q)
(I—[kaU xk)z f;() f;l o '/{17,1-2
nlas (o K K@aQ) K, K@ 00
= B <aj0a df) - - - -
(l_[pkco' Xk) fio o .f;'d—z fil ” 'flllfz
The first summand is well defined on the corresponding open set: if i € {i, . . ., iz_2}.

then x; # 0 on the open set; otherwise, (8}5 LANOVK: - K (a}J Q) is a multiple of
JO 1

-2 0
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(x;)*. Therefore, the corresponding sum in the above cocycle forms a Cech cobound-
ary, and ), U o'y is represented by

(_1)1+((d—3)2/2)AB . K: - K; (8}’;1J 8]’;0J Q)
2 (=1 i f A
[pica ™ iriGion ho e !
By Proposition 5.3 in [C2], the polynomials x,f,,...,x . f._, do not vanish
simultaneously on X'if e, . .., e, , are linearly independent. We can always find such

generators so that e, =e¢, and e, =e¢,,,, as in (6). Since the open sets
{x € Py : x,,.f;, # 0} cover the toric variety, we can assume that the first index in /
takes only the ordered values ry, ..., rs_;. In this case, it is not difficult to check that

the above cocycle is different by a coboundary from

(_1)1+((d—3)2/2)AB Z e K o K (00 040 Q)
(Hkaa X)) =G0l If;I < f> mult(op)mult(og) ]’

id-2

where

—1 if20:;121’27j0<k<k+1<]71,
-1 iflT():r],lT] =r2,.]71 >k+1,

1 ifiozro,;l :7'2,]7] <k,

0 in all other cases.

Using the Euler identities in the proof of Proposition 6.3, the last cocycle converts to

mult(ox + 0441) (_1)(d_s)_/zABx/uf/ox/n(a)+1ﬁu(a>+l Ki, - K;,Q
mult(gr)mult(og ) mult(e)([],, xi)? Ji = fias ;
This cocycle represents

mult(ox + k)01 4867(r))]
mult(o)mult(og,1)

in H-'(X, Oy).

(i1) Similar to the proof of the previous part and Lemma 6.9, the cup product
7', U oy is represented by the following cocycle:

2 ~ “e ~ / i j— i
(— 1)1+((d_3) /2)AB Z (—l)k Kidfz Ki1 (8}1 . (afo af] )1 Q)
St i

2
(np,\cu k) I=I\{(i i)}
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The one-dimensional cones p; and p; span one of the 2-dimensional cones o, C @
as in (6). The cocycle differs by a coboundary from
(_1)1+((d*3)2/2)AB Z ( 1) _K;d—z cee K;'l (8]AJ a]I_IJ Q)
— 1
Mper ¥ iy i fiamulton?

=N\{(ik )}

)

where o; is the same as in part (i). The Euler identities show that this represents

[@p-1asarryl _ am
_ O UBCTUN =1y 0).
multoy) <o K00 =

The restriction maps ¢;, induced by the inclusions ¢, : X N D; — X, give some
information about the nontrivial cup products y/, U @’ in H~1(X). We will use this
in Section 7 to calculate nontrivial triple products on the chiral ring of anticanonical
hypersurfaces.

PROPOSITION 6.11. Let X C Py be a d-semiample nondegenerate hypersurface
defined by f € Sg, and let, as in (6), p; = p, ¢ Zx be in some o € Zx(2). Then, for
A € Spprpy and B € Sypp,p7,

(1) (p}*kﬂ(yi1 U a)jg) :I:(p,Ail(wABHJ (/)) where H? ﬁEl(f) is a polynomial in Sg_ 5 equal

to N—=1x;, fi., /(mult(ak,;d[])HMQT xr) at x;, =0 and x5, =0, where o,
denotes the cone spanned by p, and p, .
(i) @7y U ) = @F ()yppye(s)), where H(f) is a polynomial in Sg_g: equal to

Vv _lxl/c+1ﬁk+1 vV lxlk—l«f}k—l

mult(op k1) [ 1), co X mult(or_160) [ 1, cr Xk

with x; = x;_, = x;,,, = 0.
Proof For simplicity, we assume that 4 € Sy and B € Sy_g 1 pr. The cup product
7', U o'y is represented by the Cech cocycle:

V4B (i) (Mg KiGag)
(l_[ka(T xk)z f;'l .ﬁo fiz ﬁl ’

1

where uﬁ/\_’jk denotes (9, A0 ,df), and I= {(iy, jo), (i1, j1), (2, j2)} is the index set.

JK?
Compute

(0 A 0L.df) K (919
fio Jii
Kll(a[ d a[ d Q) (6/,:07 df>Kll l()( J Q)
= 4

ﬁl .fioﬁl
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K; (8 46’4 Q) | ”,df K; ,—0((3;0J Q) K, K, ((‘3’J8’)J (df A Q)

+
fio fi()fh flofll
Kl[,(a d al d Q) ( j] ) df Kl[ Kl()( J Q)
= + s
i Jiufi

where, as in Lemma 4.10, we used df' A Q = 0 modulo multiples of /. Hence, the cup
product y, U o' is represented by the Cech cocycle

(=148 l)dAB (G2 1 O G N KNG ©)
2 ”( [

(I—[kaG [ N{(Gs,Js)} !

For part (i), consider the restriction ¢~ of this cocycle. Note that the open set
Us, N Dy, is empty, if o; does not contain p, , , and that 9; = 0, if the corresponding
cone g; does not contain p;. Using this and J; A 9; = 0, we get that the restriction
¢}, of ¥y Uy is represented by

:I:\/_ (= 1)d+(l—/2)AB Z (—1y XSl K’ ’0(. 19
(o ¥ 1,y MultOke)  fif;

where the index set / corresponds to the restricted open cover U° |y Dy, and where
ok +1 1s the cone generated by ¢;, and e, . Notice that this cocycle is similar to the
restriction ¢} () for some polynomial C. The problem here is that x;,,f},,, is not
necessarily divisible by Hpkco Xx. So some work is required to get the correct poly-
nomial. Let X be linearly equivalent to a torus invariant divisor D = | _, b Dy with
the associated polytope A = Ap given by the conditions b; + (m,e;) = 0 . Then we
can write f = 37, _anps @nX2, where x2¢ denotes [/, x7"""“’. Note that

D
xlkil-f/kil = Z am(b/kil + <m’e/ki1))x (m)'

meANM

If by, + (m,e,,,) =0, then the corresponding monomial x?* is not present in
Xj S, - On the other hand, if by, + (m,e;,,) > 1, then the multiple of the
corresponding monomial x" in (22) vanishes, since 8~ = Fx;,,0,., or 0. By the
argument in the proof of Lemma 4.2, b, + (m e,,,) =1 implies that
b;+ (m,e;) >0 for all p, C o such that p,;¢ Zx(1). If b; + (m,e;) > 1, the multiple
of the monomial x?* in (22) forms a coboundary. Therefore, only the monomials
P in x, fi.,» satisfying by, + (m,e;,,) = 1 and b; + (m, ¢;) = 1, have a nontrivial
contribution in the Cech cocycle (22). For all such monomials, it follows from the
relations of the cone generators in the proof of Proposition 6.3 that

by + (m, e5) > 0 with s = Iy, [,»+1. Hence, the monomials are divisible by [ ppco Y-
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Thus, ¢} | (7, Uw}) = £ (wilBHﬁil(f)) where H7,,(f) is the polynomial

Z V=1Y, @ xPm

— mult(o f+1) Hkarr e

with the sum over all m € AN M, satisfying the equalities b;,,, + (m,e;,,) =1 and
b; 4+ {m,e;) = 1. This is the same as \/—_1x;kilflkil /(mult(akﬁkil)Hpkca xr) evaluated
at x; =0and x;,, =0.

In part (ii), we will need to use the refinement U of the cover U defined in Lemma
6.9. From (21) we get that the cup product y’, U ', is represented by the Cech cocycle

d
CVUE

(I—[p/‘ca k I= I\{(is, Js)}

K (051 051 Q) (0 ,df)K; K; (051 Q)
J1 . JO + JO - J1 ,
f; Tifi

where the index set I = {(iy, jo), (i1, /1), (i2, j»)} corresponds to the refinement of u
and U°|y. Notice

Ki(0,1 0,1 Q)  Kiy(9]1 0,1 Q)
fi -
(0,,,dN K, K;, (0],1 Q) (9,df) Ky, K (9,1 Q) K, K;, (9] 1 9 )1 (df A Q)
B il - fili - fifi
_ (0,,df)Ki, K; (95,1 Q) (0}, df) K, K;, (9 1 Q)
N it - fifo ’

since df A Q = 0 modulo multiples of f. Using this, we compute

4B Z 1y ;1(3}1J 3]’50J Q)_i_(f)}u,df)K;,K;O(a}lJ Q)
(l_[mca Y0

(i0.jo) 1 fifi
AB(0.,df)K; K; (9 — L)1 Q)
= Z (_1 S Jo 1o 2(]1 Jo

I=N\{(is, ) (I Ty co X0 f5, 15
ABK,((0: AN O — 0L ANOL 40 A D)L Q)

+ Jo J1 Jo J2 1 ]2 Xk)zﬁz "

(I—[PACU
B(a]ll 3 df} l()( J Q) Kzl 10( J Q) KIWKH( J Q) +
(1,0 x1c)2 fiofiz fir fil 1A ﬁz
AB(0},,df) + (9], d K; K, (951 Q)
(nkao Xk) Gl flof”

It is not difficult to see that the first summand produces a coboundary. The open set
Us;, N D; is empty unless a; contains p;. Therefore, applying the restriction ¢}, we can
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assume that the second component of the index (iy, jo) takes only values /;_; or /;.y;.
In this case, 9! A 0; — i A D), + 0, AJj, (and the corresponding summand in the
cocycle) vanishes. The third summand also ends up contributing zero:

B, df) (KuKi(01 Q) Ki K91 Q) KK (91 Q)
[yyco xk)2< Y Y Y )
_ AB(;,df) ( 9 KK K@ | KiKi Kiy3j,1 (df A Q))
(1,0 X)) Ji S Jiy St
AB<8’ df)(9, ,17 df) K, K;, K;,Q
(Ip,co Xk JioJi Jin

If i is among {iy, i1, i»}, then this restricts to an empty set since U; N D; is empty. In
the opposite case, this gives 0 under the restriction since x; or dx; is present in each
term of Q. Thus, the restriction ¢¥(y’, U wh) is represented by the cocycle

(—1)?4B((0}, df) + K; K01 Q)

Il’
2 Z (=1 ) )
([Tpico e I=N\{(i0.j0) Jili ;

where the index set / now corresponds to the open cover U’|yp,. However, the last
calculation shows that if j, coincides with j;, then the expression in the above cocycle
vanishes on the given open set. Hence, this cocycle is the same as

(—l)dAB (xlk—lﬁ/l—l )C],(JFI(}F[I‘Jrl > Z (_1 S l] lr)( .’J Q)

(Hpk@ xk)z mult(ay) - mult(ey 1) NG S Oﬁl

By the arguments similar to part (i), one can show that this coincides with the
restriction ¢F (@ s)), Where H7(f) is equal to

vV~ 1xl/c+]ﬁk+l vV~ lxll\—l«ﬁk—]

mult(ox 1) [1,,co X mult(or_10) [1,, o Xk

at X, =X, =X, = 0. 0

Remark 6.12. In the anticanonical case = f8, the polynomials H7 ,,(f), H{(f) of
the above proposition can be written in a simpler form. Let D = Zk:l Dy be the
anticanonical divisor with the associated polytope A := Ap. For /=", s dmxP™
and o € Xx(2), denote

xD(m)

H()=vV-1 Y  apz——.

meatNANM ]_[PA»CU Xk
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Then HZil(f) = H°(f)/mult(o) k1) and

1 1
mult(oes)  mult(og)

HI(f) = ( )H”(f)-

7. The Chiral Ring for Anticanonical Hypersurfaces

Here, we will apply the results of the previous sections to explicitly describe a subring
of the chiral ring H*(X, A*T x ), coming from the graded pieces of R;(f) and R{(f),
for semiample anticanonical nondegenerate hypersurfaces. By Proposition 2.6, such
hypersurfaces are Calabi—Yau. The description of the chiral ring is complete for
Calabi—Yau threefolds.

Let Py be a complete simplicial toric variety, and let X C Py be a big and nef non-
degenerate hypersurface defined by /'€ Sg. From Theorem 6.7, we know the follow-
ing part of the middle cohomology of X:

. o) .
[o0] @(@ wi) R ey, @( D (Rla(f )*/f—/fo+/f‘{> )‘*H‘l_l_ T(X).

ce2y(2)

Now suppose that f§ is the anticanonical degree f3,. In this case, the isomorphism
(5) and Theorems 3.4, 4.11 give us:

THEOREM 7.1. Let X C Py be a semiample anticanonical nondegenerate hypersur-
face defined by f'e Sg. Then there is a natural inclusion

w-@(@ vi) :R1<f>*ﬁ@( @ (R‘f(f‘x*_w)”(”))»H*(X, NT ),

ce2y(2)

where the sum @;y" is over p; C o € £x(2) such that p;¢ y and n(c) is the number of
such cones. Also, RT(f)(q—l)ﬂJr/if =0forq=0,d—1.

Remark 7.2. The map given by y_€D(€D; ") is an isomorphism onto HY(X, A?T x )
if g=0,1,d—2,d—1 and d#1,3. In particular, for semiample anticanonical
nondegenerate hypersurfaces of dimension 3, we get a complete description of the
chiral ring.

We claim that the part of H*(X, A*7 x) given in the above theorem is a subring.
Let us describe the product structure on this part. First, note that the ring
@p HP(X, NPT x ) is commutative. Theorems 3.3, 4.7, Lemmas 4.8, 6.9 and Equation
(5) give us all information about the ring structure except for the products 3%, Uy,
when p; and p; span a cone of X contained in some two-dimensional cone ¢ € Zy.
For such p; and p;, we first show that 7', U )y is in the part of the middle cohomo-
logy represented by [w_] (D, »"). It is easy to see that 7, € H*(X, A*7 x) can be
‘lifted’ to y in H*(Px, A*7Tp,) with respect to the maps of the following lemma.

LEMMA 7.3. Leti: L — K be a morphism of orbifolds, and let a € H?(K, N7 k) be
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such that i*a = n*a for some a under the maps
HY(K, NT ) — HP(L,i* AT x) <— HP(L, AT 7).

Then i*(aU b) = aU i*b for b € H'(K,QY).
Proof. First, note that we have natural maps between the sheaves:
"Qr —> Q) and AT, — "N Tk
The corresponding maps in cohomology of L with coefficients in the sheaves are

denoted by #n, and n*, respectively. Then the restriction map *: H*(K,Qf) —
H*(L, Q) decomposes as

H*(K, Q%) -, H (L, " Q%) —> H*(L,Q%).
Therefore,

(aUb) = n,*(aUb) =n,(FaUib) = n,(i*aU i*b) = aU n,i*b = @ U i*b,
where we use the projection formula. O

Using the above lemma, for 1 € H"!(Py), we have
Y Ul Uirh=4y, UihUwl, =+ Uh)Uaw, =0

since the toric part is orthogonal to the residue part in the middle cohomology. Simi-
larly, ¢*y, =n*y,, for a corresponding 7y, € H*(X N V(1), A*T xny(r), T € Z(2).
Therefore, for /' € H* (X N V(1)),

Yy U Uyl = 0 (010 Ual) UK = oy (), U @lal UK)
=49, UN) U, =0

where we use the projection formula for Gysin homomorphisms and Theorem 6.7.
Hence, by the same Theorem and because of the nondegenerate pairing on the mid-
dle cohomology, the cup product 7, U w’é lies in the space given by [w_] D(D, k).
By the isomorphism (5), the cup product 7, ny_? is in the part of the chiral ring
described in Theorem 7.1. Thus, this part is a subring of H*(X, A*7 x).

Since X is Calabi—Yau, we have natural isomorphisms

H (XA Ty ) = HY(X, 0x) = H(X, Q) = C.

The cup product on the middle cohomology induces a nondegenerate pairing on the
chiral ring and its subring represented by 7 (€D, 7*). Therefore, one can recover
the product structure of the subring, knowing the triple products on this subring.
Because of Lemmas 4.8 and 6.9 it suffices to consider the product of three elements
Y, Uy Uyk € HEY (X, A4 T x) in the cases i = j = [ and i = j with / such that p;, p,
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span a 2-dimensional cone of X contained in some ¢ € Zx(2). For this, compute

(' Ut Ut Ul ) U o]
Uy =, Ul U 00
= 500104 U0l UGC) = 0(0] 0 ) U 50)
= 60y e ) U @D = 60y pyre 1y U 0
= (ViIBH,.“(j) Vo) Ulw]
_ mult(o; + 0'/(+1)[(1)N—1 (ABCH?(/)G (/)] U [w1]
B mult(o;)mult(ci ;)

where we used Propositions 6.3, 6.11, 6.10 and the projection formula for Gysin
homomorphisms, and where ¢ is a sign depending on the degree of C. Similarly, in

)

the other case (as in (6), p; = p,,):

Ol U7 U Ulo]) Umi]
=&, Uk U wléi‘ =&, UohU Pl

i i ~1 i ~

=&Qy, !(QDZiI(VIA U wlB) U wéﬂ) = ig@lkil 1((¢Zi]wi43HZil(f)) U wéil)

~ lsi
We

: I ; I
= £e@pyr (YO = Eupur, (YO Ulon]

[0 1cacus, (ne ol Y lor]
mult(oy k+1)

Since there is an isomorphism Ulw;]: H*'(X, Ox) = H*'(X,Q% "), from the
above calculation we get an explicit product structure on the chiral ring.

THEOREM 7.4. Let X C Py be a semiample anticanonical nondegenerate hypersur-
face defined by f e Sg. Then, under the identifications of Theorem 7.1, we have

(@) v4Yrp =745
(i) 7.4 YU7p =Vas
(i) Y, Uyly =0, i # j, unless p; and p; span a cone of X contained in a two-dimensional

cone of Xy,
(v) for p; = p, ¢ Zx, as in (6), contained in ¢ € Tx(2) and A, B € R({(f)(*_l)ﬁﬂﬁ such

tha[ AB S Rtlf(f)(d—K)/}-k—zﬁl”l

; mult(ox + 0k+1)7 14867 1))
ml U L U . . Hd—] X /\d_lT
V4= Tn mult(c)mult(c ) " &, x),
where the map w and G°(f) € Szp_op; are defined in (20) and Proposition 6.10,
(V) for p;, p;& Zx which span a 2-dimensional cone ¢' € X contained in o € Lx(2) and

A, B as in (iv),
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_ Tu\(4BGT())
mult(o”)

(vi) for p;=p, as in (6) and A,B,CeRj’(f)(*_l)5+ﬁ7 such that ABC €
RY(/ N a-ap+3p;-

VUt = in H™' (X, "' Ty),

i (mult(or) — mult(og))mult(ox + 0k1)7,01aBcH ()67 f)
TaYrpYre = 2
(mult(or)mult(oy1))
where H°(f) € Sy_p; is defined in Remark 6.12,
(vii) for p; = p, as in (6) and A, B,C as in (Vi),

3

; : / Y-\ (ABCH (/)G (/)
V’ U ,yl U ,V k+1 — = e M M
4 B c mult(ak,kil)z
where o i+ denotes the cone spanned by p; and Pl

Remark 7.5. 1f the multiplicities of the two-dimensional cones of the fan X, lying
inside a cone of Zy(2), are equal to 1, then y%, Uy} Uy, = 0 in part (vi) of the above
theorem. In particular, this holds for the minimal Calabi-Yau hypersurfaces in
(B2]. O
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